浙江农业学报 ›› 2021, Vol. 33 ›› Issue (6): 1069-1077.DOI: 10.3969/j.issn.1004-1524.2021.06.12
收稿日期:
2020-10-28
出版日期:
2021-06-25
发布日期:
2021-06-25
作者简介:
朱诗君(1991—),男,浙江温州人,博士,助理研究员,研究方向为农业微生物资源开发与应用。E-mail: 1227935418@qq.com
基金资助:
ZHU Shijun1(), JIN Shuquan1, WANG Feng1, HAN Yongjiang2, SUN Jie3
Received:
2020-10-28
Online:
2021-06-25
Published:
2021-06-25
摘要:
以园林废弃物、干化建筑渣土、餐厨废弃物有机渣作为堆肥原料,研究不同混合比例下堆体温度和养分的变化,并以最终制成的堆肥作为育苗基质的混合物,明确其对番茄、青瓜、甘蓝种子出芽率和幼苗发育的影响。结果显示,园林废弃物堆体、园林废弃物和餐厨废弃物有机渣的混合堆体在短时间内温度上升至70 ℃以上,并于45 d后缓慢降低至50 ℃左右。其间,堆体的有机质、全氮、碱解氮含量,以及含水率逐渐下降,而pH值、电导率,以及速效磷、速效钾含量则基本保持稳定。育苗试验结果表明,制成的堆肥具有较高的电导率,但在试验条件下,对幼苗存活率没有显著不利影响,说明园林废弃物、干化建筑渣土,以及餐厨废弃物有机渣通过堆肥处理投入农业生产是具备应用潜力的。
中图分类号:
朱诗君, 金树权, 汪峰, 韩永江, 孙杰. 典型城市废弃物混合好氧堆肥的基本特征及其育苗应用潜力[J]. 浙江农业学报, 2021, 33(6): 1069-1077.
ZHU Shijun, JIN Shuquan, WANG Feng, HAN Yongjiang, SUN Jie. Characteristics of typical urban waste mixed aerobic composting and its effect on seedling growth[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1069-1077.
废弃物材料 Waste | pH | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkaline hydrolysis nitrogen/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 含水率 Moisture content/% | 电导率 Electrical conductivity/ (μS·cm-1) |
---|---|---|---|---|---|---|---|---|
餐厨废弃物有机渣 Organic residue of kitchen waste | 6.40 | 432.0 | 19.62 | 732.5 | 1 173 | 550.0 | 72.4 | 8 565 |
园林废弃物 Garden waste | 7.10 | 517.8 | 7.49 | 393.4 | 617.9 | 981.2 | 52.5 | 482 |
干化建筑渣土 Dried construction waste | 7.92 | 37.3 | 2.09 | 133.0 | 30.8 | 570.0 | 5.00 | 642 |
表1 城市废弃物的理化性质
Table 1 Physical and chemical properties of municipal waste
废弃物材料 Waste | pH | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkaline hydrolysis nitrogen/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 含水率 Moisture content/% | 电导率 Electrical conductivity/ (μS·cm-1) |
---|---|---|---|---|---|---|---|---|
餐厨废弃物有机渣 Organic residue of kitchen waste | 6.40 | 432.0 | 19.62 | 732.5 | 1 173 | 550.0 | 72.4 | 8 565 |
园林废弃物 Garden waste | 7.10 | 517.8 | 7.49 | 393.4 | 617.9 | 981.2 | 52.5 | 482 |
干化建筑渣土 Dried construction waste | 7.92 | 37.3 | 2.09 | 133.0 | 30.8 | 570.0 | 5.00 | 642 |
堆体 Mixture | 园林废弃物 Garden waste/m3 | 餐厨废弃物有机渣 Organic residue of kitchen waste/m3 | 干化建筑渣土 Dried construction waste/m3 | C/N | 电导率 Electrical conductivity/ (μS·cm-1) | 含水率 Moisture content/% |
---|---|---|---|---|---|---|
1 | 6 | 0 | 0 | 26.40 | 482 | 52.5 |
2 | 5 | 1 | 0 | 22.55 | 1 300 | 55.8 |
3 | 0 | 4 | 2 | 21.82 | 3 367 | 49.9 |
表2 堆肥原料配方
Table 2 Composting ingredients formula
堆体 Mixture | 园林废弃物 Garden waste/m3 | 餐厨废弃物有机渣 Organic residue of kitchen waste/m3 | 干化建筑渣土 Dried construction waste/m3 | C/N | 电导率 Electrical conductivity/ (μS·cm-1) | 含水率 Moisture content/% |
---|---|---|---|---|---|---|
1 | 6 | 0 | 0 | 26.40 | 482 | 52.5 |
2 | 5 | 1 | 0 | 22.55 | 1 300 | 55.8 |
3 | 0 | 4 | 2 | 21.82 | 3 367 | 49.9 |
处理 Treatment | 混合物及其比例 Mixing ratio and materials | 处理 Treatment | 混合物及其比例 Mixing ratio and materials |
---|---|---|---|
1 | D* | 6 | B+D,1∶2 |
2 | A+D,1∶1 | 7 | B+D,1∶5 |
3 | A+D,1∶2 | 8 | C+D,1∶2 |
4 | A+D,1∶5 | 9 | C+D,1∶5 |
5 | B+D,1∶1 | 10 | C+D,1∶10 |
表3 育苗基质配方
Table 3 Substrate formula
处理 Treatment | 混合物及其比例 Mixing ratio and materials | 处理 Treatment | 混合物及其比例 Mixing ratio and materials |
---|---|---|---|
1 | D* | 6 | B+D,1∶2 |
2 | A+D,1∶1 | 7 | B+D,1∶5 |
3 | A+D,1∶2 | 8 | C+D,1∶2 |
4 | A+D,1∶5 | 9 | C+D,1∶5 |
5 | B+D,1∶1 | 10 | C+D,1∶10 |
样品 Sample | pH | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkaline hydrolysis nitrogen/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 含水率 Moisture content/% | 发芽指数 Germination index/% |
---|---|---|---|---|---|---|---|---|
A | 7.50 | 300.85 | 10.89 | 508.95 | 472.65 | 97.6 | 778.5 | 98 |
B | 6.92 | 221.04 | 6.46 | 311.15 | 598.09 | 94.3 | 1 793.0 | 43 |
C | 7.10 | 288.44 | 8.77 | 463.85 | 715.48 | 91.9 | 3 143.5 | 18 |
D | 7.58 | 489.00 | 8.66 | 380.00 | 116.00 | 91.7 | 969.0 | — |
表4 堆肥与商品基质的质量指标
Table 4 Quality indicators of compost and commercial substrates
样品 Sample | pH | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkaline hydrolysis nitrogen/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 含水率 Moisture content/% | 发芽指数 Germination index/% |
---|---|---|---|---|---|---|---|---|
A | 7.50 | 300.85 | 10.89 | 508.95 | 472.65 | 97.6 | 778.5 | 98 |
B | 6.92 | 221.04 | 6.46 | 311.15 | 598.09 | 94.3 | 1 793.0 | 43 |
C | 7.10 | 288.44 | 8.77 | 463.85 | 715.48 | 91.9 | 3 143.5 | 18 |
D | 7.58 | 489.00 | 8.66 | 380.00 | 116.00 | 91.7 | 969.0 | — |
处理 Treatment | 番茄Tomato | 青瓜Cucumber | 甘蓝Cabbage | |||
---|---|---|---|---|---|---|
初始出芽率 Germination rate/% | 株高 Plant height/cm | 初始出芽率 Germination rate/% | 株高 Plant height/cm | 初始出芽率 Germination rate/% | 株高 Plant height/cm | |
1 | 37.50 | 16.88±1.56 b | 62.50 | 43.38±2.2 b | 31.25 | 9.56±0.99 b |
2 | 34.38 | 17.59±1.69 b | 53.13 | 43.65±2.86 b | 50.00 | 13.62±1.93 a |
3 | 31.25 | 18.12±1.98 b | 56.25 | 46.75±5.55 a | 46.88 | 12.37±1.31 a |
4 | 35.94 | 19.43±3.89 a | 71.88 | 46.43±2.45 a | 31.25 | 10.71±0.86 a |
5 | 15.63 | 16.28±1.66 b | 56.25 | 42.15±6.87 b | 12.50 | 7.45±0.86 b |
6 | 34.38 | 17.32±1.6 b | 62.50 | 45.83±4.72 a | 43.75 | 10.55±0.92 a |
7 | 43.75 | 18.81±1.77 a | 75.00 | 48.18±4.28 a | 56.25 | 11.52±0.84 a |
8 | 21.88 | 15.8±1.61 b | 46.88 | 41.33±2.81 b | 0 | 6.25±0.86 b |
9 | 32.81 | 18.62±2.10 a | 68.75 | 42.38±5.00 b | 31.25 | 8.62±0.74 b |
10 | 35.94 | 20.91±1.7 a | 65.63 | 51.65±3.41 a | 37.50 | 13.5±1.82 a |
表5 不同处理下不同作物的发芽情况与幼苗株高
Table 5 Plant height and germination rate of different vegetables under different treatments
处理 Treatment | 番茄Tomato | 青瓜Cucumber | 甘蓝Cabbage | |||
---|---|---|---|---|---|---|
初始出芽率 Germination rate/% | 株高 Plant height/cm | 初始出芽率 Germination rate/% | 株高 Plant height/cm | 初始出芽率 Germination rate/% | 株高 Plant height/cm | |
1 | 37.50 | 16.88±1.56 b | 62.50 | 43.38±2.2 b | 31.25 | 9.56±0.99 b |
2 | 34.38 | 17.59±1.69 b | 53.13 | 43.65±2.86 b | 50.00 | 13.62±1.93 a |
3 | 31.25 | 18.12±1.98 b | 56.25 | 46.75±5.55 a | 46.88 | 12.37±1.31 a |
4 | 35.94 | 19.43±3.89 a | 71.88 | 46.43±2.45 a | 31.25 | 10.71±0.86 a |
5 | 15.63 | 16.28±1.66 b | 56.25 | 42.15±6.87 b | 12.50 | 7.45±0.86 b |
6 | 34.38 | 17.32±1.6 b | 62.50 | 45.83±4.72 a | 43.75 | 10.55±0.92 a |
7 | 43.75 | 18.81±1.77 a | 75.00 | 48.18±4.28 a | 56.25 | 11.52±0.84 a |
8 | 21.88 | 15.8±1.61 b | 46.88 | 41.33±2.81 b | 0 | 6.25±0.86 b |
9 | 32.81 | 18.62±2.10 a | 68.75 | 42.38±5.00 b | 31.25 | 8.62±0.74 b |
10 | 35.94 | 20.91±1.7 a | 65.63 | 51.65±3.41 a | 37.50 | 13.5±1.82 a |
[1] | 李彬. 城市固体废弃物处理及综合利用策略探讨[J]. 中国资源综合利用, 2020,38(9):117-119. |
LI B. Discussion on urban solid waste treatment and comprehensive utilization strategy[J]. China Resources Comprehensive Utilization, 2020,38(9):117-119.(in Chinese with English abstract) | |
[2] | 刘瑜, 赵佳颖, 周晚来, 等. 城市园林废弃物资源化利用研究进展[J]. 环境科学与技术, 2020,43(4):32-38. |
LIU Y, ZHAO J Y, ZHOU W L, et al. Progress on resource utilization of urban garden waste[J]. Environmental Science & Technology, 2020,43(4):32-38.(in Chinese with English abstract) | |
[3] | LU W S, YUAN H P. Exploring critical success factors for waste management in construction projects of China[J]. Resources, Conservation and Recycling, 2010,55(2):201-208. |
[4] | 姚如青. 杭州市建筑渣土管理主要问题与改进对策[J]. 环境与可持续发展, 2014,39(5):160-162. |
YAO R Q. On problem and countermeasures with the management of construction waste in Hangzhou[J]. Environment and Sustainable Development, 2014,39(5):160-162.(in Chinese with English abstract) | |
[5] | 王东权, 陈沛, 刘春荣, 等. 建筑渣土在市政道路路基工程中的应用研究[J]. 建筑技术, 2005,36(2):145-146. |
WANG D Q, CHEN P, LIU C R, et al. Study on the application of constructional waste to municipal roadbed works[J]. Architecture Technology, 2005,36(2):145-146.(in Chinese with English abstract) | |
[6] | 张清峰, 王东权, 姜晨光, 等. 建筑渣土作为城市道路填料的路用性能研究[J]. 公路, 2006,51(11):157-160. |
ZHANG Q F, WANG D Q, JIANG C G, et al. A study on road performance of construction waste as municipal road filling[J]. Highway, 2006,51(11):157-160.(in Chinese with English abstract) | |
[7] | 杨丽娟, 李天来, 储慧霞, 等. 餐厨废弃物作堆肥对盆栽番茄产量及品质影响[J]. 沈阳农业大学学报, 2010,41(6):721-724. |
YANG L J, LI T L, CHU H X, et al. Effect of food waste compost on tomato yield and quality[J]. Journal of Shenyang Agricultural University, 2010,41(6):721-724.(in Chinese with English abstract) | |
[8] | 黄亦明. 餐厨和绿化废弃物的生物处理及其产出物对黄秋葵生长的影响[J]. 上海交通大学学报(农业科学版), 2014,32(3):75-80. |
HUANG Y M. Biotreatment and effects of waste from kitchen and greening process on Abelmoschus esculentus growth[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2014,32(3):75-80.(in Chinese with English abstract) | |
[9] | BREITENBECK G A, SCHELLINGER D. Calculating the reduction in material mass and volume during composting[J]. Compost Science & Utilization, 2004,12(4):365-371. |
[10] | FISCHER D, GLASER B. Synergisms between compost and biochar for sustainable soil amelioration[EB/OL]. [2020-10-28]. https://cdn.intechopen.compdfs27163.pdf. |
[11] |
THYAGARAJAN D, BARATHI M, SAKTHIVADIVU R. Scope of poultry waste utilization[J]. IOSR Journal of Agriculture and Veterinary Science, 2013,6(5):29-35.
DOI URL |
[12] |
VIGNESWARAN S, KANDASAMY J, JOHIR M A H . Sustainable operation of composting in solid waste management[J]. Procedia Environmental Sciences, 2016,35:408-415.
DOI URL |
[13] | 张鹤, 李孟婵, 杨慧珍, 等. 不同碳氮比对牛粪好氧堆肥腐熟过程的影响[J]. 甘肃农业大学学报, 2019,54(1):60-67. |
ZHANG H, LI M C, YANG H Z, et al. Effect of different carbon and nitrogen ratio on decayed process of aerobic composting of cow dung[J]. Journal of Gansu Agricultural University, 2019,54(1):60-67.(in Chinese with English abstract) | |
[14] | EMINO E R, WARMAN P R. Biological assay for compost quality[J]. Compost Science & Utilization, 2004,12(4):342-348. |
[15] | 唐尚柱, 赵晓海, 斯鑫鑫, 等. 不同镁/磷盐添加剂对蓝藻堆肥的氮素损失控制效果[J]. 农业环境科学学报, 2021,40(2):428-435. |
TANG S Z, ZHAO X H, SI X X, et al. Effects of different combinations of magnesium (Mg) and phosphorus (P) salts on nitrogen loss during cyanobacteria composting[J]. Journal of Agro-Environment Science, 2021,40(2):428-435.(in Chinese with English abstract) | |
[16] | COOPERBAND L. The art and science of composting: a resource for farmers and compost producers[EB/OL]. [2020-10-28]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.189.3608&rep=rep1&type=pdf. |
[17] |
TIBU C, ANNANG T Y, SOLOMON N, et al. Effect of the composting process on physicochemical properties and concentration of heavy metals in market waste with additive materials in the Ga West Municipality, Ghana[J]. International Journal of Recycling of Organic Waste in Agriculture, 2019,8(4):393-403.
DOI URL |
[18] |
ZHANG D F, LUO W H, LI Y, et al. Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions[J]. Bioresource Technology, 2018,250:853-859.
DOI URL |
[19] | 薛兆骏, 彭永臻, 王鹏鹞, 等. 自发热持续高温好氧堆肥碳、氮、腐殖酸变化过程[J]. 中国环境科学, 2018,38(11):4094-4098. |
XUE Z J, PENG Y Z, WANG P Y, et al. The transformation regularities of carbon, nitrogen and hunic acid during high temperature aerobic composting process[J]. China Environmental Science, 2018,38(11):4094-4098.(in Chinese with English abstract) | |
[20] | 秦莉, 沈玉君, 李国学, 等. 不同C N比堆肥碳素物质变化规律研究[J]. 农业环境科学学报, 2010,29(7):1388-1393. |
QIN L, SHEN Y J, LI G X, et al. C matter change of composting with different C/N[J]. Journal of Agro-Environment Science, 2010,29(7):1388-1393.(in Chinese with English abstract) | |
[21] |
HACHICHA R, REKIK O, HACHICHA S, et al. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity[J]. Chemosphere, 2012,88(6):677-682.
DOI URL |
[22] | HIRAI M F, CHANYASAK V, KUBOTA H. Standard measurement for compost maturity[J]. BioCycle, 1983,24(6):54-56. |
[23] | 汤江武, 吴逸飞, 薛智勇, 等. 畜禽固弃物堆肥腐熟度评价指标的研究[J]. 浙江农业学报, 2003,15(5):293-296. |
TANG J W, WU Y F, XUE Z Y, et al. Study on evaluation index of maturity of livestock and poultry solid wastes[J]. Acta Agriculturae Zhejiangensis, 2003,15(5):293-296.(in Chinese with English abstract) | |
[24] |
PARIHAR P, SINGH S, SINGH R, et al. Effect of salinity stress on plants and its tolerance strategies: a review[J]. Environmental Science and Pollution Research, 2015,22(6):4056-4075.
DOI URL |
[25] |
CAI H, CHEN T B, LIU H T, et al. The effect of salinity and porosity of sewage sludge compost on the growth of vegetable seedlings[J]. Scientia Horticulturae, 2010,124(3):381-386.
DOI URL |
[26] |
HERRERA F, CASTILLO J E, CHICA A F, et al. Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants[J]. Bioresource Technology, 2008,99(2):287-296.
DOI URL |
[27] | REDDY N, CROHN D M. Compost induced soil salinity: a new prediction method and its effect on plant growth[J]. Compost Science & Utilization, 2012,20(3):133-140. |
[28] |
CHANG E H, CHUNG R S, TSAI Y H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population[J]. Soil Science and Plant Nutrition, 2007,53(2):132-140.
DOI URL |
[29] | DIACONO M, MONTEMURRO F. Long-term effects of organic amendments on soil fertility[M]//Sustainable agriculture: Volume 2. Dordrecht: Springer Netherlands, 2011:761-786. |
[30] |
LAKHDAR A, RABHI M, GHNAYA T, et al. Effectiveness of compost use in salt-affected soil[J]. Journal of Hazardous Materials, 2009,171(1/2/3):29-37.
DOI URL |
[31] |
MAHMOODABADI M, YAZDANPANAH N, SINOBAS L R, et al. Reclamation of calcareous saline sodic soil with different amendments (I): redistribution of soluble cations within the soil profile[J]. Agricultural Water Management, 2013,120:30-38.
DOI URL |
[1] | 吴承杰, 任兰天, 郝冰, 邵庆勤, 王泓, 陈峰, 代高峰, 梅世远, 张从军. 秸秆堆肥部分替代化肥配施硝化抑制剂对冬小麦温室气体排放的影响[J]. 浙江农业学报, 2020, 32(7): 1233-1240. |
[2] | 邵文奇, 钟平, 董玉兵, 孙春梅, 纪力, 庄春, 陈川, 章安康. 托盘育苗中光温资源差异及其对水稻秧苗素质的影响[J]. 浙江农业学报, 2020, 32(2): 191-199. |
[3] | 马其雪, 孙向阳, 李素艳, 李松, 刘源鑫, 周文洁. 园林绿化废弃物堆肥对铅、锌污染土壤上小白菜生理特性的影响[J]. 浙江农业学报, 2020, 32(11): 2027-2034. |
[4] | 白玲, 宋飞跃, 季蒙蒙, 邓芸, 阮文权. 不同调理剂对秸秆沼渣堆肥的影响[J]. 浙江农业学报, 2020, 32(1): 124-133. |
[5] | 黄健, 肖建中, 唐世刚, 郑强, 丁枫华, 张东旭. 添加蒙脱石对猪粪好氧堆肥腐熟度和重金属钝化的影响[J]. 浙江农业学报, 2020, 32(1): 141-148. |
[6] | 周文志, 孙向阳, 李素艳, 张乐. 生物有机材料对滨海盐碱土的改良效果[J]. 浙江农业学报, 2019, 31(4): 607-615. |
[7] | 阮馨怡, 刘曦, 关玥, 孔海南, 林燕. 高效污泥降解菌种的筛选及在污泥堆肥中的效果[J]. 浙江农业学报, 2018, 30(9): 1569-1575. |
[8] | 王代懿, 余洋, 张丰松, 李性苑, 苟体忠. 堆肥方式和温度对牛粪堆肥过程中天然类固醇激素降解的影响[J]. 浙江农业学报, 2017, 29(12): 2104-2108. |
[9] | 肖翰, 刘标, 尹红梅, 许隽, 杜东霞, 贺月林. 病死猪堆肥高效油脂降解菌的筛选及堆肥效果研究[J]. 浙江农业学报, 2017, 29(1): 44-50. |
[10] | 姜新有, 王晓东, 周江明, 郑建斌. 初始pH值对畜禽粪便和菌渣混合高温堆肥的影响[J]. 浙江农业学报, 2016, 28(9): 1595-1602. |
[11] | 程立巧1,傅庆林2,*,金怡1,吴云峰1. 不同基质对番茄根际微生物、酶活性及幼苗生长的影响[J]. 浙江农业学报, 2016, 28(6): 973-. |
[12] | 吴阳1,喻徐良1,徐乐中1,2,*,梅娟1. 城市污泥与园林绿化废弃物共堆肥效果研究[J]. 浙江农业学报, 2016, 28(5): 847-. |
[13] | 刘岳贞, 陈倩倩, 陈晓旸, 洪春来, 陈林童, 鲁建江. 棉渣堆肥过程理化性质变化及腐熟度评价[J]. 浙江农业学报, 2016, 28(10): 1764-1771. |
[14] | 马闯,李明峰,赵继红*,张宏忠,魏明宝,叶长明. 调理剂添加量对污泥堆肥过程温度和氧气变化的影响[J]. 浙江农业学报, 2015, 27(4): 631-. |
[15] | 吴珍珍,舒增年,黄健*. 以菇渣和猪粪为调理剂的城市污泥堆肥效果研究[J]. 浙江农业学报, 2015, 27(12): 2171-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1769
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 905
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||