浙江农业学报 ›› 2024, Vol. 36 ›› Issue (10): 2298-2307.DOI: 10.3969/j.issn.1004-1524.20230941
郭永川(), 马永杰, 王星明, 蔺玉红, 罗雁馨, 王欣怡, 张雪艳*(
)
收稿日期:
2023-08-03
出版日期:
2024-10-25
发布日期:
2024-10-30
作者简介:
郭永川(1988—),男,湖北襄阳人,硕士,助理工程师,研究方向为农林废弃物综合利用。E-mail:2561116061@qq.com
通讯作者:
*张雪艳,E-mail:zhangxueyan123@sina.com
基金资助:
GUO Yongchuan(), MA Yongjie, WANG Xingming, LIN Yuhong, LUO Yanxin, WANG Xinyi, ZHANG Xueyan*(
)
Received:
2023-08-03
Online:
2024-10-25
Published:
2024-10-30
摘要:
为探索葡萄酒渣和磷石膏两种固体废弃物资源化利用的新途径,以葡萄酒渣和玉米秸秆为堆肥底物,设置添加0(G0)、15%(基于堆体有机物料干质量,下同)(G15)、30%(G30)、 50%(G50)、75%(G75)、100%(G100)磷石膏的不同处理,探究磷石膏添加对堆肥基质化进程和腐熟后基质品质的影响。结果表明,与G0相比,添加磷石膏能够缩短堆肥进入高温期的时间4~5 d,提高高温期的最高温度1.8~6.6 ℃。堆肥过程中,G15、G30的碳氮比下降幅度最大。堆肥结束时,G15、G30处理堆肥基质的容重、孔隙度、总养分含量、重金属含量、种子发芽指数均符合标准。利用各处理的堆肥基质进行黄瓜育苗试验,经主成分分析,G30的综合得分最高,G15次之,而G50、G75、G100的得分为负值。综上,添加30%磷石膏的葡萄酒渣堆肥产物基质化应用效果最好,过量添加磷石膏反而会起负作用。
中图分类号:
郭永川, 马永杰, 王星明, 蔺玉红, 罗雁馨, 王欣怡, 张雪艳. 磷石膏对葡萄酒渣堆肥进程与品质的影响[J]. 浙江农业学报, 2024, 36(10): 2298-2307.
GUO Yongchuan, MA Yongjie, WANG Xingming, LIN Yuhong, LUO Yanxin, WANG Xinyi, ZHANG Xueyan. Influence of phosphogypsum on composting process and quality of wine residue[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2298-2307.
原材料 Raw meterial | TC/% | TN/% | TP/% | TK/% | C/N | pH | EC/(mS· cm-1) | M/% | BD/(g· cm-3) | Poro/% |
---|---|---|---|---|---|---|---|---|---|---|
葡萄酒渣Wine lees | 42.68 | 2.25 | 0.60 | 1.16 | 18.97 | 6.02 | 1.12 | 52.40 | 0.14 | 75.62 |
玉米秸秆Maize straw | 36.09 | 0.72 | 0.07 | 1.62 | 50.13 | 6.89 | 0.37 | 15.34 | 0.09 | 85.16 |
磷石膏Phosphogypsum | — | 0.025 | 3.57 | 0.84 | — | 4.38 | 3.02 | 10.00 | 1.56 | 23.32 |
表1 原材料的基本理化性质
Table 1 Basic physiochemical properties of raw materials
原材料 Raw meterial | TC/% | TN/% | TP/% | TK/% | C/N | pH | EC/(mS· cm-1) | M/% | BD/(g· cm-3) | Poro/% |
---|---|---|---|---|---|---|---|---|---|---|
葡萄酒渣Wine lees | 42.68 | 2.25 | 0.60 | 1.16 | 18.97 | 6.02 | 1.12 | 52.40 | 0.14 | 75.62 |
玉米秸秆Maize straw | 36.09 | 0.72 | 0.07 | 1.62 | 50.13 | 6.89 | 0.37 | 15.34 | 0.09 | 85.16 |
磷石膏Phosphogypsum | — | 0.025 | 3.57 | 0.84 | — | 4.38 | 3.02 | 10.00 | 1.56 | 23.32 |
处理 Treatment | TC/% | TN/% | TP/% | TK/% | C/N | pH | EC/(mS· cm-1) | M/% | BD/(g· cm-3) | Poro/% |
---|---|---|---|---|---|---|---|---|---|---|
G0 | 341.5 ±19.12 | 13.68 ±0.64 | 5.12 ±0.18 | 12.59 ±0.55 | 24.94 ±0.22 | 6.26 ±0.09 | 0.58 ±0.02 | 60.26 ±1.32 | 0.10 ±0.01 | 84.37 ±0.77 |
G15 | 291.11 ±5.06 | 11.73 ±0.16 | 9.36 ±0.57 | 12.14 ±0.73 | 24.83 ±0.34 | 5.41 ±0.02 | 2.10 ±0.04 | 59.88 ±1.77 | 0.24 ±0.01 | 79.28 ±0.32 |
G30 | 254.60 ±9.49 | 10.18 ±0.19 | 12.11 ±0.14 | 11.80 ±0.66 | 25.00 ±0.46 | 5.22 ±0.03 | 2.49 ±0.04 | 60.68 ±0.92 | 0.24 ±0.02 | 76.57 ±0.61 |
G50 | 215.71 ±1.40 | 8.51 ±0.12 | 15.12 ±0.24 | 11.43 ±0.28 | 25.35 ±0.39 | 4.98 ±0.02 | 3.06 ±0.09 | 61.36 ±0.87 | 0.28 ±0.01 | 70.23 ±0.55 |
G75 | 182.34 ±1.67 | 7.40 ±0.12 | 17.97 ±0.52 | 10.97 ±0.25 | 24.65 ±0.21 | 4.77 ±0.04 | 3.353 ±0.05 | 59.33 ±1.35 | 0.30 ±0.01 | 60.43 ±0.78 |
G100 | 161.18 ±3.00 | 6.52 ±0.11 | 19.48 ±0.33 | 10.63 ±0.42 | 24.72 ±0.13 | 4.55 ±0.01 | 3.57 ±0.07 | 60.77 ±1.73 | 0.33 ±0.01 | 52.39 ±0.47 |
表2 各处理原料混合后的基本理化性质
Table 2 Basic physicochemical properties of treatments after mixture of raw materials
处理 Treatment | TC/% | TN/% | TP/% | TK/% | C/N | pH | EC/(mS· cm-1) | M/% | BD/(g· cm-3) | Poro/% |
---|---|---|---|---|---|---|---|---|---|---|
G0 | 341.5 ±19.12 | 13.68 ±0.64 | 5.12 ±0.18 | 12.59 ±0.55 | 24.94 ±0.22 | 6.26 ±0.09 | 0.58 ±0.02 | 60.26 ±1.32 | 0.10 ±0.01 | 84.37 ±0.77 |
G15 | 291.11 ±5.06 | 11.73 ±0.16 | 9.36 ±0.57 | 12.14 ±0.73 | 24.83 ±0.34 | 5.41 ±0.02 | 2.10 ±0.04 | 59.88 ±1.77 | 0.24 ±0.01 | 79.28 ±0.32 |
G30 | 254.60 ±9.49 | 10.18 ±0.19 | 12.11 ±0.14 | 11.80 ±0.66 | 25.00 ±0.46 | 5.22 ±0.03 | 2.49 ±0.04 | 60.68 ±0.92 | 0.24 ±0.02 | 76.57 ±0.61 |
G50 | 215.71 ±1.40 | 8.51 ±0.12 | 15.12 ±0.24 | 11.43 ±0.28 | 25.35 ±0.39 | 4.98 ±0.02 | 3.06 ±0.09 | 61.36 ±0.87 | 0.28 ±0.01 | 70.23 ±0.55 |
G75 | 182.34 ±1.67 | 7.40 ±0.12 | 17.97 ±0.52 | 10.97 ±0.25 | 24.65 ±0.21 | 4.77 ±0.04 | 3.353 ±0.05 | 59.33 ±1.35 | 0.30 ±0.01 | 60.43 ±0.78 |
G100 | 161.18 ±3.00 | 6.52 ±0.11 | 19.48 ±0.33 | 10.63 ±0.42 | 24.72 ±0.13 | 4.55 ±0.01 | 3.57 ±0.07 | 60.77 ±1.73 | 0.33 ±0.01 | 52.39 ±0.47 |
图5 不同处理堆肥产物的容重和孔隙度 柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.5 Bulk density and porosity of the compost products under different treatments Bars marked without the same letters indicate significant difference at P<0.05. The same as below.
处理 Treatment | Cr/(mg·kg-1) | Pb/(mg·kg-1) | Cd/(mg·kg-1) | As/(mg·kg-1) | Hg/(mg·kg-1) | F/(g·kg-1) |
---|---|---|---|---|---|---|
G0 | 6.66±0.27 e | 9.87±0.24 c | 0.21±0.02 a | 2.81±0.28 e | 0.05±0.01 e | 0.84±0.02 f |
G15 | 11.45±0.36 d | 11.01±0.13 b | 0.27±0.04 a | 4.78±0.08 d | 0.07±0.01 e | 1.17±0.04 e |
G30 | 12.72±0.26 cd | 12.64±0.20 a | 0.24±0.02 a | 5.53±0.19 cd | 0.08±0.01 d | 1.96±0.03 d |
G50 | 13.46±0.25 bc | 12.91±0.16 a | 0.28±0.02 a | 6.26±0.05 bc | 0.13±0.01 c | 2.43±0.04 c |
G75 | 14.17±0.25 ab | 13.38±0.10 a | 0.26±0.03 a | 7.14±0.17 ab | 0.16±0.01 b | 2.80±0.05 b |
G100 | 14.82±0.27 a | 13.39±0.11 a | 0.30±0.01 a | 7.17±0.25 a | 0.18±0.01 a | 3.53±0.02 a |
表3 不同处理堆肥产物的重金属含量和氟含量
Table 3 Contents of heavy metals and fluorine of compost products under different treatments
处理 Treatment | Cr/(mg·kg-1) | Pb/(mg·kg-1) | Cd/(mg·kg-1) | As/(mg·kg-1) | Hg/(mg·kg-1) | F/(g·kg-1) |
---|---|---|---|---|---|---|
G0 | 6.66±0.27 e | 9.87±0.24 c | 0.21±0.02 a | 2.81±0.28 e | 0.05±0.01 e | 0.84±0.02 f |
G15 | 11.45±0.36 d | 11.01±0.13 b | 0.27±0.04 a | 4.78±0.08 d | 0.07±0.01 e | 1.17±0.04 e |
G30 | 12.72±0.26 cd | 12.64±0.20 a | 0.24±0.02 a | 5.53±0.19 cd | 0.08±0.01 d | 1.96±0.03 d |
G50 | 13.46±0.25 bc | 12.91±0.16 a | 0.28±0.02 a | 6.26±0.05 bc | 0.13±0.01 c | 2.43±0.04 c |
G75 | 14.17±0.25 ab | 13.38±0.10 a | 0.26±0.03 a | 7.14±0.17 ab | 0.16±0.01 b | 2.80±0.05 b |
G100 | 14.82±0.27 a | 13.39±0.11 a | 0.30±0.01 a | 7.17±0.25 a | 0.18±0.01 a | 3.53±0.02 a |
处理 Treatment | 出苗率 Emergence rate/% | 株高 Plant height/cm | 茎粗 Stem thickness/ mm | SPAD | 地上部鲜重 Fresh weight of the above- ground part/g | 地上部干重 Dry weight of the above- ground part/g | 地下部鲜重 Fresh weight of the under- ground part/g | 地下部干重 Dry weight of the under- ground part/g | 壮苗指数 Strong seedling index |
---|---|---|---|---|---|---|---|---|---|
G0 | 85.05± 1.60 bc | 5.31± 0.07 b | 3.34± 0.04 ab | 28.20± 0.47 a | 2.32± 0.04 a | 0.25± 0.00 a | 1.02± 0.04 a | 0.06± 0.01 a | 0.08± 0.01 a |
G15 | 90.08± 0.08 ab | 6.00± 0.03 a | 3.32± 0.10 ab | 28.73± 0.24 a | 2.19± 0.03 ab | 0.22± 0.01 b | 1.00± 0.06 a | 0.06± 0.00 a | 0.08± 0.01 a |
G30 | 92.89± 0.64 a | 5.90± 0.05 a | 3.57± 0.01 a | 30.27± 0.64 a | 2.08± 0.07 b | 0.20± 0.00 bc | 1.06± 0.02 a | 0.05± 0.01 ab | 0.08± 0.01 a |
G50 | 84.79± 2.16 bc | 5.15± 0.10 b | 3.21± 0.07 bc | 28.53± 1.07 a | 1.83± 0.06 c | 0.21± 0.01 b | 0.91± 0.08 a | 0.04± 0.01 b | 0.06± 0.01 b |
G75 | 83.61± 2.67 bc | 5.05± 0.02 bc | 3.14± 0.09 bc | 28.47± 0.86 a | 1.74± 0.02 c | 0.17± 0.01 cd | 0.90± 0.12 a | 0.05± 0.01 ab | 0.07± 0.01 ab |
G100 | 77.92± 0.30 c | 4.80± 0.03 c | 2.93± 0.02 c | 28.60± 0.87 a | 1.72± 0.01 c | 0.16± 0.01 d | 0.77± 0.07 a | 0.04± 0.01 b | 0.06± 0.01 b |
表4 不同处理黄瓜幼苗的生长指标
Table 4 Growth indicators of cucumber seedlings under different treatments
处理 Treatment | 出苗率 Emergence rate/% | 株高 Plant height/cm | 茎粗 Stem thickness/ mm | SPAD | 地上部鲜重 Fresh weight of the above- ground part/g | 地上部干重 Dry weight of the above- ground part/g | 地下部鲜重 Fresh weight of the under- ground part/g | 地下部干重 Dry weight of the under- ground part/g | 壮苗指数 Strong seedling index |
---|---|---|---|---|---|---|---|---|---|
G0 | 85.05± 1.60 bc | 5.31± 0.07 b | 3.34± 0.04 ab | 28.20± 0.47 a | 2.32± 0.04 a | 0.25± 0.00 a | 1.02± 0.04 a | 0.06± 0.01 a | 0.08± 0.01 a |
G15 | 90.08± 0.08 ab | 6.00± 0.03 a | 3.32± 0.10 ab | 28.73± 0.24 a | 2.19± 0.03 ab | 0.22± 0.01 b | 1.00± 0.06 a | 0.06± 0.00 a | 0.08± 0.01 a |
G30 | 92.89± 0.64 a | 5.90± 0.05 a | 3.57± 0.01 a | 30.27± 0.64 a | 2.08± 0.07 b | 0.20± 0.00 bc | 1.06± 0.02 a | 0.05± 0.01 ab | 0.08± 0.01 a |
G50 | 84.79± 2.16 bc | 5.15± 0.10 b | 3.21± 0.07 bc | 28.53± 1.07 a | 1.83± 0.06 c | 0.21± 0.01 b | 0.91± 0.08 a | 0.04± 0.01 b | 0.06± 0.01 b |
G75 | 83.61± 2.67 bc | 5.05± 0.02 bc | 3.14± 0.09 bc | 28.47± 0.86 a | 1.74± 0.02 c | 0.17± 0.01 cd | 0.90± 0.12 a | 0.05± 0.01 ab | 0.07± 0.01 ab |
G100 | 77.92± 0.30 c | 4.80± 0.03 c | 2.93± 0.02 c | 28.60± 0.87 a | 1.72± 0.01 c | 0.16± 0.01 d | 0.77± 0.07 a | 0.04± 0.01 b | 0.06± 0.01 b |
处理Treatment | 得分Score | 排序Ranking |
---|---|---|
G0 | 0.84 | 3 |
G15 | 1.81 | 2 |
G30 | 2.46 | 1 |
G50 | -0.93 | 4 |
G75 | -1.4 | 5 |
G100 | -2.78 | 6 |
表5 基于主成分分析的各处理综合得分及其排序
Table 5 Comprehensive score and its ranking of different treatments based on principle component analysis
处理Treatment | 得分Score | 排序Ranking |
---|---|---|
G0 | 0.84 | 3 |
G15 | 1.81 | 2 |
G30 | 2.46 | 1 |
G50 | -0.93 | 4 |
G75 | -1.4 | 5 |
G100 | -2.78 | 6 |
[1] | 刘振东, 李贵春, 杨晓梅, 等. 我国农业废弃物资源化利用现状与发展趋势分析[J]. 安徽农业科学, 2012, 40(26): 13068-13070. |
LIU Z D, LI G C, YANG X M, et al. Status and development trend of resource utilization ways of agricultural residues in China[J]. Journal of Anhui Agricultural Sciences, 2012, 40(26): 13068-13070. (in Chinese with English abstract) | |
[2] | 陈卫红, 石晓旭. 我国农林废弃物的应用与研究现状[J]. 现代农业科技, 2017(18): 148-149. |
CHEN W H, SHI X X. Application and research status of agricultural and forestry wastes in China[J]. Modern Agricultural Science and Technology, 2017(18): 148-149. (in Chinese) | |
[3] | PÉREZ-LÓPEZ R, CASTILLO J, SARMIENTO A M, et al. Assessment of phosphogypsum impact on the salt-marshes of the Tinto River (SW Spain): role of natural attenuation processes[J]. Marine Pollution Bulletin, 2011, 62(12): 2787-2796. |
[4] | 王小彬, 闫湘, 李秀英, 等. 磷石膏农用的环境安全风险[J]. 中国农业科学, 2019, 52(2): 293-311. |
WANG X B, YAN X, LI X Y, et al. Environmental risks for application of phosphogysum in agricultural soils in China[J]. Scientia Agricultura Sinica, 2019, 52(2): 293-311. (in Chinese with English abstract) | |
[5] | 陈雪娇, 王宇蕴, 徐智, 等. 不同磷石膏添加比例对稻壳与油枯堆肥过程的影响及基质化利用的评价[J]. 农业环境科学学报, 2018, 37(5): 1001-1008. |
CHEN X J, WANG Y Y, XU Z, et al. Effect of phosphogypsum addition on the rice husk and oil cake composting process and evaluation of its physicochemical character as a substrate[J]. Journal of Agro-Environment Science, 2018, 37(5): 1001-1008. (in Chinese with English abstract) | |
[6] | 赵兵, 王宇蕴, 陈雪娇, 等. 磷石膏和石膏对稻壳与油枯堆肥的影响及基质化利用评价[J]. 农业环境科学学报, 2020, 39(10): 2481-2488. |
ZHAO B, WANG Y Y, CHEN X J, et al. Effect of phosphogypsum and gypsum as conditioners on rice husk and oil cake composting process and evaluation of their physicochemical character as a substrate[J]. Journal of Agro-Environment Science, 2020, 39(10): 2481-2488. (in Chinese with English abstract) | |
[7] | 刘媛媛, 徐智, 陈卓君, 等. 外源添加磷石膏对堆肥碳组分及腐殖质品质的影响[J]. 农业环境科学学报, 2018, 37(11): 2483-2490. |
LIU Y Y, XU Z, CHEN Z J, et al. Effects of phosphogypsum addition on carbon fractions and humus quality during composting[J]. Journal of Agro-Environment Science, 2018, 37(11): 2483-2490. (in Chinese with English abstract) | |
[8] | 冯海萍, 曲继松, 杨冬艳, 等. 接种微生物菌剂对枸杞枝条基质化发酵品质的影响[J]. 环境科学学报, 2015, 35(5): 1457-1463. |
FENG H P, QU J S, YANG D Y, et al. Effects of inoculation microbial agent on fermentation quality of wolfberry branches for substrate production[J]. Acta Scientiae Circumstantiae, 2015, 35(5): 1457-1463. (in Chinese with English abstract) | |
[9] | 刘欣宇, 宋鹏, 林永锋, 等. 餐厨堆肥与泥炭配比用于黄瓜育苗基质的研究[J]. 山西农业大学学报(自然科学版), 2022, 42(1): 35-42. |
LIU X Y, SONG P, LIN Y F, et al. Research on the ratio of kitchen compost and peat for cucumber seedling medium[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(1): 35-42. (in Chinese) | |
[10] | 高志. 适宜樱桃番茄栽培的基质配方筛选[D]. 泰安: 山东农业大学, 2019. |
GAO Z. Screening of substrate formula suitable for cherry tomato cultivation[D]. Tai’an: Shandong Agricultural University, 2019. (in Chinese with English abstract) | |
[11] | 陈汉才, 李桂花, 廖森泰, 等. 农业废弃物无害化处理技术规范[J]. 广东农业科学, 2010, 37(8): 222. |
CHEN H C, LI G H, LIAO S T, et al. Technical specification for harmless treatment of agricultural waste[J]. Guangdong Agricultural Sciences, 2010, 37(8): 222. (in Chinese) | |
[12] | TAYLOR M D, KREIS R, REJTÖ L. Establishing growing substrate pH with compost and limestone and the impact on pH buffering capacity[J]. HortScience, 2016, 51(9): 1153-1158. |
[13] | ZAHRIM A Y, LEONG P S, AYISAH S R, et al. Composting paper and grass clippings with anaerobically treated palm oil mill effluent[J]. International Journal of Recycling of Organic Waste in Agriculture, 2016, 5(3): 221-230. |
[14] | MOREL T L, COLIN F, GERMON J C. Methods for the evaluation of the maturity of municipal refuse compost[M]//GASSER J K R. Composting of agricultural and other wastes. London: Elsevier, 1985: 56-72. |
[15] | 张占彦. 磷石膏制备相变储能基体材料工艺研究[D]. 郑州: 郑州大学, 2019. |
ZHANG Z Y. Study on preparation of phase change energy storage matrix materials by phosphogypsum[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese with English abstract) | |
[16] | 冯海萍, 曲继松, 杨志刚, 等. 氮源类型与配比对柠条粉基质化发酵品质的影响[J]. 农业机械学报, 2015, 46(5): 171-178. |
FENG H P, QU J S, YANG Z G, et al. Effects of type and proportion of nitrogen on fermentation quality of caragana powder for substrate production[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 171-178. (in Chinese with English abstract) | |
[17] | 李森, 罗雪梅, 涂卫国, 等. 保氮剂对水葫芦堆肥进程及氮素损失的影响[J]. 应用生态学报, 2017, 28(4): 1197-1203. |
LI S, LUO X M, TU W G, et al. Effects of nitrogen preserving agent on composting process and nitrogen loss of Eichhornia crassipes[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1197-1203. (in Chinese with English abstract) | |
[18] | 任丽梅, 李国学, 沈玉君, 等. 鸟粪石结晶反应在猪粪和玉米秸秆堆肥中的应用[J]. 环境科学, 2009, 30(7): 2165-2173. |
REN L M, LI G X, SHEN Y J, et al. Application of struvite crystallization on co-composting of swine manure and cornstalk[J]. Environmental Science, 2009, 30(7): 2165-2173. (in Chinese with English abstract) | |
[19] | 李帆, 钱坤, 武际, 等. 过磷酸钙用量对猪粪堆肥过程及磷形态变化的影响[J]. 植物营养与肥料学报, 2017, 23(4): 1037-1044. |
LI F, QIAN K, WU J, et al. Influence of applying calcium superphosphate on swine manure composting and phosphorus transformation[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 1037-1044. (in Chinese with English abstract) | |
[20] | 李静, 谢正苗, 徐建明. 我国氟的土壤环境质量指标与人体健康关系的研究概况[J]. 土壤通报, 2006, 37(1): 194-199. |
LI J, XIE Z M, XU J M. Research progress in the relationship between soil environmental quality index of fluorine and human health in China[J]. Chinese Journal of Soil Science, 2006, 37(1): 194-199. (in Chinese with English abstract) |
[1] | 燕中立, 李永慧, 李玉成, 李伟, 张学胜, 洪勇, 葛立傲. 蓝藻好氧堆肥负载阿维菌素对草莓红蜘蛛的防治效果[J]. 浙江农业学报, 2024, 36(10): 2264-2272. |
[2] | 吴雨珂, 王峰, 王依凡, 吴雪萍, 朱维琴. 牛粪蚯蚓堆肥条件优化与堆制物的性状变化[J]. 浙江农业学报, 2024, 36(10): 2308-2315. |
[3] | 王佳丽, 王梓宇, 马咏琪, 唐德富, 孙丽坤. 氮素转化菌群对牛粪好氧堆肥的保氮效果[J]. 浙江农业学报, 2024, 36(1): 177-186. |
[4] | 潘亚杰, 常会庆, 宋盼盼. 规模化猪场粪便养分特征与堆肥过程中填料添加的影响[J]. 浙江农业学报, 2023, 35(7): 1690-1698. |
[5] | 肖小兰, 张浩, 付传僡, 刘皓, 阮文权. 嗜热菌筛选及其促进沼渣和虫粪共堆肥的效果[J]. 浙江农业学报, 2023, 35(3): 647-657. |
[6] | 周文志, 李素艳, 孙向阳, 李啸冲, 查贵超, 魏宁娴. 不同改良材料对滨海盐碱土盐分淋溶特征的影响[J]. 浙江农业学报, 2022, 34(7): 1485-1492. |
[7] | 吴一凡, 夏捷, 陈胜, 张玮, 谢锦忠. 竹屑与麦麸堆肥用作大球盖菇栽培基质的适宜配比研究[J]. 浙江农业学报, 2022, 34(5): 1024-1031. |
[8] | 张鑫鹏, 王信, 孙健, 伊国云, 李松龄. 一株假单胞菌的分离鉴定及其在青海地区堆肥中的应用潜力[J]. 浙江农业学报, 2022, 34(2): 343-351. |
[9] | 殷泽欣, 张璐, 郝丹, 白一帆. 牛粪堆肥替代泥炭用于3种茄科植物育苗的可行性[J]. 浙江农业学报, 2021, 33(9): 1700-1709. |
[10] | 朱诗君, 金树权, 汪峰, 韩永江, 孙杰. 典型城市废弃物混合好氧堆肥的基本特征及其育苗应用潜力[J]. 浙江农业学报, 2021, 33(6): 1069-1077. |
[11] | 田玉潭, 马露, 刘军, 李冬冬, 陶迎梅, 赵晓璐, 马亚男, 孙少忆, 刘敦华. 葡萄酒渣多酚-壳聚糖-CMC可食性复合膜在水煮羊肉贮藏中的应用[J]. 浙江农业学报, 2021, 33(6): 1095-1103. |
[12] | 吴承杰, 任兰天, 郝冰, 邵庆勤, 王泓, 陈峰, 代高峰, 梅世远, 张从军. 秸秆堆肥部分替代化肥配施硝化抑制剂对冬小麦温室气体排放的影响[J]. 浙江农业学报, 2020, 32(7): 1233-1240. |
[13] | 马其雪, 孙向阳, 李素艳, 李松, 刘源鑫, 周文洁. 园林绿化废弃物堆肥对铅、锌污染土壤上小白菜生理特性的影响[J]. 浙江农业学报, 2020, 32(11): 2027-2034. |
[14] | 白玲, 宋飞跃, 季蒙蒙, 邓芸, 阮文权. 不同调理剂对秸秆沼渣堆肥的影响[J]. 浙江农业学报, 2020, 32(1): 124-133. |
[15] | 黄健, 肖建中, 唐世刚, 郑强, 丁枫华, 张东旭. 添加蒙脱石对猪粪好氧堆肥腐熟度和重金属钝化的影响[J]. 浙江农业学报, 2020, 32(1): 141-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||