浙江农业学报 ›› 2025, Vol. 37 ›› Issue (1): 169-177.DOI: 10.3969/j.issn.1004-1524.20240085
王路童(), 姜利红, 代家鹏, 陈粮, 曾光熙, 刘尔伦, 周湘丹, 肖云花, 方俊*(
)
收稿日期:
2024-01-25
出版日期:
2025-01-25
发布日期:
2025-02-14
作者简介:
王路童(1999—),女,山东肥城人,硕士研究生,主要从事农业固体废弃物的资源化利用研究。E-mail: wanglutong2022@163.com
通讯作者:
*方俊,E-mail: fangjun1973@hunau.edu.cn
基金资助:
WANG Lutong(), JIANG Lihong, DAI Jiapeng, CHEN Liang, ZENG Guangxi, LIU Erlun, ZHOU Xiangdan, XIAO Yunhua, FANG Jun*(
)
Received:
2024-01-25
Online:
2025-01-25
Published:
2025-02-14
摘要: 为探究硫酸亚铁对鸡粪堆肥高温期真菌群落,以及其堆肥产品对植物生长的影响,以鸡粪和稻草为原料,以不添加任何外源添加剂的堆体作为对照组,设置硫酸亚铁添加比例分别为1%、2%的处理组,研究真菌群落组成与结构的变化,以及各堆肥产品施用后小白菜生长状况和营养品质的变化。结果表明:添加硫酸亚铁影响了鸡粪堆肥高温期的真菌群落结构,提高了真菌群落的多样性,富集了多数与木质纤维素降解相关的优势真菌,有利于堆肥中难分解有机物的高效降解,促进了堆肥的腐殖化进程。添加硫酸亚铁堆肥产品处理组小白菜的株高、叶绿素含量、可溶性蛋白含量、可溶性糖含量均较普通堆肥产品处理组显著(P<0.05)提高,并以添加2%硫酸亚铁的堆肥产品的效果更为突出。
中图分类号:
王路童, 姜利红, 代家鹏, 陈粮, 曾光熙, 刘尔伦, 周湘丹, 肖云花, 方俊. 硫酸亚铁对鸡粪堆肥真菌群落的影响及其应用[J]. 浙江农业学报, 2025, 37(1): 169-177.
WANG Lutong, JIANG Lihong, DAI Jiapeng, CHEN Liang, ZENG Guangxi, LIU Erlun, ZHOU Xiangdan, XIAO Yunhua, FANG Jun. Effect of ferrous sulfate on fungal community of chicken manure compost and its application potential[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 169-177.
原材料 Raw material | 水分含量 Water content/% | 总有机碳含量 Total organic carbon content/% | 全氮含量 Total nitrogen content/% | 碳氮比 C/N raio |
---|---|---|---|---|
鸡粪Chicken manure | 68.53±2.75 | 57.06±16.04 | 4.99±0.61 | 11.31±2.25 |
稻草Straw | 11.37±0.21 | 55.51±4.24 | 1.03±0.08 | 54.11±7.78 |
表1 堆肥原材料的基本性质
Table 1 Basic properties of raw materials for composting
原材料 Raw material | 水分含量 Water content/% | 总有机碳含量 Total organic carbon content/% | 全氮含量 Total nitrogen content/% | 碳氮比 C/N raio |
---|---|---|---|---|
鸡粪Chicken manure | 68.53±2.75 | 57.06±16.04 | 4.99±0.61 | 11.31±2.25 |
稻草Straw | 11.37±0.21 | 55.51±4.24 | 1.03±0.08 | 54.11±7.78 |
图1 堆肥过程中温度的变化(A)与堆肥结束时各处理的种子发芽指数(GI) (B) GI,种子发芽指数。柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.1 Changes of temperature during the composting (A) and the germination index (GI) (B) after composting under different treatmetns GI, Germination index. Bars marked without the same letters indicate significant difference at P<0.05. The same as below.
图2 门水平(A)、属水平(B)上的真菌群落组成和基于主坐标分析(PCoA)的真菌群落结构分析(C) Ascomycota,子囊菌门;Basidiomycota,担子菌门;Mortierellomycota,被孢霉门;Chytridiomycota,壶菌门;Rozellomycota,罗兹菌门;Neocallimastigomycota,新美鞭菌门;Glomeromycota,球囊菌门;Olpidiomycota,油壶菌门;Mucoromycota,毛霉门。Others,其他; Aspergillus,曲霉属;unclassified_Fungi,真菌未分类;Cladosporium,枝孢菌属;Trichosporon,毛孢子菌属;Myriococcum,球藻属;Unclassified,未分类;Canadida,假丝酵母菌属;Unclassified_Ascomycota,子囊菌门未分类属;Chaetomium,毛壳菌属。CK1、CK2、CK3为CK的3个平行处理; G21、G22、G23为FS1的3个平行处理;G31、G32、G33为FS2的3个平行处理。
Fig.2 Fungal community composition at the phylum level (A), genus level (B), and structural analysis based on principal co-ordinates analysis (PCoA) (C) CK1, CK2 and CK3 were 3 parallel treatment groups of CK; G21, G22 and G23 were 3 parallel treatment groups of G21; G31, G32 and G33 were 3 parallel treatment groups of FS2.
处理 Treatment | 丰富度指数 Richness | Shannon指数 Shaannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index |
---|---|---|---|---|---|
CK | 178.00±34.83 | 3.77±1.03 | 0.90±0.12 | 180.33±33.61 | 182.07±33.39 |
FS1 | 172.00±16.56 | 4.21±0.35 | 0.96±0.03 | 175.09±15.79 | 179.31±14.10 |
FS2 | 975.00±1 233.38 | 5.22±0.74 | 0.99±0.01 | 978.98±1 233.88 | 989.43±1 244.98 |
表2 真菌群落α多样性指数
Table 2 The alpha diversity indexes of the fungal community
处理 Treatment | 丰富度指数 Richness | Shannon指数 Shaannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index |
---|---|---|---|---|---|
CK | 178.00±34.83 | 3.77±1.03 | 0.90±0.12 | 180.33±33.61 | 182.07±33.39 |
FS1 | 172.00±16.56 | 4.21±0.35 | 0.96±0.03 | 175.09±15.79 | 179.31±14.10 |
FS2 | 975.00±1 233.38 | 5.22±0.74 | 0.99±0.01 | 978.98±1 233.88 | 989.43±1 244.98 |
图3 LEfSe组间显著差异分布图(A)和LDA值分布图(B) Arthrographis,节纹菌属;Eremomycetaceae,沙漠壳菌科;unclassified_Phaeosphaeriaceae,暗球腔菌科未分类属;Thelebolales,寡囊盘菌目;Pezizaceae,盘菌科;unclassified_Hygrocybe,湿伞属未分类种;Agaricomycetes,伞菌纲;Moesziomyces aphidis,蚜虫莫氏黑粉菌;Moesziomyces,莫氏黑粉菌属;Chytridiaceae,壶菌科;Chytridiales,壶菌目;unclassified_Mortierella,被孢霉属未分类种;Mortierella,被孢霉属;Mortierellaceae,被孢霉科;Mortierellales,被孢霉目;Mortierellomycetes,被孢霉纲;Mortierellomycota,被孢霉门。p_、c_、o_、f_、g_、s_分别表示门水平、纲水平、目水平、科水平、属水平、种水平。
Fig.3 Distribution of significant differences between LEfSe groups (A) and distribution of LDA values (B) p_, c_, o_, f_, g_ and s_ denote phylum, class, order, family, genus and species level, respectively.
处理 Treatment | 株高 Plant height/cm | 根长 Root length/cm | 干重 Dry weight/g | SPAD | 根系活力 Root activity/(μg·g-1·h-1) |
---|---|---|---|---|---|
TCK | 3.35±0.07 c | 7.65±0.07 a | 0.07±0.01 b | 4.80±0.00 d | 255.18±11.60 c |
VCK | 6.65±0.07 b | 4.85±0.07 a | 0.10±0.01 ab | 5.90±0.00 b | 366.64±17.81 b |
VFS1 | 8.20±0.50 a | 9.15±0.92 a | 0.07±0.01 b | 5.55±0.07 c | 259.24±35.40 c |
VFS2 | 8.70±0.28 a | 8.90±1.91 a | 0.13±0.01 a | 6.50±0.10 a | 755.16±20.94 a |
表3 不同有机肥对小白菜生长的影响
Table 3 Effect of different organic fertilizers on growth indexes of pakchoi
处理 Treatment | 株高 Plant height/cm | 根长 Root length/cm | 干重 Dry weight/g | SPAD | 根系活力 Root activity/(μg·g-1·h-1) |
---|---|---|---|---|---|
TCK | 3.35±0.07 c | 7.65±0.07 a | 0.07±0.01 b | 4.80±0.00 d | 255.18±11.60 c |
VCK | 6.65±0.07 b | 4.85±0.07 a | 0.10±0.01 ab | 5.90±0.00 b | 366.64±17.81 b |
VFS1 | 8.20±0.50 a | 9.15±0.92 a | 0.07±0.01 b | 5.55±0.07 c | 259.24±35.40 c |
VFS2 | 8.70±0.28 a | 8.90±1.91 a | 0.13±0.01 a | 6.50±0.10 a | 755.16±20.94 a |
[1] | MAO H L, WANG K, WANG Z, et al. Metabolic function, trophic mode, organics degradation ability and influence factor of bacterial and fungal communities in chicken manure composting[J]. Bioresource Technology, 2020, 302: 122883. |
[2] | CARVALHO P N, FINGER D C, MASI F, et al. Nature-based solutions addressing the water-energy-food nexus: review of theoretical concepts and urban case studies[J]. Journal of Cleaner Production, 2022, 338: 130652. |
[3] | YU X L, LI X L, REN C Q, et al. Co-composting with cow dung and subsequent vermicomposting improve compost quality of spent mushroom[J]. Bioresource Technology, 2022, 358: 127386. |
[4] | LIU H J, HUANG Y, WANG H, et al. Enzymatic activities triggered by the succession of microbiota steered fiber degradation and humification during co-composting of chicken manure and rice husk[J]. Journal of Environmental Management, 2020, 258: 110014. |
[5] | ZHAI W H, JIA L M, ZHAO R, et al. Response characteristics of nitrous oxide related microorganisms to biochar addition during chicken manure composting[J]. Process Safety and Environmental Protection, 2023, 169: 604-608. |
[6] | HUANG D L, GAO L, CHENG M, et al. Carbon and N conservation during composting: a review[J]. Science of the Total Environment, 2022, 840: 156355. |
[7] | SHELLY P, NEEMISHA, SHARMA S. Modification in the composting environment through additives[J]. Communications in Soil Science and Plant Analysis, 2022, 53(17): 2141-2155. |
[8] | LI Y B, LIU T T, SONG J L, et al. Effects of chemical additives on emissions of ammonia and greenhouse gas during sewage sludge composting[J]. Process Safety and Environmental Protection, 2020, 143: 129-137. |
[9] | PENG S, LI H J, XU Q Q, et al. Addition of zeolite and superphosphate to windrow composting of chicken manure improves fertilizer efficiency and reduces greenhouse gas emission[J]. Environmental Science and Pollution Research International, 2019, 26(36): 36845-36856. |
[10] | CHANG R X, LI Y T, LI N H, et al. Effect of microbial transformation induced by metallic compound additives and temperature variations during composting on suppression of soil-borne pathogens[J]. Journal of Environmental Management, 2021, 279: 111816. |
[11] | 郭若楠, 殷建成, 刘佳慧, 等. 畜禽粪污无害化及资源化利用研究进展[J/OL]. 特产研究, 2023: 1-6 (2023-11-29) [2024-01-25]. https://link.cnki.net/urlid.22.1154.S.20231127.1130.004. |
GUO R N, YIN J C, LIU J H, et al. Research progress in harmless and resourceful utilisation of livestock and poultry manure[J/OL]. Special Wild Economic Animal and Plant Research, 2023: 1-6 (2023-11-29) [2024-01-25]. https://link.cnki.net/urlid.22.1154.S.20231127.1130.004. (in Chinese with English abstract) | |
[12] | 孙桂阳, 张国言, 董元杰. 不同来源农业废弃物堆肥进程与产品肥效研究[J]. 水土保持学报, 2021, 35(4): 349-360. |
SUN G Y, ZHANG G Y, DONG Y J. Composting process of agricultural wastes from different sources and fertilizer efficiency of their products[J]. Journal of Soil and Water Conservation, 2021, 35(4): 349-360. (in Chinese with English abstract) | |
[13] | 肖小兰, 张浩, 付传僡, 等. 嗜热菌筛选及其促进沼渣和虫粪共堆肥的效果[J]. 浙江农业学报, 2023, 35(3): 647-657. |
XIAO X L, ZHANG H, FU C H, et al. Screening thermophiles to promote co-composting of biogas residue and black soldier fly larval frass[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 647-657. (in Chinese with English abstract) | |
[14] | REN X N, WANG Q, AWASTHI M K, et al. Improvement of cleaner composting production by adding diatomite: from the nitrogen conservation and greenhouse gas emission[J]. Bioresource Technology, 2019, 286: 121377. |
[15] | LI R H, WANG J J, ZHANG Z Q, et al. Nutrient transformations during composting of pig manure with bentonite[J]. Bioresource Technology, 2012, 121: 362-368. |
[16] | ZHOU L Y, XIE Y Q, WANG X W, et al. Influence of different microbial inoculants on nitrogen retention and diazotroph community succession during cotton straw composting[J]. Process Safety and Environmental Protection, 2023, 172: 882-893. |
[17] | SUN Z Y, ZHANG J, ZHONG X Z, et al. Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system[J]. Waste Management, 2016, 51: 55-64. |
[18] | WILSON K, WALKER J. Principles and techniques of practical biochemistry[M]. 5th ed. Cambridge: Cambridge University Press, 2000. |
[19] | WANG Q Q, LI N, JIANG S N, et al. Composting of post-consumption food waste enhanced by bioaugmentation with microbial consortium[J]. Science of the Total Environment, 2024, 907: 168107. |
[20] | PAN J T, CAI H Z, ZHANG Z Q, et al. Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement, nitrogen conservation, and greenhouse gas reduction[J]. Bioresource Technology, 2018, 270: 467-475. |
[21] | JIANG J S, KANG K, CHEN D, et al. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting[J]. Waste Management, 2018, 72: 161-167. |
[22] | 王瑞飞, 孔盈利, 魏艺璇, 等. 菌剂对鸡粪-生物炭堆肥理化性质和微生物群落结构的影响[J]. 江苏农业学报, 2023, 39(4): 966-977. |
WANG R F, KONG Y L, WEI Y X, et al. Effects of microbial agents on physicochemical properties and microbial community structure of chicken manure-biochar compost[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(4): 966-977. (in Chinese with English abstract) | |
[23] | DING J L, WEI D, AN Z Z, et al. Changes in fungal community during different phases in conventional and bioreactor composting systems according to metatranscriptomics analysis[J]. Letters in Applied Microbiology, 2023, 76(1): ovac018. |
[24] | WANG X Q, KONG Z J, WANG Y H, et al. Insights into the functionality of fungal community during the large scale aerobic co-composting process of swine manure and rice straw[J]. Journal of Environmental Management, 2020, 270: 110958. |
[25] | LEE H, LEE Y M, JANG Y, et al. Isolation and analysis of the enzymatic properties of thermophilic fungi from compost[J]. Mycobiology, 2014, 42(2): 181-184. |
[26] | TIAN X P, YANG T, HE J Z, et al. Fungal community and cellulose-degrading genes in the composting process of Chinese medicinal herbal residues[J]. Bioresource Technology, 2017, 241: 374-383. |
[27] | WANG N, HUANG D D, SHAO M S, et al. Use of activated carbon to reduce ammonia emissions and accelerate humification in composting digestate from food waste[J]. Bioresource Technology, 2022, 347: 126701. |
[28] | FARIA N T, MARQUES S, CEREJO J, et al. High cellulase-free xylanases production by Moesziomyces aphidis using low-cost carbon and nitrogen sources[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(11): 3076-3082. |
[29] | MOHAMMADI-SICHANI M M, ASSADI M M, FARAZMAND A, et al. Bioremediation of soil contaminated crude oil by Agaricomycetes[J]. Journal of Environmental Health Science & Engineering, 2017, 15: 8. |
[30] | ZHOU S S, CHANG T T, ZHANG Y J, et al. Organic fertilizer compost alters the microbial composition and network structure in strongly acidic soil[J]. Applied Soil Ecology, 2024, 195: 105263. |
[31] | LIU X, RONG X M, JIANG P, et al. Biodiversity and core microbiota of key-stone ecological clusters regulate compost maturity during cow-dung-driven composting[J]. Environmental Research, 2024, 245: 118034. |
[32] | CLOCCHIATTI A, HANNULA S E, VAN DEN BERG M, et al. The hidden potential of saprotrophic fungi in arable soil: patterns of short-term stimulation by organic amendments[J]. Applied Soil Ecology, 2020, 147: 103434. |
[33] | ABDELLAH Y A Y, LI T Z, CHEN X, et al. Role of psychrotrophic fungal strains in accelerating and enhancing the maturity of pig manure composting under low-temperature conditions[J]. Bioresource Technology, 2021, 320: 124402. |
[34] | LI J B, LIU X, ZHU C X, et al. Influences of human waste-based ectopic fermentation bed fillers on the soil properties and growth of Chinese pakchoi[J]. Environmental Science and Pollution Research International, 2022, 29(46): 69903-69917. |
[35] | 李红玲, 陈垣, 郭凤霞, 等. 水杨酸对NaHCO3胁迫下黄芪幼苗生长及生理特性的调节效应[J]. 江西农业大学学报, 2024, 46(1): 50-59. |
LI H L, CHEN Y, GUO F X, et al. Effects of salicylic acid on growth and physiological characteristics of Astragalus mongholicus seedlings under NaHCO3 stress[J]. Acta Agriculturae Universitatis Jiangxiensis, 2024, 46(1): 50-59. (in Chinese with English abstract) | |
[36] | 杨治伟, 曹秀霞, 张炜, 等. 不同覆膜栽培方式下胡麻叶片叶绿素含量、失水速率及产量[J]. 山西农业大学学报(自然科学版), 2024, 44(1): 53-60. |
YANG Z W, CAO X X, ZHANG W, et al. Chlorophyll content, water loss rate and yield of flax under different film mulching cultivation methods[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2024, 44(1): 53-60. (in Chinese) | |
[37] | 谢志坚, 倪国荣, 危群星, 等. 有机肥替代化肥对小白菜品质和生态化学计量学特征以及土壤综合肥力的影响[J]. 江西农业大学学报, 2019, 41(6): 1061-1071. |
XIE Z J, NI G R, WEI Q X, et al. Responses of the quality and ecological stoichiometry characteristics in pak-choi shoot and integrated fertility of vegetable soil to substituting manures for chemical fertilizers[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(6): 1061-1071. (in Chinese with English abstract) | |
[38] | MOHAMED H I, ELSHERBINY E A, ABDELHAMID M T. Physiological and biochemical responses of Vicia faba plants to foliar application of zinc and iron[J]. Gesunde Pflanzen, 2016, 68(4): 201-212. |
[1] | 何宇, 吕卫光, 李双喜, 郑宪清, 张翰林, 张娟琴, 张海韵, 白娜玲, 刘善良. γ-聚谷氨酸发酵液对小白菜生长及氮磷肥料利用率的影响[J]. 浙江农业学报, 2023, 35(2): 329-337. |
[2] | 高风, 文仕知, 韦铄星, 欧汉彪, 王智慧. 桂西北石漠化区不同植被恢复类型对土壤理化性质、酶活与真菌群落多样性的影响[J]. 浙江农业学报, 2023, 35(10): 2425-2435. |
[3] | 杨海涛, 张婧, 马红艳, 杨滟, 丁东霞, 吕剑, 颉建明. 不同外源硒对小白菜品质及营养元素含量的影响[J]. 浙江农业学报, 2022, 34(10): 2199-2208. |
[4] | 马其雪, 孙向阳, 李素艳, 李松, 刘源鑫, 周文洁. 园林绿化废弃物堆肥对铅、锌污染土壤上小白菜生理特性的影响[J]. 浙江农业学报, 2020, 32(11): 2027-2034. |
[5] | 沈璐, 李勤超, 田中贵, 稻村达也, 伊日布斯. 太阳热处理对小白菜根肿病防治效果的研究[J]. 浙江农业学报, 2020, 32(1): 98-107. |
[6] | 庞强强,陈日远,刘厚诚,宋世威,苏蔚,孙光闻*. 硝酸盐胁迫下黄腐酸对小白菜生长及氮代谢相关酶活性的影响[J]. 浙江农业学报, 2015, 27(12): 2136-. |
[7] | 黄慧1,陶立华2,杨静1,*,朱祝军1. 高效氯氟氰菊酯对小白菜生长和硫代葡萄糖苷含量的影响[J]. 浙江农业学报, 2015, 27(1): 104-. |
[8] | 赵学平;袁玉伟;胡秀卿;吴长兴;吴声敢;陈丽萍. 茚虫威和毒死蜱在小白菜中的残留及其膳食暴露评估[J]. , 2010, 22(6): 784-789. |
[9] | 李德明;朱祝军. Si对Cd胁迫下小白菜生长及叶绿素荧光的影响[J]. , 2006, 18(4): 0-215. |
[10] | 周焱;罗安程. 有机肥对大棚蔬菜品质的影响[J]. , 2004, 16(4): 0-212. |
[11] | 边才苗;李钧敏;林俊. 小白菜品种的随机扩增多态DNA分析[J]. , 2004, 16(1): 0-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||