浙江农业学报 ›› 2025, Vol. 37 ›› Issue (1): 178-188.DOI: 10.3969/j.issn.1004-1524.20240273
杨贵仁#(), 穆宏磊#(
), 吴伟杰, 房祥军, 陈慧芝, 牛犇, 陈杭君*(
), 郜海燕*(
)
收稿日期:
2024-03-22
出版日期:
2025-01-25
发布日期:
2025-02-14
作者简介:
杨贵仁(1999—),男,四川大竹人,硕士,研究方向为食品物流保鲜与营养品质调控。E-mail:ygr239343@163.com;#为共同第一作者。
通讯作者:
*陈杭君,E-mail:spshangjun@sina.com;郜海燕,E-mail:spsghy@163.com
基金资助:
YANG Guiren#(), MU Honglei#(
), WU Weijie, FANG Xiangjun, CHEN Huizhi, NIU Ben, CHEN Hangjun*(
), GAO Haiyan*(
)
Received:
2024-03-22
Online:
2025-01-25
Published:
2025-02-14
摘要:
通过研究酪蛋白对杨梅汁中花色苷的护色工艺及其保持作用,拟解决杨梅汁生产过程中常出现的果汁褪色问题。采用响应面试验对花色苷的护色工艺进行优化,当酪蛋白添加量为1%,且在43 ℃反应32 min时,能够有效地保留杨梅汁的花色苷并具有最佳的感官品质。此外,以矢车菊-3-O-葡萄糖苷(cyanidin-3-O-glucoside,C3G)模拟体系为对象,研究酪蛋白对杨梅汁花色苷的护色机理。荧光光谱分析表明,酪蛋白的荧光光谱出现红移和猝灭,说明酪蛋白包埋了果汁体系中的花色苷,避免了与O2、VC的接触。同时,分子对接结果表明,酪蛋白通过疏水相互作用、范德华力和氢键等作用力与C3G结合,进一步证明了C3G与酪蛋白的结合表现出较高的稳定性,从而提高了杨梅汁中花色苷的稳定性。本研究建立杨梅汁花色苷的保护技术,并进一步明确酪蛋白对花色苷的稳定机制,最终为杨梅汁的护色方法提供技术和理论的支撑。
中图分类号:
杨贵仁, 穆宏磊, 吴伟杰, 房祥军, 陈慧芝, 牛犇, 陈杭君, 郜海燕. 酪蛋白对杨梅汁中花色苷的工艺优化及保持研究[J]. 浙江农业学报, 2025, 37(1): 178-188.
YANG Guiren, MU Honglei, WU Weijie, FANG Xiangjun, CHEN Huizhi, NIU Ben, CHEN Hangjun, GAO Haiyan. Research on the process optimization and maintenance of anthocyanins in Chinese bayberry juice by casein[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 178-188.
图1 不同护色条件对花色苷保留率和感官评分影响 图中大写字母为不同处理组间花色苷保留率的显著性差异,小写字母为不同处理组间感官评分的显著性差异,字母不同表明组间差异显著(P<0.05),下同。
Fig.1 Effects of different processing conditions on anthocyanin retention rate and sensory score Capital letters are significant differences in anthocyanin retention rate among different treatment groups, while lowercase letters are significant differences in sensory scores among different treatment groups. Different letters indicate significant differences among groups (P<0.05), the same as below.
处理 Treatment | A酪蛋白添加量 Casein addition/% | B作用温度 Temperature/℃ | C作用时间 Treatment time/min | Y花色苷保留率 Anthocyanin retention rate/% | Z感官评分 Sensory score |
---|---|---|---|---|---|
1 | 0(0.9) | -1(30) | 1(40) | 77.34 | 84.69 |
2 | 0 | 0(40) | 0(30) | 93.17 | 87.33 |
3 | -1(0.6) | 0 | 1 | 86.12 | 74.33 |
4 | 1(1.2) | 0 | -1(20) | 90.54 | 76.34 |
5 | -1 | 1(50) | 0 | 80.97 | 76.94 |
6 | 1 | -1 | 0 | 85.17 | 79.61 |
7 | 0 | 1 | 1 | 88.97 | 87.39 |
8 | 1 | 0 | 1 | 86.31 | 80.16 |
9 | 1 | 1 | 0 | 88.61 | 82.69 |
10 | 0 | 0 | 0 | 93.93 | 88.76 |
11 | 0 | 0 | 0 | 92.76 | 87.96 |
12 | 0 | 1 | -1 | 81.94 | 81.67 |
13 | 0 | 0 | 0 | 92.64 | 85.67 |
14 | 0 | 0 | 0 | 93.84 | 89.64 |
15 | -1 | -1 | 0 | 78.31 | 72.66 |
16 | 0 | -1 | -1 | 87.64 | 77.62 |
17 | -1 | 0 | -1 | 79.95 | 69.61 |
表1 响应面试验设计及结果
Table 1 Design and results of response surface experiment
处理 Treatment | A酪蛋白添加量 Casein addition/% | B作用温度 Temperature/℃ | C作用时间 Treatment time/min | Y花色苷保留率 Anthocyanin retention rate/% | Z感官评分 Sensory score |
---|---|---|---|---|---|
1 | 0(0.9) | -1(30) | 1(40) | 77.34 | 84.69 |
2 | 0 | 0(40) | 0(30) | 93.17 | 87.33 |
3 | -1(0.6) | 0 | 1 | 86.12 | 74.33 |
4 | 1(1.2) | 0 | -1(20) | 90.54 | 76.34 |
5 | -1 | 1(50) | 0 | 80.97 | 76.94 |
6 | 1 | -1 | 0 | 85.17 | 79.61 |
7 | 0 | 1 | 1 | 88.97 | 87.39 |
8 | 1 | 0 | 1 | 86.31 | 80.16 |
9 | 1 | 1 | 0 | 88.61 | 82.69 |
10 | 0 | 0 | 0 | 93.93 | 88.76 |
11 | 0 | 0 | 0 | 92.76 | 87.96 |
12 | 0 | 1 | -1 | 81.94 | 81.67 |
13 | 0 | 0 | 0 | 92.64 | 85.67 |
14 | 0 | 0 | 0 | 93.84 | 89.64 |
15 | -1 | -1 | 0 | 78.31 | 72.66 |
16 | 0 | -1 | -1 | 87.64 | 77.62 |
17 | -1 | 0 | -1 | 79.95 | 69.61 |
方差来源 Source | 平方和 SS | 自由度 Degree of freedom | 均方 MS | F值 F-value | P值 P-value | 显著性 Significance |
---|---|---|---|---|---|---|
模型Model | 495.79 | 9 | 55.09 | 58.84 | <0.000 1 | ** |
A | 79.88 | 1 | 79.88 | 85.32 | <0.000 1 | ** |
B | 18.09 | 1 | 18.09 | 19.32 | 0.003 2 | ** |
C | 0.22 | 1 | 0.22 | 0.24 | 0.641 8 | |
AB | 0.15 | 1 | 0.15 | 0.16 | 0.698 9 | |
AC | 27.04 | 1 | 27.04 | 28.88 | 0.001 0 | ** |
BC | 75.08 | 1 | 75.08 | 80.19 | <0.000 1 | ** |
A2 | 71.57 | 1 | 71.57 | 76.44 | <0.000 1 | ** |
B2 | 145.59 | 1 | 145.59 | 155.50 | <0.000 1 | ** |
C2 | 49.11 | 1 | 49.11 | 52.45 | 0.000 2 | ** |
残差Residual | 6.55 | 7 | 0.94 | |||
失拟项Lack of fit | 5.13 | 3 | 1.71 | 4.79 | 0.082 2 | 不显著Not significant |
纯误差Pure error | 1.43 | 4 | 0.36 | |||
总离差Cor total | 502.34 | 16 |
表2 花色苷保留率的响应面模型方差分析及显著性检验
Table 2 Analysis of variance and significance test of response surface model for anthocyanin retention rate
方差来源 Source | 平方和 SS | 自由度 Degree of freedom | 均方 MS | F值 F-value | P值 P-value | 显著性 Significance |
---|---|---|---|---|---|---|
模型Model | 495.79 | 9 | 55.09 | 58.84 | <0.000 1 | ** |
A | 79.88 | 1 | 79.88 | 85.32 | <0.000 1 | ** |
B | 18.09 | 1 | 18.09 | 19.32 | 0.003 2 | ** |
C | 0.22 | 1 | 0.22 | 0.24 | 0.641 8 | |
AB | 0.15 | 1 | 0.15 | 0.16 | 0.698 9 | |
AC | 27.04 | 1 | 27.04 | 28.88 | 0.001 0 | ** |
BC | 75.08 | 1 | 75.08 | 80.19 | <0.000 1 | ** |
A2 | 71.57 | 1 | 71.57 | 76.44 | <0.000 1 | ** |
B2 | 145.59 | 1 | 145.59 | 155.50 | <0.000 1 | ** |
C2 | 49.11 | 1 | 49.11 | 52.45 | 0.000 2 | ** |
残差Residual | 6.55 | 7 | 0.94 | |||
失拟项Lack of fit | 5.13 | 3 | 1.71 | 4.79 | 0.082 2 | 不显著Not significant |
纯误差Pure error | 1.43 | 4 | 0.36 | |||
总离差Cor total | 502.34 | 16 |
方差来源 Source | 平方和 SS | 自由度 Degree of freedom | 均方 MS | F值 F-value | P值 P-value | 显著性 Significance |
---|---|---|---|---|---|---|
模型Model | 585.44 | 9 | 65.05 | 40.04 | <0.000 1 | ** |
A | 79.76 | 1 | 79.76 | 49.10 | 0.000 2 | ** |
B | 24.89 | 1 | 24.89 | 15.32 | 0.005 8 | ** |
C | 56.87 | 1 | 56.87 | 35.01 | 0.000 6 | ** |
AB | 0.36 | 1 | 0.36 | 0.22 | 0.652 1 | |
AC | 0.25 | 1 | 0.20 | 0.12 | 0.734 4 | |
BC | 0.46 | 1 | 0.46 | 0.28 | 0.612 8 | |
A2 | 327.16 | 1 | 327.16 | 201.39 | <0.000 1 | ** |
B2 | 4.93 | 1 | 4.93 | 3.04 | 0.12 | |
C2 | 65.60 | 1 | 65.60 | 40.38 | 0.000 4 | ** |
残差Residual | 11.37 | 7 | 1.62 | |||
失拟项Lack of fit | 2.31 | 3 | 0.77 | 0.34 | 0.80 | 不显著Not significant |
纯误差Pure error | 9.06 | 4 | 2.27 | |||
总离差Cor total | 596.81 | 16 |
表3 感官评分的响应面模型方差分析及显著性检验
Table 3 Analysis of variance and significance test of response surface model for sensory score
方差来源 Source | 平方和 SS | 自由度 Degree of freedom | 均方 MS | F值 F-value | P值 P-value | 显著性 Significance |
---|---|---|---|---|---|---|
模型Model | 585.44 | 9 | 65.05 | 40.04 | <0.000 1 | ** |
A | 79.76 | 1 | 79.76 | 49.10 | 0.000 2 | ** |
B | 24.89 | 1 | 24.89 | 15.32 | 0.005 8 | ** |
C | 56.87 | 1 | 56.87 | 35.01 | 0.000 6 | ** |
AB | 0.36 | 1 | 0.36 | 0.22 | 0.652 1 | |
AC | 0.25 | 1 | 0.20 | 0.12 | 0.734 4 | |
BC | 0.46 | 1 | 0.46 | 0.28 | 0.612 8 | |
A2 | 327.16 | 1 | 327.16 | 201.39 | <0.000 1 | ** |
B2 | 4.93 | 1 | 4.93 | 3.04 | 0.12 | |
C2 | 65.60 | 1 | 65.60 | 40.38 | 0.000 4 | ** |
残差Residual | 11.37 | 7 | 1.62 | |||
失拟项Lack of fit | 2.31 | 3 | 0.77 | 0.34 | 0.80 | 不显著Not significant |
纯误差Pure error | 9.06 | 4 | 2.27 | |||
总离差Cor total | 596.81 | 16 |
酪蛋白添加量 Casein addition/(g·L-1) | k/h-1 | t1/2/h | R2 |
---|---|---|---|
0 | 0.282×102 a | 246 e | 0.997 |
3 | 0.240×102 b | 288 d | 0.988 |
6 | 0.205×102 c | 339 c | 0.991 |
9 | 0.160×102 e | 434 a | 0.992 |
12 | 0.171×102 d | 405 b | 0.963 |
表4 不同浓度酪蛋白处理下 C3G 降解动力学参数
Table 4 Degradation kinetic parameters of C3G under different concentrations of casein
酪蛋白添加量 Casein addition/(g·L-1) | k/h-1 | t1/2/h | R2 |
---|---|---|---|
0 | 0.282×102 a | 246 e | 0.997 |
3 | 0.240×102 b | 288 d | 0.988 |
6 | 0.205×102 c | 339 c | 0.991 |
9 | 0.160×102 e | 434 a | 0.992 |
12 | 0.171×102 d | 405 b | 0.963 |
[1] | ZHU Y Y, LV J M, GU Y, et al. Mixed fermentation of Chinese bayberry pomace using yeast, lactic acid bacteria and acetic acid bacteria: effects on color, phenolics and antioxidant ingredients[J]. LWT, 2022, 163: 113503. |
[2] | 熊小迪, 刘群, 李丽, 等. 冷等离子体结合气调包装对杨梅贮藏品质的影响[J]. 保鲜与加工, 2023, 23(12): 10-17. |
XIONG X D, LIU Q, LI L, et al. Effects of cold atmospheric plasma combined with modified atmosphere packaging on storage quality of bayberry[J]. Storage and Process, 2023, 23(12): 10-17. (in Chinese with English abstract) | |
[3] | 杨涵, 李雪, 王立芹, 等. 杨梅采后保鲜研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 200-212. |
YANG H, LI X, WANG L Q, et al. Research progress on postharvest preservation of Chinese bayberry fruit[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2023, 49(2): 200-212. (in Chinese with English abstract) | |
[4] | 崔海鹏, 郭健龙, 王大全, 等. 花青素加工稳定性及其研究进展[J]. 食品与发酵工业, 2024, 50(13): 388-397. |
CUI H P, GUO J L, WANG D Q, et al. Stability of anthocyanins during processing and research progress[J]. Food and Fermentation Industries, 2024, 50(13): 388-397. (in Chinese with English abstract) | |
[5] | 黄金萍, 吴继红, 廖小军, 等. 果蔬汁饮料中花色苷与VC相互作用研究进展[J]. 食品科学, 2022, 43(21): 358-371. |
HUANG J P, WU J H, LIAO X J, et al. Recent progress in the study on the interaction between anthocyanins and vitamin C in fruit and vegetable beverages[J]. Food Science, 2022, 43(21): 358-371. (in Chinese with English abstract) | |
[6] | ALMEIDA NASCIMENTO A L A, BORGES L L R, FERNANDES J G, et al. Exploring strategies to enhance anthocyanin bioavailability and bioaccessibility in food: a literature review[J]. Food Bioscience, 2023, 56: 103388. |
[7] | FEITOSA B F, DECKER B L A, DE BRITO E S, et al. Microencapsulation of anthocyanins as natural dye extracted from fruits-A systematic review[J]. Food Chemistry, 2023, 424: 136361. |
[8] | MANSOUR M, SALAH M, XU X Y. Effect of microencapsulation using soy protein isolate and gum Arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions[J]. Ultrasonics Sonochemistry, 2020, 63: 104927. |
[9] | RABELO C A S, TAARJI N, KHALID N, et al. Formulation and characterization of water-in-oil nanoemulsions loaded with açaí berry anthocyanins: insights of degradation kinetics and stability evaluation of anthocyanins and nanoemulsions[J]. Food Research International, 2018, 106: 542-548. |
[10] | LU X X, HUANG Q Q, XIAO J, et al. Milled miscellaneous black rice particles stabilized Pickering emulsions with enhanced antioxidation activity[J]. Food Chemistry, 2022, 385: 132639. |
[11] | ALI T, KIM M J, REHMAN S U, et al. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1-42 mouse model of Alzheimer’s disease[J]. Molecular Neurobiology, 2017, 54(8): 6490-6506. |
[12] | IVANOV V K, USATENKO A V, SHCHERBAKOV A B. Antioxidant activity of nanocrystalline ceria to anthocyanins[J]. Russian Journal of Inorganic Chemistry, 2009, 54(10): 1522-1527. |
[13] | SALAH M, MANSOUR M, ZOGONA D, et al. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: characterization, stability, and bioavailability in vitro[J]. Food Research International, 2020, 137: 109635. |
[14] | HE Z Y, XU M Z, ZENG M M, et al. Interactions of milk α-and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts[J]. Food Chemistry, 2016, 199: 314-322. |
[15] | KE C X, LIU B S, DUDU O E, et al. Modification of structural and functional characteristics of casein treated with quercetin via two interaction modes: covalent and non-covalent interactions[J]. Food Hydrocolloids, 2023, 137: 108394. |
[16] | HARATIFAR S, CORREDIG M. Interactions between tea catechins and casein micelles and their impact on renneting functionality[J]. Food Chemistry, 2014, 143: 27-32. |
[17] | VAN DE LANGERIJT T M, O’MAHONY J A, CROWLEY S V. The influence of sodium caseinate and β-casein concentrate on the physicochemical properties of casein micelles and the role of tea polyphenols in mediating these interactions[J]. LWT, 2022, 154: 112775. |
[18] | WU J E, GUAN Y G, ZHONG Q X. Yeast mannoproteins improve thermal stability of anthocyanins at pH 7.0[J]. Food Chemistry, 2015, 172: 121-128. |
[19] | WEI J, XU D X, YANG J, et al. Analysis of the interaction mechanism of anthocyanins (Aronia melanocarpa Elliot) with β-casein[J]. Food Hydrocolloids, 2018, 84: 276-281. |
[20] | 唐杰, 零东宁, 李丽, 等. 果胶酶酶解桑葚和杨梅果汁工艺研究[J]. 轻工科技, 2020, 36(8): 21-23, 51. |
TANG J, LING D N, LI L, et al. Study on enzymatic hydrolysis of mulberry and Myrica rubra juice by pectinase[J]. Light Industry Science and Technology, 2020, 36(8): 21-23, 51. (in Chinese) | |
[21] | JIANG Y T, YIN Z C, WU Y R, et al. Inhibitory effects of soy protein and its hydrolysate on the degradation of anthocyanins in mulberry extract[J]. Food Bioscience, 2021, 40: 100911. |
[22] | ZHANG Z W, ZHANG J, FAN L P, et al. Degradation of cyanidin-3-O-glucoside induced by antioxidant compounds in model Chinese bayberry wine: kinetic studies and mechanisms[J]. Food Chemistry, 2022, 373: 131426. |
[23] | 周莉, 赵路苹, 刘莹, 等. 葵花籽油体富集物添加量对低脂冰淇淋浆料及产品品质的影响[J]. 中国油脂, 2023, 48(8): 121-127, 148. |
ZHOU L, ZHAO L P, LIU Y, et al. Effect of dosage of sunflower seed oil body enrichment on the quality of low fat ice cream slurry and product[J]. China Oils and Fats, 2023, 48(8): 121-127, 148. (in Chinese with English abstract) | |
[24] | 马静, 李丽, 由耀辉, 等. 共存抗坏血酸下明胶对花色苷稳定性的影响及机理研究[J]. 食品工业科技, 2023, 44(17): 84-90. |
MA J, LI L, YOU Y H, et al. Effect of gelatin on the stability of cyanidin-3-O-glucoside in the presence of ascorbic acid and its mechanism[J]. Science and Technology of Food Industry, 2023, 44(17): 84-90. (in Chinese with English abstract) | |
[25] | ATTARIBO T, JIANG X Z, HUANG G Q, et al. Studies on the interactional characterization of preheated silkworm pupae protein (SPP) with anthocyanins (C3G) and their effect on anthocyanin stability[J]. Food Chemistry, 2020, 326: 126904. |
[26] | LI Y W, YAO L, ZHANG L W, et al. Enhanced physicochemical stabilities of cyanidin-3-O-glucoside via combination with silk fibroin peptide[J]. Food Chemistry, 2021, 355: 129479. |
[27] | 闫露露, 邢明霞, 艾连中, 等. 牛奶乳清蛋白、酪蛋白对巴西莓多酚的保护作用及其互作机制研究[J]. 食品与发酵科技, 2023, 59(2): 35-42. |
YAN L L, XING M X, AI L Z, et al. Study on protective effects of milk whey protein and casein on Açaí berry polyphenols and their interaction mechanism[J]. Food and Fermentation Science & Technology, 2023, 59(2): 35-42. (in Chinese with English abstract) | |
[28] | FOROUTANI Z, AFSHAR MOGADDAM M R, GHASEMPOUR Z, et al. Application of deep eutectic solvents in the extraction of anthocyanins: stability, bioavailability, and antioxidant property[J]. Trends in Food Science & Technology, 2024, 144: 104324. |
[29] | TANG R, HE Y, FAN K. Recent advances in stability improvement of anthocyanins by efficient methods and its application in food intelligent packaging: a review[J]. Food Bioscience, 2023, 56: 103164. |
[30] | HE Z Y, ZHU H D, XU M Z, et al. Complexation of bovine β-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts[J]. Food Chemistry, 2016, 209: 234-240. |
[31] | CACACE J E, MAZZA G. Mass transfer process during extraction of phenolic compounds from milled berries[J]. Journal of Food Engineering, 2003, 59(4): 379-389. |
[32] | WANG Y W, YE Y, WANG L, et al. Antioxidant activity and subcritical water extraction of anthocyanin from raspberry process optimization by response surface methodology[J]. Food Bioscience, 2021, 44: 101394. |
[33] | CHUNG C, ROJANASASITHARA T, MUTILANGI W, et al. Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation[J]. Food Research International, 2015, 76: 761-768. |
[34] | CHEN J Y, DU J, LI M L, et al. Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage[J]. LWT, 2020, 128: 109448. |
[35] | PHAM T N, LE X T, PHAM V T, et al. Effects of process parameters in microwave-assisted extraction on the anthocyanin-enriched extract from Rhodomyrtus tomentosa(Ait.) Hassk and its storage conditions on the kinetic degradation of anthocyanins in the extract[J]. Heliyon, 2022, 8(6): e09518. |
[36] | AGCAM E. Degradation kinetics of pomegranate juice phenolics under cold and warm sonication process[J]. Innovative Food Science & Emerging Technologies, 2022, 80: 103080. |
[37] | ZANG Z H, CHOU S R, GENG L J, et al. Interactions of blueberry anthocyanins with whey protein isolate and bovine serum protein: color stability, antioxidant activity, in vitro simulation, and protein functionality[J]. LWT, 2021, 152: 112269. |
[38] | MA G Q, TANG C Y, SUN X J, et al. The interaction mechanism of β-casein with oligomeric proanthocyanidins and its effect on proanthocyanidin bioaccessibility[J]. Food Hydrocolloids, 2021, 113: 106485. |
[39] | 郭东起, 殷秀秀, 程焕, 等. 甘草多糖与酪蛋白的相互作用及乳化性能[J]. 中国食品学报, 2023, 23(12): 12-19. |
GUO D Q, YIN X X, CHENG H, et al. The interaction mechanism and emulsifying properties of Glycyrrhiza polysaccharide and casein[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(12): 12-19. (in Chinese with English abstract) | |
[40] | LIU Y, GUO R. pH-dependent structures and properties of casein micelles[J]. Biophysical Chemistry, 2008, 136(2/3): 67-73. |
[41] | YIN Z C, WU Y R, CHEN Y, et al. Analysis of the interaction between cyanidin-3-O-glucoside and casein hydrolysates and its effect on the antioxidant ability of the complexes[J]. Food Chemistry, 2021, 340: 127915. |
[42] | ZHANG Q, FAN W, SHI Y, et al. Interaction between soy protein isolate/whey protein isolate and sucrose ester during microencapsulation: multi-spectroscopy and molecular docking[J]. LWT, 2023, 188: 115363. |
[1] | 孙鹂, 张淑文, 俞浙萍, 郑锡良, 梁森苗, 任海英, 戚行江. 腐殖酸钾对杨梅土壤改良和生长结实的影响[J]. 浙江农业学报, 2024, 36(8): 1878-1886. |
[2] | 闫鸿媛, 俞浙萍, 张淑文, 倪晓鹏, 李向男, 梁森苗. 杨梅肉葱病发生与营养元素关联分析[J]. 浙江农业学报, 2024, 36(7): 1626-1633. |
[3] | 韩延超, 陈慧芝, 牛犇, 张小栓, 韩树人, 王晓艳, 王冠楠, 刘瑞玲, 郜海燕. 振动胁迫对蓝莓花色苷代谢及相关基因表达的影响[J]. 浙江农业学报, 2024, 36(3): 622-633. |
[4] | 梁秀美, 张维一, 陈官菊, 夏海涛, 郭秀珠, 何如意, 蒋佳铭, 林定鹏. 温州市杨梅农药残留与重金属污染特征及膳食摄入风险评估[J]. 浙江农业学报, 2024, 36(10): 2347-2357. |
[5] | 宗自豪, 何丁生, 牛犇, 黄俊, 房祥军, 吴伟杰, 陈杭君, 郜海燕. 不同镂空包装对雨天采收杨梅贮运品质的影响[J]. 浙江农业学报, 2024, 36(1): 196-204. |
[6] | 张赛丽, 房祥军, 吴伟杰, 高原, 陈杭君, 杨海龙, 郜海燕. 不同干燥方式对杨梅果渣粉抗氧化活性和风味的影响[J]. 浙江农业学报, 2023, 35(6): 1440-1451. |
[7] | 张春荣, 郭钤, 孔丽萍, 吴园园, 林琴, 许振岚, 赵学平, 汤涛. 嘧菌酯在杨梅中的残留行为及膳食暴露风险评估[J]. 浙江农业学报, 2023, 35(4): 942-951. |
[8] | 郑锡良, 梁森苗, 俞浙萍, 任海英, 孙鹂, 林瑞, 张淑文, 戚行江. 杨梅树体健康状态的量化指标评价[J]. 浙江农业学报, 2022, 34(9): 1945-1954. |
[9] | 潘旭婕, 刘瑞玲, 邓尚贵, 吴伟杰, 陈杭君, 郜海燕. 乳酸菌发酵杨梅果酱工艺优化及其风味成分分析[J]. 浙江农业学报, 2022, 34(7): 1502-1512. |
[10] | 郑园园, 俞浙萍, 张淑文, 李有贵, 孙鹂, 郑锡良, 戚行江. 杨梅枝条醇提物对A375细胞增殖和凋亡的影响及其分子机制[J]. 浙江农业学报, 2022, 34(5): 974-983. |
[11] | 蔡继业, 房祥军, 韩延超, 丁玉庭, 陈杭君, 吴伟杰, 郜海燕. 气调贮藏对东魁杨梅品质的影响[J]. 浙江农业学报, 2022, 34(2): 352-359. |
[12] | 田培, 赵慧宇, 刘之炜, 王娇, 狄珊珊, 徐浩, 汪志威, 王新全, 齐沛沛. 杨梅中灭蝇胺及其代谢物检测方法与风险评估[J]. 浙江农业学报, 2021, 33(3): 534-540. |
[13] | 杨海健, 张云贵, 周心智, 洪林, 杨蕾, 彭芳芳, 王武. 不同PE材料遮光下血橙转色期果皮花色苷合成及其相关基因的表达分析[J]. 浙江农业学报, 2021, 33(10): 1861-1869. |
[14] | 马小华, 俞浙萍, 郑锡良, 胡晓金, 张淑文, 戚行江, 马靖艳. 靖州杨梅引种试验与表型聚类分析[J]. 浙江农业学报, 2020, 32(11): 1987-1993. |
[15] | 张淑文, 梁森苗, 朱婷婷, 任海英, 郑锡良, 戚行江. 不同杨梅品种的耐低温能力比较[J]. 浙江农业学报, 2020, 32(10): 1772-1779. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||