浙江农业学报 ›› 2024, Vol. 36 ›› Issue (10): 2308-2315.DOI: 10.3969/j.issn.1004-1524.20230803
收稿日期:
2023-06-29
出版日期:
2024-10-25
发布日期:
2024-10-30
作者简介:
吴雨珂(1998—),女,广东梅州人,硕士研究生,研究方向为重金属污染控制与固体废弃物资源化利用。E-mail:wyk2021@stu.hznu.edu.cn
通讯作者:
*朱维琴,E-mail:zhwq@hznu.edu.cn
基金资助:
WU Yuke(), WANG Feng, WANG Yifan, WU Xueping, ZHU Weiqin*(
)
Received:
2023-06-29
Online:
2024-10-25
Published:
2024-10-30
摘要:
蚯蚓堆肥是畜禽粪污资源化利用的方式之一。该研究以牛粪为主料,辅以不同添加剂于蚯蚓反应器中,采用L16(44+32)正交设计优化牛粪蚯蚓堆肥的生产条件,研究所获堆制物基本理化性状及其对Pb2+和Cd2+吸附性能的变化。结果表明,米糠和EM菌剂可促进蚯蚓生长繁殖,并能改善堆制物的理化性质。在牛粪蚯蚓反应器中添加生物炭、鸟粪石和贝壳粉具有可行性,且以经鸟粪石处理后的堆制物对Pb2+和Cd2+的吸附效果最优,吸附率分别可达96.50%和49.95%。牛粪蚯蚓反应器的优化配方为: 以牛粪、米糠、EM菌剂(7∶3∶1的质量比混合)为主料,添加4%的鸟粪石或生物炭,调节含水率至70%~80%,每150 g干基接种12条蚯蚓,堆肥40 d。研究结果可为畜禽粪便的资源化利用和安全阻控土壤中的Pb2+、Cd2+迁移提供科学依据。
中图分类号:
吴雨珂, 王峰, 王依凡, 吴雪萍, 朱维琴. 牛粪蚯蚓堆肥条件优化与堆制物的性状变化[J]. 浙江农业学报, 2024, 36(10): 2308-2315.
WU Yuke, WANG Feng, WANG Yifan, WU Xueping, ZHU Weiqin. Parameters optimization for vermicomposting of cow dung and changes of properties of composting residues[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2308-2315.
处理 Treatment | 预发酵物料 Pre-fermented materials | 添加剂 Additives | 添加水平 Supplemental level/% | 蚯蚓接种数量 Number of earthworms | 堆肥时间 Composting time/d | 含水率 Moisture content/% |
---|---|---|---|---|---|---|
T1 | PM1 | 生物炭Biochar | 0 | 0 | 20 | 70 |
T2 | PM1 | 贝壳粉Shell powder | 2 | 6 | 20 | 80 |
T3 | PM1 | 鸟粪石Struvite | 4 | 12 | 40 | 70 |
T4 | PM1 | 磷镁矿物Phosphorus magnesium minerals | 8 | 24 | 40 | 80 |
T5 | PM2 | 生物炭Biochar | 2 | 12 | 40 | 80 |
T6 | PM2 | 贝壳粉Shell powder | 0 | 24 | 40 | 70 |
T7 | PM2 | 鸟粪石Struvite | 8 | 0 | 20 | 80 |
T8 | PM2 | 磷镁矿物Phosphorus magnesium minerals | 4 | 6 | 20 | 70 |
T9 | PM3 | 生物炭Biochar | 4 | 24 | 20 | 80 |
T10 | PM3 | 贝壳粉Shell powder | 8 | 12 | 20 | 70 |
T11 | PM3 | 鸟粪石Struvite | 0 | 6 | 40 | 80 |
T12 | PM3 | 磷镁矿物Phosphorus magnesium minerals | 2 | 0 | 40 | 70 |
T13 | PM4 | 生物炭Biochar | 8 | 6 | 40 | 70 |
T14 | PM4 | 贝壳粉Shell powder | 4 | 0 | 40 | 80 |
T15 | PM4 | 鸟粪石Struvite | 2 | 24 | 20 | 70 |
T16 | PM4 | 磷镁矿物Phosphorus magnesium minerals | 0 | 12 | 20 | 80 |
表1 L16(44+32)正交试验设计表
Table 1 L16(44+32)orthogonal experiment design
处理 Treatment | 预发酵物料 Pre-fermented materials | 添加剂 Additives | 添加水平 Supplemental level/% | 蚯蚓接种数量 Number of earthworms | 堆肥时间 Composting time/d | 含水率 Moisture content/% |
---|---|---|---|---|---|---|
T1 | PM1 | 生物炭Biochar | 0 | 0 | 20 | 70 |
T2 | PM1 | 贝壳粉Shell powder | 2 | 6 | 20 | 80 |
T3 | PM1 | 鸟粪石Struvite | 4 | 12 | 40 | 70 |
T4 | PM1 | 磷镁矿物Phosphorus magnesium minerals | 8 | 24 | 40 | 80 |
T5 | PM2 | 生物炭Biochar | 2 | 12 | 40 | 80 |
T6 | PM2 | 贝壳粉Shell powder | 0 | 24 | 40 | 70 |
T7 | PM2 | 鸟粪石Struvite | 8 | 0 | 20 | 80 |
T8 | PM2 | 磷镁矿物Phosphorus magnesium minerals | 4 | 6 | 20 | 70 |
T9 | PM3 | 生物炭Biochar | 4 | 24 | 20 | 80 |
T10 | PM3 | 贝壳粉Shell powder | 8 | 12 | 20 | 70 |
T11 | PM3 | 鸟粪石Struvite | 0 | 6 | 40 | 80 |
T12 | PM3 | 磷镁矿物Phosphorus magnesium minerals | 2 | 0 | 40 | 70 |
T13 | PM4 | 生物炭Biochar | 8 | 6 | 40 | 70 |
T14 | PM4 | 贝壳粉Shell powder | 4 | 0 | 40 | 80 |
T15 | PM4 | 鸟粪石Struvite | 2 | 24 | 20 | 70 |
T16 | PM4 | 磷镁矿物Phosphorus magnesium minerals | 0 | 12 | 20 | 80 |
处理 Treatment | 存活率 Survival rate/% | 日增重 Daily gain/ (mg·d-1) | 蚓茧和幼蚓数量 Number of cocoons and juvenile earthworms |
---|---|---|---|
T1 | — | — | — |
T2 | 100 a | 11.1±0.5 d | 0 c |
T3 | 100 a | 8.2±0.3 e | 47±4 b |
T4 | 0 c | -4.4±0.6 f | 0 c |
T5 | 100 a | 12.3±0.6 cd | 5±1 c |
T6 | 79.2±4.2 b | 8.3±0.8 e | 6±1 c |
T7 | — | — | — |
T8 | 0 c | -12.3±1.0 g | 0 c |
T9 | 100 a | 19.1±0.8 a | 0 c |
T10 | 100 a | 19.1±0.8 a | 0 c |
T11 | 100 a | 15.7±0.9 b | 44±6 b |
T12 | — | — | — |
T13 | 100 a | 13.6±1.6 bc | 63±11 a |
T14 | — | — | — |
T15 | 100 a | 14.3±0.3 bc | 0 c |
T16 | 100 a | 20.3±1.4 a | 0 c |
表2 不同处理对蚯蚓生长指标的影响
Table 2 Effect of treatments on earthworm growth indexes
处理 Treatment | 存活率 Survival rate/% | 日增重 Daily gain/ (mg·d-1) | 蚓茧和幼蚓数量 Number of cocoons and juvenile earthworms |
---|---|---|---|
T1 | — | — | — |
T2 | 100 a | 11.1±0.5 d | 0 c |
T3 | 100 a | 8.2±0.3 e | 47±4 b |
T4 | 0 c | -4.4±0.6 f | 0 c |
T5 | 100 a | 12.3±0.6 cd | 5±1 c |
T6 | 79.2±4.2 b | 8.3±0.8 e | 6±1 c |
T7 | — | — | — |
T8 | 0 c | -12.3±1.0 g | 0 c |
T9 | 100 a | 19.1±0.8 a | 0 c |
T10 | 100 a | 19.1±0.8 a | 0 c |
T11 | 100 a | 15.7±0.9 b | 44±6 b |
T12 | — | — | — |
T13 | 100 a | 13.6±1.6 bc | 63±11 a |
T14 | — | — | — |
T15 | 100 a | 14.3±0.3 bc | 0 c |
T16 | 100 a | 20.3±1.4 a | 0 c |
处理 Treatment | pH | EC/(mS·cm-1) | C/N | OM/% | TNu/% |
---|---|---|---|---|---|
T1 | 9.10±0.02 ab | 5.15±0.01 g | 11.73±0.05 e | 38.13±0.77 ef | 4.21±0.09 gh |
T2 | 9.12±0.02 a | 5.17±0.01 g | 11.98±0.14 e | 37.53±0.39 fg | 4.26±0.02 g |
T3 | 8.74±0.01 de | 5.45±0.01 f | 10.59±0.47 fg | 37.75±0.09 efg | 6.09±0.21 d |
T4 | 6.90±0.02 j | 9.43±0.12 a | 8.32±0.13 i | 38.87±0.12 de | 9.38±0.10 a |
T5 | 9.00±0.04 c | 5.72±0.01 e | 12.50±0.91 de | 37.70±0.28 efg | 4.55±0.16 f |
T6 | 9.02±0.01 bc | 6.01±0.01 d | 12.09±0.19 e | 36.61±0.13 g | 4.59±0.15 f |
T7 | 8.06±0.02 h | 7.12±0.19 c | 9.06±0.19 hi | 40.73±0.05 bc | 7.57±0.12 b |
T8 | 7.56±0.02 i | 7.78±0.03 b | 9.89±0.05 gh | 38.24±0.14 ef | 6.63±0.07 c |
T9 | 8.94±0.03 c | 3.52±0.05 k | 18.04±0.17 b | 41.69±0.11 b | 3.95±0.01 hi |
T10 | 8.94±0.01 c | 3.31±0.04 l | 14.79±0.38 c | 33.83±0.50 h | 3.68±0.05 i |
T11 | 8.94±0.01 c | 3.85±0.01 j | 13.35±0.19 d | 37.53±0.54 fg | 4.09±0.02 gh |
T12 | 8.07±0.10 h | 4.55±0.04 h | 11.54±0.21 ef | 38.23±0.50 ef | 5.46±0.03 e |
T13 | 8.65±0.01 e | 3.73±0.01 j | 20.90±0.66 a | 45.57±0.12 a | 4.23±0.08 gh |
T14 | 8.82±0.01 d | 3.71±0.02 j | 13.38±0.11 d | 37.43±0.70 fg | 4.07±0.04 gh |
T15 | 8.42±0.01 f | 4.21±0.02 i | 13.37±0.41 d | 39.57±0.38 cd | 4.83±0.04 f |
T16 | 8.31±0.01 g | 4.07±0.03 i | 13.20±0.14 d | 40.47±0.59 bc | 4.14±0.07 gh |
表3 不同处理下堆制物的基本理化性质
Table 3 Basic physicochemical properties of composting residues under treatments
处理 Treatment | pH | EC/(mS·cm-1) | C/N | OM/% | TNu/% |
---|---|---|---|---|---|
T1 | 9.10±0.02 ab | 5.15±0.01 g | 11.73±0.05 e | 38.13±0.77 ef | 4.21±0.09 gh |
T2 | 9.12±0.02 a | 5.17±0.01 g | 11.98±0.14 e | 37.53±0.39 fg | 4.26±0.02 g |
T3 | 8.74±0.01 de | 5.45±0.01 f | 10.59±0.47 fg | 37.75±0.09 efg | 6.09±0.21 d |
T4 | 6.90±0.02 j | 9.43±0.12 a | 8.32±0.13 i | 38.87±0.12 de | 9.38±0.10 a |
T5 | 9.00±0.04 c | 5.72±0.01 e | 12.50±0.91 de | 37.70±0.28 efg | 4.55±0.16 f |
T6 | 9.02±0.01 bc | 6.01±0.01 d | 12.09±0.19 e | 36.61±0.13 g | 4.59±0.15 f |
T7 | 8.06±0.02 h | 7.12±0.19 c | 9.06±0.19 hi | 40.73±0.05 bc | 7.57±0.12 b |
T8 | 7.56±0.02 i | 7.78±0.03 b | 9.89±0.05 gh | 38.24±0.14 ef | 6.63±0.07 c |
T9 | 8.94±0.03 c | 3.52±0.05 k | 18.04±0.17 b | 41.69±0.11 b | 3.95±0.01 hi |
T10 | 8.94±0.01 c | 3.31±0.04 l | 14.79±0.38 c | 33.83±0.50 h | 3.68±0.05 i |
T11 | 8.94±0.01 c | 3.85±0.01 j | 13.35±0.19 d | 37.53±0.54 fg | 4.09±0.02 gh |
T12 | 8.07±0.10 h | 4.55±0.04 h | 11.54±0.21 ef | 38.23±0.50 ef | 5.46±0.03 e |
T13 | 8.65±0.01 e | 3.73±0.01 j | 20.90±0.66 a | 45.57±0.12 a | 4.23±0.08 gh |
T14 | 8.82±0.01 d | 3.71±0.02 j | 13.38±0.11 d | 37.43±0.70 fg | 4.07±0.04 gh |
T15 | 8.42±0.01 f | 4.21±0.02 i | 13.37±0.41 d | 39.57±0.38 cd | 4.83±0.04 f |
T16 | 8.31±0.01 g | 4.07±0.03 i | 13.20±0.14 d | 40.47±0.59 bc | 4.14±0.07 gh |
处理 Treatment | Pb2+吸附率 Adsorption rate of Pb2 | Cd2+吸附率 Adsorption rate of Cd2+ |
---|---|---|
T1 | 96.87±0.01 b | 39.74±0.39 gh |
T2 | 96.60±0.18 bc | 40.72±0.22 fgh |
T3 | 99.44±0.01 a | 53.84±0.51 b |
T4 | 93.87±0.49 def | 50.02±0.84 c |
T5 | 97.16±0.10 b | 40.59±0.51 fgh |
T6 | 97.40±0.26 b | 41.52±0.24 fg |
T7 | 95.15±0.27 cd | 59.37±1.09 a |
T8 | 97.25±0.60 b | 44.19±0.52 e |
T9 | 94.99±1.43 de | 40.36±0.26 fgh |
T10 | 91.74±0.54 g | 38.94±0.69 h |
T11 | 93.74±0.45 def | 41.70±1.00 f |
T12 | 99.23±0.43 a | 47.41±0.91 d |
T13 | 93.54±0.39 ef | 40.48±0.14 fgh |
T14 | 93.64±0.20 ef | 40.60±0.46 fgh |
T15 | 97.67±0.22 b | 44.90±0.31 e |
T16 | 92.69±0.24 fg | 40.63±1.03 fgh |
表4 不同处理下堆制物对Pb2+、Cd2+的吸附性能
Table 4 Pb2+ and Cd2+ adsorption properties of composting residues under treatments %
处理 Treatment | Pb2+吸附率 Adsorption rate of Pb2 | Cd2+吸附率 Adsorption rate of Cd2+ |
---|---|---|
T1 | 96.87±0.01 b | 39.74±0.39 gh |
T2 | 96.60±0.18 bc | 40.72±0.22 fgh |
T3 | 99.44±0.01 a | 53.84±0.51 b |
T4 | 93.87±0.49 def | 50.02±0.84 c |
T5 | 97.16±0.10 b | 40.59±0.51 fgh |
T6 | 97.40±0.26 b | 41.52±0.24 fg |
T7 | 95.15±0.27 cd | 59.37±1.09 a |
T8 | 97.25±0.60 b | 44.19±0.52 e |
T9 | 94.99±1.43 de | 40.36±0.26 fgh |
T10 | 91.74±0.54 g | 38.94±0.69 h |
T11 | 93.74±0.45 def | 41.70±1.00 f |
T12 | 99.23±0.43 a | 47.41±0.91 d |
T13 | 93.54±0.39 ef | 40.48±0.14 fgh |
T14 | 93.64±0.20 ef | 40.60±0.46 fgh |
T15 | 97.67±0.22 b | 44.90±0.31 e |
T16 | 92.69±0.24 fg | 40.63±1.03 fgh |
[1] | 王明利. 改革开放四十年我国畜牧业发展: 成就、经验及未来趋势[J]. 农业经济问题, 2018, 39(8): 60-70. |
WANG M L. China’s livestock industry development: achievements, experiences and future trends[J]. Issues in Agricultural Economy, 2018, 39(8): 60-70. (in Chinese with English abstract) | |
[2] | 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6): 1168-1176. |
WU H W, SUN X Q, LIANG B W, et al. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization[J]. Journal of Agro-Environment Science, 2020, 39(6): 1168-1176. (in Chinese with English abstract) | |
[3] | 刘晨阳, 马广旭, 刘春, 等. 畜禽粪便资源化利用研究综述与对策建议: 基于供给与需求二维度视角[J]. 黑龙江畜牧兽医, 2022(2): 13-17. |
LIU C Y, MA G X, LIU C, et al. Review and countermeasures on resource utilization of livestock and poultry manure: based on the two-dimensional perspective of supply and demand[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(2): 13-17. (in Chinese with English abstract) | |
[4] | ZHANG X Y, ZHONG T Y, LIU L, et al. Impact of soil heavy metal pollution on food safety in China[J]. PLoS One, 2015, 10(8): e0135182. |
[5] | PENG J Y, ZHANG S, HAN Y Y, et al. Soil heavy metal pollution of industrial legacies in China and health risk assessment[J]. The Science of the Total Environment, 2022, 816: 151632. |
[6] | YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment[J]. The Science of the Total Environment, 2018, 642: 690-700. |
[7] | WU Y P, LI Q F, ZHENG Y, et al. Optimizing biochar addition for vermicomposting: a comprehensive evaluation of earthworms’ activity, N2O emissions andcompost quality[J]. Biochar, 2023, 5(1): 4. |
[8] | 张智, 李双来, 陈云峰, 等. 蚯蚓堆肥模式的环境效益评价[J]. 中国土壤与肥料, 2022(8): 198-204. |
ZHANG Z, LI S L, CHEN Y F, et al. Environmental benefits evaluation of vermicomposting[J]. Soil and Fertilizer Sciences in China, 2022(8): 198-204. (in Chinese with English abstract) | |
[9] | WANG Y, XU Y A, LI D, et al. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress[J]. The Science of the Total Environment, 2018, 621: 1057-1065. |
[10] | 李扬, 乔玉辉, 莫晓辉, 等. 蚯蚓粪作为土壤重金属污染修复剂的潜力分析[J]. 农业环境科学学报, 2010, 29(S1): 250-255. |
LI Y, QIAO Y H, MO X H, et al. Analysis for earthworm feces as one of potential repair agents of heavy metal contamination in soil[J]. Journal of Agro-Environment Science, 2010, 29(S1): 250-255. (in Chinese with English abstract) | |
[11] | 杜文慧, 朱维琴, 潘晓慧, 等. 牛粪源蚓粪及其生物炭对Pb2+、Cd2+的吸附特性[J]. 环境科学, 2017, 38(5): 2172-2181. |
DU W H, ZHU W Q, PAN X H, et al. Adsorption of Pb2+ and Cd2+ from aqueous solution using vermicompost derived from cow manure and its biochar[J]. Environmental Science, 2017, 38(5): 2172-2181. (in Chinese with English abstract) | |
[12] | 王碧玲, 谢正苗, 孙叶芳, 等. 磷肥对铅锌矿污染土壤中铅毒的修复作用[J]. 环境科学学报, 2005, 25(9): 1189-1194. |
WANG B L, XIE Z M, SUN Y F, et al. Effects of phosphorus fertilizers on remediation of lead toxicity in a soil contaminated by lead and zinc mining[J]. Acta Scientiae Circumstantiae, 2005, 25(9): 1189-1194. (in Chinese with English abstract) | |
[13] | WANG F, SHEN X Y, WU Y K, et al. Evaluation of the effectiveness of amendments derived from vermicompost combined with modified shell powder on Cd immobilization in Cd-contaminated soil by multiscale experiments[J]. Ecotoxicology and Environmental Safety, 2023, 262: 115166. |
[14] | WANG F, WANG Y F, WU Y K, et al. Using amendment derived from vermicompost combined with calcium and magnesium mineral to achieve safe production of eggplant and its microbial ecological effect in Cd-contaminated soil[J]. Journal of Soils and Sediments, 2023, 23(1): 1-14. |
[15] | TANG C J, LIU Z G, PENG C, et al. New insights into the interaction between heavy metals and struvite: struvite as platform for heterogeneous nucleation of heavy metal hydroxide[J]. Chemical Engineering Journal, 2019, 365: 60-69. |
[16] | CHEN X M, DU Z, LIU D, et al. Biochar mitigates the biotoxicity of heavy metals in livestock manure during composting[J]. Biochar, 2022, 4(1): 48. |
[17] | LIU W, HUO R, XU J X, et al. Effects of biochar on nitrogen transformation and heavy metals in sludge composting[J]. Bioresource Technology, 2017, 235: 43-49. |
[18] | 王峰, 缪丽娟, 王依凡, 等. 牛粪-贝壳粉蚯蚓反应器中堆制物表征及其对Cd2+去除性能研究[J]. 生态与农村环境学报, 2021, 37(8): 1073-1079. |
WANG F, MIAO L J, WANG Y F, et al. Study on the characterization and the removal efficiency of Cd2+ by the substrate residues from cow dung-shell powder vermireactors[J]. Journal of Ecology and Rural Environment, 2021, 37(8): 1073-1079. (in Chinese with English abstract) | |
[19] | 钟仁. 废水磷回收过程中鸟粪石结晶对重金属的吸附及共沉淀机制研究[D]. 广州: 广东工业大学, 2021. |
ZHONG R. Investigation on the adsorption and co-precipitation mechanism of heavy metals on struvite crystals during the process of phosphorus recovery from wastewater[D]. Guangzhou: Guangdong University of Technology, 2021. (in Chinese with English abstract) | |
[20] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[21] | 朱欣洁, 孙先锋, 周秋丹, 等. 好氧堆肥与蚯蚓堆肥对污泥处理污泥效果比较研究[J]. 环境科学与技术, 2015, 38(4): 79-83. |
ZHU X J, SUN X F, ZHOU Q D, et al. Comparative study on influence of aerobic composting and earthworm composting on sludge treatment[J]. Environmental Science & Technology, 2015, 38(4): 79-83. (in Chinese with English abstract) | |
[22] | KHWAIRAKPAM M, BHARGAVA R. Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species[J]. Bioresource Technology, 2009, 100(23): 5846-5852. |
[23] | 缪丽娟, 王依凡, 张明月, 等. 餐厨垃圾生化尾渣蚯蚓堆肥中矿物的调节效应[J]. 农业环境科学学报, 2022, 41(2): 425-433. |
MIAO L J, WANG Y F, ZHANG M Y, et al. Regulation effect of mineral addition during vermicomposting of biochemical disposal residues from kitchen wastes[J]. Journal of Agro-Environment Science, 2022, 41(2): 425-433. (in Chinese with English abstract) | |
[24] | LASARIDI K, PROTOPAPA I, KOTSOU M, et al. Quality assessment of composts in the Greek market: the need for standards and quality assurance[J]. Journal of Environmental Management, 2006, 80(1): 58-65. |
[25] | 伍玉鹏, 张宁, 孙振钧. 赤子爱胜蚓对不同盐分含量土壤的耐受性研究[J]. 湖北农业科学, 2012, 51(17): 3722-3725. |
WU Y P, ZHANG N, SUN Z J. Salt tolerance of Eisenia fetida in soil[J]. Hubei Agricultural Sciences, 2012, 51(17): 3722-3725. (in Chinese with English abstract) | |
[26] | 张婷敏, 呼世斌, 陈晓飞. 蚯蚓堆肥处理有机废弃物的研究: 基于红薯秸秆、牛粪和污泥的混合物料[J]. 农机化研究, 2012, 34(4): 110-114. |
ZHANG T M, HU S B, CHEN X F. Study on vermicomposting of sweet potato straw, cow dung and sewage sludge[J]. Journal of Agricultural Mechanization Research, 2012, 34(4): 110-114. (in Chinese with English abstract) | |
[27] | BORUAH T, BARMAN A, KALITA P, et al. Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida[J]. Bioresource Technology, 2019, 294: 122147. |
[28] | ALI N S, KALASH K R, AHMED A N, et al. Performance of a solar photocatalysis reactor as pretreatment for wastewater via UV, UV/TiO2, and UV/H2O2 to control membrane fouling[J]. Scientific Reports, 2022, 12(1): 16782. |
[29] | YANG X J, ZHAO Z W, YU Y, et al. Enhanced biosorption of Cr(VI) from synthetic wastewater using algal-bacterial aerobic granular sludge: batch experiments, kinetics and mechanisms[J]. Separation and Purification Technology, 2020, 251: 117323. |
[30] | WANG C, TU Q P, DONG D, et al. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting[J]. Journal of Hazardous Materials, 2014, 280: 409-416. |
[31] | KHAN M B, CUI X Q, JILANI G, et al. New insight into the impact of biochar during vermi-stabilization of divergent biowastes: literature synthesis and research pursuits[J]. Chemosphere, 2020, 238: 124679. |
[32] | 任露陆, 蔡宗平, 张艳林, 等. 含磷材料对土壤重金属有效性及微生物响应[J]. 环境科学与技术, 2022, 45(6): 37-46. |
REN L L, CAI Z P, ZHANG Y L, et al. Effects of phosphorus-containing amendments on Cd, Cu, Pb, and Zn availability and microbial community structure in soils[J]. Environmental Science & Technology, 2022, 45(6): 37-46. (in Chinese with English abstract) |
[1] | 武佳龙, 迟铭, 高燕, 王祥, 沈海鸥. 施加生物炭对黑土区坡耕地土壤主要理化指标的动态影响[J]. 浙江农业学报, 2024, 36(9): 2060-2069. |
[2] | 朱仁超, 原樱其, 杨宇, 杨琦玥, 余爱华. 公路沿线农田重金属污染研究[J]. 浙江农业学报, 2024, 36(8): 1887-1897. |
[3] | 傅志强, 刘祯, 马春花, 温梦玲, 奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响[J]. 浙江农业学报, 2024, 36(7): 1634-1645. |
[4] | 肖银润, 马吉平, 王赟萍, 王素贞, 钟国祥, 熊小文, 张诚. 三种钝化剂对土壤重金属和羊肚菌子实体重金属含量的影响[J]. 浙江农业学报, 2024, 36(7): 1646-1656. |
[5] | 鲁子正钢, 朱立新, 季宏兵, 汪康. 鞘氨醇单胞菌修复土壤重金属污染研究进展[J]. 浙江农业学报, 2024, 36(5): 1208-1216. |
[6] | 俞朝, 王音予, 刘奇珍, 王芸, 沈泓, 冯英. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 2024, 36(3): 613-621. |
[7] | 梁秀美, 张维一, 陈官菊, 夏海涛, 郭秀珠, 何如意, 蒋佳铭, 林定鹏. 温州市杨梅农药残留与重金属污染特征及膳食摄入风险评估[J]. 浙江农业学报, 2024, 36(10): 2347-2357. |
[8] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
[9] | 韩静, 朱依婷, 郑驰, 马莉红, 张亚男, 曾秋艳, 刘书亮, 陈姝娟. 毛豆壳生物炭的活化及其对甲萘威的吸附性能[J]. 浙江农业学报, 2023, 35(9): 2202-2211. |
[10] | 肖华, 徐杏, 谢传奇, 周昕, 周卫东, 唐文升. 鸟粪石沉淀预处理对猪场沼液双膜浓缩工艺的影响[J]. 浙江农业学报, 2023, 35(6): 1407-1415. |
[11] | 徐洋, 任奕林, 王浩杰, 黄秋航, 邢博源, 曹红亮. 不同制备条件下油菜秸秆生物炭用作缓释载体的综合评价[J]. 浙江农业学报, 2023, 35(4): 893-902. |
[12] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
[13] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
[14] | 伍少福, 倪元君, 詹丽钏, 彭璐, 吴英杰. 不同土壤调理剂对镉汞复合污染稻田安全生产和稻米铁锌含量的影响[J]. 浙江农业学报, 2023, 35(2): 417-424. |
[15] | 王建兵, 王金涛, 颜可昕, 郭小兰, 王盾, 戴洪文. 豆瓣菜在镉铅复合污染条件下的镉铅积累特性[J]. 浙江农业学报, 2023, 35(11): 2664-2672. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||