浙江农业学报 ›› 2025, Vol. 37 ›› Issue (1): 189-202.DOI: 10.3969/j.issn.1004-1524.20240125
刘洵1,2(), 夏其乐2, 李彦坡3, 王阳光1,*(
), 陆胜民1,2,*(
)
收稿日期:
2024-02-04
出版日期:
2025-01-25
发布日期:
2025-02-14
作者简介:
刘洵(1999—),女,四川达州人,硕士研究生,研究方向为果品加工。E-mail:liuxun@zjou.edu.cn
通讯作者:
*陆胜民,E-mail:lushengmin@hotmail.com;王阳光,E-mail:ygw0510@sohu.com
基金资助:
LIU Xun1,2(), XIA Qile2, LI Yanpo3, WANG Yangguang1,*(
), LU Shengmin1,2,*(
)
Received:
2024-02-04
Online:
2025-01-25
Published:
2025-02-14
摘要: 为进一步提高瓯柑果渣资源的综合利用率和功能价值,以榨汁后的瓯柑鲜果渣为原料,采用超声协同纤维素酶法提取可溶性膳食纤维(soluble dietary fiber, SDF)和不溶性膳食纤维(insoluble dietary fiber, IDF),利用单因素试验和响应面试验优化工艺参数,并探究二者的体外功能特性。结果表明:在料液比1∶20(g·mL-1)、超声功率450 W、纤维素酶添加量0.97%、酶解时间1 h工艺条件下,SDF和IDF的提取率分别为(10.42±0.31)%和(51.28±0.97)%。SDF表面多褶皱,而IDF表面较光滑但孔洞较多,由此造成二者理化性质和功能特性存在显著性差异。SDF相较于IDF,其持水力和膨胀力显著(P<0.05)升高,但持油力显著(P<0.05)降低。SDF在吸附葡萄糖和抑制α-葡萄糖苷酶活性方面显著(P<0.05)优于IDF;在30 min内,SDF和IDF对葡萄糖透析延迟效果最佳,其中SDF的葡萄粮透析延迟指数(GDRI)峰值可达(32.73±0.89)%。SDF和IDF在模拟小肠环境中可有效吸附胆固醇和胆酸盐,其中SDF表现出更高的吸附胆固醇和甘氨胆酸盐能力。在模拟胃环境中,SDF对亚硝酸盐离子的吸附能力显著(P<0.05)优于IDF。综上表明,瓯柑果渣膳食纤维体外功能活性强,尤其是SDF的降糖降脂和吸附亚硝酸盐离子功能特性显著优于IDF,可用于后续体内功能验证和功能性食品开发。
中图分类号:
刘洵, 夏其乐, 李彦坡, 王阳光, 陆胜民. 瓯柑果渣可溶性和不溶性膳食纤维的提取工艺优化及其理化和功能特性的差异[J]. 浙江农业学报, 2025, 37(1): 189-202.
LIU Xun, XIA Qile, LI Yanpo, WANG Yangguang, LU Shengmin. Optimization of extraction process for soluble and insoluble dietary fibers from Ougan (Citrus suavissima Hort. ex Tanaka) pomace and the differences between their physicochemical properties and functional characteristics[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 189-202.
水平 Level | 因素Factor | ||
---|---|---|---|
A纤维素酶添加量 Enzyme addition amount/% | B酶解时间 Enzymatic hydrolysis time/h | C超声功率 Ultrasonic power/W | |
-1 | 0.6 | 0.5 | 400 |
0 | 0.8 | 1 | 450 |
1 | 1.0 | 1.5 | 500 |
表1 响应面试验设计参数
Table 1 Design parameters of the response surface experiment
水平 Level | 因素Factor | ||
---|---|---|---|
A纤维素酶添加量 Enzyme addition amount/% | B酶解时间 Enzymatic hydrolysis time/h | C超声功率 Ultrasonic power/W | |
-1 | 0.6 | 0.5 | 400 |
0 | 0.8 | 1 | 450 |
1 | 1.0 | 1.5 | 500 |
图1 单因素试验结果分析 SDF,可溶性膳食纤维。图中不同小写字母表示处理间差异显著(P<0.05)。下同。
Fig.1 Analysis of single factor test results SDF,Soluble dietary fiber.Different lowercase letters indicate significant differences (P<0.05) among different teatments. The same as below.
序号 Serial number | A酶添加量 Enzyme addition amount/% | B酶解时间 Enzymatic hydrolysis time/h | C超声功率 Ultrasonic power/W | SDF提取率 Extraction rate of SDF/% | IDF提取率 Extraction rate of IDF/% |
---|---|---|---|---|---|
1 | 0.6 | 0.5 | 450 | 7.32 | 50.47 |
2 | 1.0 | 0.5 | 450 | 8.32 | 50.50 |
3 | 0.6 | 1.5 | 450 | 8.80 | 49.63 |
4 | 0.6 | 1.0 | 450 | 8.95 | 49.78 |
5 | 0.6 | 1.0 | 400 | 7.12 | 48.61 |
6 | 1.0 | 1.0 | 400 | 7.21 | 49.59 |
7 | 0.6 | 1.0 | 500 | 7.62 | 48.90 |
8 | 1.0 | 1.0 | 500 | 7.97 | 50.55 |
9 | 0.8 | 0.5 | 400 | 6.51 | 50.17 |
10 | 0.8 | 1.5 | 400 | 7.17 | 48.13 |
11 | 0.8 | 0.5 | 500 | 7.53 | 50.26 |
12 | 0.8 | 1.5 | 500 | 8.21 | 49.78 |
13 | 0.8 | 1.0 | 450 | 9.90 | 51.13 |
14 | 0.8 | 1.0 | 450 | 10.45 | 49.91 |
15 | 0.8 | 1.0 | 450 | 11.20 | 51.24 |
16 | 0.8 | 1.0 | 450 | 10.10 | 51.31 |
17 | 0.8 | 1.0 | 450 | 9.99 | 52.66 |
表2 响应面试验结果
Table 2 Response surface test results
序号 Serial number | A酶添加量 Enzyme addition amount/% | B酶解时间 Enzymatic hydrolysis time/h | C超声功率 Ultrasonic power/W | SDF提取率 Extraction rate of SDF/% | IDF提取率 Extraction rate of IDF/% |
---|---|---|---|---|---|
1 | 0.6 | 0.5 | 450 | 7.32 | 50.47 |
2 | 1.0 | 0.5 | 450 | 8.32 | 50.50 |
3 | 0.6 | 1.5 | 450 | 8.80 | 49.63 |
4 | 0.6 | 1.0 | 450 | 8.95 | 49.78 |
5 | 0.6 | 1.0 | 400 | 7.12 | 48.61 |
6 | 1.0 | 1.0 | 400 | 7.21 | 49.59 |
7 | 0.6 | 1.0 | 500 | 7.62 | 48.90 |
8 | 1.0 | 1.0 | 500 | 7.97 | 50.55 |
9 | 0.8 | 0.5 | 400 | 6.51 | 50.17 |
10 | 0.8 | 1.5 | 400 | 7.17 | 48.13 |
11 | 0.8 | 0.5 | 500 | 7.53 | 50.26 |
12 | 0.8 | 1.5 | 500 | 8.21 | 49.78 |
13 | 0.8 | 1.0 | 450 | 9.90 | 51.13 |
14 | 0.8 | 1.0 | 450 | 10.45 | 49.91 |
15 | 0.8 | 1.0 | 450 | 11.20 | 51.24 |
16 | 0.8 | 1.0 | 450 | 10.10 | 51.31 |
17 | 0.8 | 1.0 | 450 | 9.99 | 52.66 |
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | 提取率Extraction rate | |
---|---|---|---|---|---|---|
P值 P value | 显著性 Significance | |||||
模型Modle | 29.56 | 9 | 3.28 | 16.99 | 0.000 6 | ** |
A酶添加量Enzyme addition amount | 0.321 6 | 1 | 0.321 6 | 1.66 | 0.238 1 | |
B酶解时间Enzymatic hydrolysis time | 1.48 | 1 | 1.48 | 7.66 | 0.027 8 | * |
C超声功率Ultrasonic power | 1.38 | 1 | 1.38 | 7.16 | 0.031 7 | * |
AB | 0.180 5 | 1 | 0.180 5 | 0.934 0 | 0.366 0 | |
AC | 0.016 5 | 1 | 0.016 5 | 0.085 2 | 0.778 8 | |
BC | 0.000 1 | 1 | 0.000 1 | 0.000 4 | 0.984 4 | |
A2 | 3.62 | 1 | 3.62 | 18.72 | 0.003 5 | * |
B2 | 4.69 | 1 | 4.69 | 24.24 | 0.001 7 | * |
C2 | 15.49 | 1 | 15.49 | 80.12 | <0.000 1 | ** |
残差Residual error | 1.35 | 7 | 0.193 3 | |||
失拟项Lack of fit | 0.219 9 | 3 | 0.073 3 | 0.258 7 | 0.852 2 | 不显著 |
Not significant | ||||||
净误差Net error | 1.13 | 4 | 0.283 3 | |||
总离差Total dispersion | 30.91 | 16 | ||||
R2=0.956 2 |
表3 回归模型方差分析
Table 3 Analysis of variance of regression model
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | 提取率Extraction rate | |
---|---|---|---|---|---|---|
P值 P value | 显著性 Significance | |||||
模型Modle | 29.56 | 9 | 3.28 | 16.99 | 0.000 6 | ** |
A酶添加量Enzyme addition amount | 0.321 6 | 1 | 0.321 6 | 1.66 | 0.238 1 | |
B酶解时间Enzymatic hydrolysis time | 1.48 | 1 | 1.48 | 7.66 | 0.027 8 | * |
C超声功率Ultrasonic power | 1.38 | 1 | 1.38 | 7.16 | 0.031 7 | * |
AB | 0.180 5 | 1 | 0.180 5 | 0.934 0 | 0.366 0 | |
AC | 0.016 5 | 1 | 0.016 5 | 0.085 2 | 0.778 8 | |
BC | 0.000 1 | 1 | 0.000 1 | 0.000 4 | 0.984 4 | |
A2 | 3.62 | 1 | 3.62 | 18.72 | 0.003 5 | * |
B2 | 4.69 | 1 | 4.69 | 24.24 | 0.001 7 | * |
C2 | 15.49 | 1 | 15.49 | 80.12 | <0.000 1 | ** |
残差Residual error | 1.35 | 7 | 0.193 3 | |||
失拟项Lack of fit | 0.219 9 | 3 | 0.073 3 | 0.258 7 | 0.852 2 | 不显著 |
Not significant | ||||||
净误差Net error | 1.13 | 4 | 0.283 3 | |||
总离差Total dispersion | 30.91 | 16 | ||||
R2=0.956 2 |
图3 瓯柑果渣、可溶性膳食纤维和不溶性膳食纤维的扫描电镜图分析 A,600倍镜下果渣粉;B,2 000倍镜下果渣粉;C,600倍镜下的可溶性膳食纤维;D,2 000倍镜下的可溶性膳食纤维;E,600倍镜下的不溶性膳食纤维;F,2 000倍镜下的不溶性膳食纤维。
Fig.3 SEM analysis of Ougan pomace, soluble dietary fiber and insoluble dietary fiber A, Ougan pomace at 600×; B, Ougan pomace at 2 000×; C, Soluble dietary fiber at 600×; D, Soluble dietary fiber at 2 000×; E, Insoluble dietary fiber at 600×; F, Insoluble dietary fiber at 2 000×.
材料 Material | 持水力 Water holding capacity/ (g·g-1) | 膨胀力 Expandability/ (mL·g-1) | 持油力 Oil holding capacity/ (g·g-1) |
---|---|---|---|
SDF | 25.63±0.23 a | 10.08±0.11 a | 4.41±0.21 b |
IDF | 15.20±0.42 b | 7.56±0.24 b | 10.27±0.47 a |
瓯柑果渣 | 12.74±0.26 c | 1.67±0.05 c | 3.94±0.28 b |
Ougan pomace |
表4 瓯柑果渣膳食纤维的理化性质分析
Table 4 Analyses of physicochemical properties and functional characteristics of dietary fibers from Ougan pomace
材料 Material | 持水力 Water holding capacity/ (g·g-1) | 膨胀力 Expandability/ (mL·g-1) | 持油力 Oil holding capacity/ (g·g-1) |
---|---|---|---|
SDF | 25.63±0.23 a | 10.08±0.11 a | 4.41±0.21 b |
IDF | 15.20±0.42 b | 7.56±0.24 b | 10.27±0.47 a |
瓯柑果渣 | 12.74±0.26 c | 1.67±0.05 c | 3.94±0.28 b |
Ougan pomace |
图4 瓯柑膳食纤维的葡萄糖透析延迟指数 SDF,可溶性膳食纤维;IDF,不溶性膳食纤维。柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.4 Glucose dialysis retardation index of dietary fibers from Ougan pomace SDF, Soluble dietary fiber; IDF, Insoluble dietary fiber. The bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
[1] | 张温翔. 温州市瓯海区瓯柑产业发展研究[D]. 南昌: 江西农业大学, 2023. |
ZHANG W X. Research on the development of Ou citrus industry in Ouhai District, Wenzhou City[D]. Nanchang: Jiangxi Agricultural University, 2023. (in Chinese with English abstract) | |
[2] | 刘洵, 王阳光, 夏其乐, 等. 瓯柑功能性成分利用现状及深加工研究进展[J]. 食品与机械, 2022, 38(12): 226-231. |
LIU X, WANG Y G, XIA Q L, et al. Research progress on utilization status and deep processing of functional components of Ougan Citrus[J]. Food & Machinery, 2022, 38(12): 226-231. (in Chinese with English abstract) | |
[3] | 杨学嘉. 晚清至民国温州瓯柑运销体制的转变[D]. 上海: 华东师范大学, 2019. |
YANG X J. Transformation of transportation and marketing system of Ougan (Citrus suavissima Hort. ex Tanaka) from late Qing dynasty to the Republic of China in Wenzhou[D]. Shanghai: East China Normal University, 2019. (in Chinese with English abstract) | |
[4] | 联合国粮食及农业组织, 世界卫生组织. 营养标识准则: CXG2—1985[S]. 1985. |
[5] | WEN J J, LI M Z, HU J L, et al. Different dietary fibers unequally remodel gut microbiota and charge up anti-obesity effects[J]. Food Hydrocolloids, 2023, 140: 108617. |
[6] | GE Y F, WEI C H, RAJAVEL ARUMUGAM U, et al. Quinoa bran insoluble dietary fiber-zinc chelate mediates intestinal flora structure to regulate glucose and lipid metabolism in obese rats[J]. Journal of Functional Foods, 2023, 108: 105765. |
[7] | SIDDIQUI H, SULTAN Z, YOUSUF O, et al. A review of the health benefits, functional properties, and ultrasound-assisted dietary fiber extraction[J]. Bioactive Carbohydrates and Dietary Fibre, 2023, 30: 100356. |
[8] | BAI X L, HE Y, QUAN B Y, et al. Physicochemical properties, structure, and ameliorative effects of insoluble dietary fiber from tea on slow transit constipation[J]. Food Chemistry: X, 2022, 14: 100340. |
[9] | XIE L, ALAM M J, MARQUES F Z, et al. A major mechanism for immunomodulation: dietary fibres and acid metabolites[J]. Seminars in Immunology, 2023, 66: 101737. |
[10] | GARCIA-AMEZQUITA L E, TEJADA-ORTIGOZA V, SERNA-SALDIVAR S O, et al. Dietary fiber concentrates from fruit and vegetable by-products: processing, modification, and application as functional ingredients[J]. Food and Bioprocess Technology, 2018, 11(8): 1439-1463. |
[11] | 周永升, 莫小群, 张文婷, 等. 超声辅助纤维素酶法制备蔗叶膳食纤维及其理化特性分析[J]. 中国饲料, 2022(22): 107-113. |
ZHOU Y S, MO X Q, ZHANG W T, et al. Ultrasonic-assisted cellulase preparation of dietary fiber from sugarcane leaves and its physicochemical properties[J]. China Feed, 2022(22): 107-113. (in Chinese with English abstract) | |
[12] | 黎素玲, 滕聪, 刘金阁, 等. 条斑紫菜可溶性膳食纤维的理化性质及体外生物活性研究[J]. 食品安全质量检测学报, 2023, 14(22): 9-18. |
LI S L, TENG C, LIU J G, et al. Study on the physicochemical properties and in vitro biological activities of soluble dietary fiber from Porphyra yezoensis[J]. Journal of Food Safety & Quality, 2023, 14(22): 9-18. (in Chinese with English abstract) | |
[13] | 宫春宇, 廉雅雯, 于洋, 等. 玉米须不溶性膳食纤维分析及其对面包品质和消化特性的影响研究[J]. 中国调味品, 2024, 49(1): 67-73. |
GONG C Y, LIAN Y W, YU Y, et al. Analysis of corn silk insoluble dietary fiber and its effects on quality and digestion characteristics of bread[J]. China Condiment, 2024, 49(1): 67-73. (in Chinese with English abstract) | |
[14] | 刘东杰, 周心雨, 王锋, 等. 麻竹笋壳不溶性膳食纤维理化特性及其体外酵解对肠道微生物的影响[J]. 食品研究与开发, 2023, 44(24): 23-29, 45. |
LIU D J, ZHOU X Y, WANG F, et al. Physicochemical properties of insoluble dietary fiber from bamboo shoot shells and effects of its in vitro fermentation on intestinal microorganism[J]. Food Research and Development, 2023, 44(24): 23-29, 45. (in Chinese with English abstract) | |
[15] | 沈康, 郭瑞成, 徐天旭, 等. DEAE-52纤维素柱层析纯化处理对西梅可溶性膳食纤维的影响[J]. 食品与发酵工业, 2024, 50(17): 209-217. |
SHEN K, GUO R C, XU T X, et al. Effect of DEAE-52 cellulose column chromatography on soluble dietary fiber of prune[J]. Food and Fermentation Industries, 2024, 50(17): 209-217. (in Chinese with English abstract) | |
[16] | 陈贵婷, 石凯欣, 张珮珮, 等. 不同品种柑橘皮渣膳食纤维构效关系比较[J]. 食品科学, 2023, 44(17): 20-28. |
CHEN G T, SHI K X, ZHANG P P, et al. Comparative study on the structure-activity relationship of dietary fiber from different varieties of Citrus peel and pomace[J]. Food Science, 2023, 44(17): 20-28. (in Chinese with English abstract) | |
[17] | 赵宇楠, 贾丹丹, 蔡丹, 等. 食用菌发酵对人参不溶性膳食纤维结构及功能特性的影响[J]. 食品科学, 2023, 44(22): 80-88. |
ZHAO Y N, JIA D D, CAI D, et al. Effect of edible fungal fermentation on structure and functional properties of ginseng insoluble dietary fiber[J]. Food Science, 2023, 44(22): 80-88. (in Chinese with English abstract) | |
[18] | 张倩, 王佩瑶, 王子成, 等. 碱性过氧化氢处理对藕渣不溶性膳食纤维结构及功能特性的影响[J]. 中国食品学报, 2024, 24(2): 53-61. |
ZHANG Q, WANG P Y, WANG Z C, et al. Effect of alkaline hydrogen peroxide treatment on structure and functional properties of insoluble dietary fiber from lotus root residue[J]. Journal of Chinese Institute of Food Science and Technology, 2024, 24(2): 53-61. (in Chinese with English abstract) | |
[19] | 段振. 石榴皮不溶性膳食纤维的提取、体外降血脂活性研究及咀嚼片制备[D]. 西安: 陕西师范大学, 2018. |
DUAN Z. Extraction of insoluble dietary fiber from pomegranate peel, study on its in vitro lipid-lowering activity, and preparation of chewable tablets[D]. Xi’an: Shaanxi Normal University, 2018. (in Chinese with English abstract) | |
[20] | 池玉闽, 董怡, 何强, 等. 油橄榄果肉和核壳中膳食纤维的功能特性分析[J]. 现代食品科技, 2023, 39(5): 157-163. |
CHI Y M, DONG Y, HE Q, et al. Analysis of the functional properties of dietary fibers from olive pulp and kernel shell[J]. Modern Food Science and Technology, 2023, 39(5): 157-163. (in Chinese with English abstract) | |
[21] | 高一帆, 李若思, 吉莉, 等. 超声波辅助纤维素酶提取黄瓜皮色素工艺研究[J]. 食品研究与开发, 2022, 43(11): 142-147. |
GAO Y F, LI R S, JI L, et al. Study on ultrasonic-assisted cellulase extraction of pigment from cucumber peel[J]. Food Research and Development, 2022, 43(11): 142-147. (in Chinese with English abstract) | |
[22] | 卜智斌, 曾劲, 禹淞文, 等. 超声辅助复合酶法提取马蹄渣不溶性膳食纤维工艺优化及品质对比[J]. 现代食品科技, 2023, 39(7): 177-183. |
BU Z B, ZENG J, YU S W, et al. Process optimization for ultrasound-assisted composite enzymatic extraction of insoluble dietary fiber from water chestnut dregs and quality comparison[J]. Modern Food Science and Technology, 2023, 39(7): 177-183. (in Chinese with English abstract) | |
[23] | 李晗, 杨宗玲, 毕永雪, 等. 超声辅助酶法提取西番莲果皮可溶性膳食纤维及理化性质[J]. 食品工业科技, 2020, 41(7): 161-165. |
LI H, YANG Z L, BI Y X, et al. Extraction of soluble dietary fiber from Passiflora edulis peel by ultrasonic assisted enzymatic method and its physicochemical properties[J]. Science and Technology of Food Industry, 2020, 41(7): 161-165. (in Chinese with English abstract) | |
[24] | ZHANG S S, XU X L, CAO X, et al. The structural characteristics of dietary fibers from Tremella fuciformis and their hypolipidemic effects in mice[J]. Food Science and Human Wellness, 2023, 12(2): 503-511. |
[25] | LIU H F, ZENG X Y, HUANG J Y, et al. Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo[J]. Carbohydrate Polymers, 2021, 252: 117186. |
[26] | 何雅静, 陈珊珊, 孙志高. 柑橘皮渣膳食纤维的特性及其在食品中的应用[J]. 食品工业科技, 2021, 42(19): 436-442. |
HE Y J, CHEN S S, SUN Z G. Characteristics of Citrus peel dietary fiber and its application in food[J]. Science and Technology of Food Industry, 2021, 42(19): 436-442. (in Chinese with English abstract) | |
[27] | 王梦阳. 香蕉皮膳食纤维的理化性质及其降血糖效果的研究[D]. 合肥: 合肥工业大学, 2022. |
WANG M Y. Study on the physicochemical properties of banana peel dietary fiber and its hypoglycemic effect[D]. Hefei: Hefei University of Technology, 2022. (in Chinese with English abstract) | |
[28] | 种俸亭, 黄子珍, 滕建文, 等. 百香果皮体外抑制葡萄糖吸收、抗氧化及调节高血糖大鼠肠道菌群结构的作用[J]. 食品科学, 2021, 42(5): 193-200. |
CHONG F T, HUANG Z Z, TENG J W, et al. Antioxidant effect of passion fruit peel and its effect on inhibiting glucose absorption in vitro and regulating intestinal microflora structure in hyperglycemic rats[J]. Food Science, 2021, 42(5): 193-200. (in Chinese with English abstract) | |
[29] | 柏婷梅. 四种麦类膳食纤维结构与体外功能的对比研究[D]. 雅安: 四川农业大学, 2020. |
BAI T M. Comparative study on the structure and in vitro function of dietary fiber from four types of wheat[D]. Ya’an: Sichuan Agricultural University, 2020. (in Chinese with English abstract) | |
[30] | 张馨月, 张民, 邓梅, 等. 三种食物来源膳食纤维的理化性质与功能特性比较[J]. 现代食品科技, 2024, 40(1): 102-111. |
ZHANG X Y, ZHANG M, DENG M, et al. Comparison of the physicochemical properties and functional properties of insoluble dietary fiber from three food sources[J]. Modern Food Science and Technology, 2024, 40(1): 102-111. (in Chinese with English abstract) | |
[31] | 符旭栋. 柠檬皮渣膳食纤维制备及生物改性研究[D]. 重庆: 西南大学, 2022. |
FU X D. Preparation and biomodification of dietary fiber from lemon peel residue[D]. Chongqing: Southwest University, 2022. (in Chinese with English abstract) |
[1] | 范琳娟, 吴彩云, 徐雪亮, 刘子荣, 姚健, 康宏波, 胡平华, 姚英娟. 两种杀线虫剂处理对山药土壤线虫群落和理化性质的影响[J]. 浙江农业学报, 2024, 36(5): 1102-1112. |
[2] | 高虎, 穆晓国, 李海俊, 高富成, 张莹, 李建设, 叶林. 粉垄耕作对坝地土壤特性及甘蓝产量的影响[J]. 浙江农业学报, 2024, 36(5): 1113-1123. |
[3] | 张翰生, 昌秦湘, 康建忠, 梁宗锁. 核桃的营养价值及其开发利用研究进展[J]. 浙江农业学报, 2024, 36(4): 905-919. |
[4] | 侯栋, 李亚莉, 岳宏忠, 张东琴, 姚拓, 黄书超, 杨海兴. 微生物菌肥替代部分化肥对花椰菜产量、品质及土壤微生物的影响[J]. 浙江农业学报, 2024, 36(3): 589-599. |
[5] | 杨乐, 李文杨, 骆建莉, 郑伟, 张毕阳, 王震, 阎腾飞. 地膜覆盖和自然生草对桃园土壤养分、pH及水热的影响[J]. 浙江农业学报, 2024, 36(12): 2719-2726. |
[6] | 徐洋, 任奕林, 王浩杰, 黄秋航, 邢博源, 曹红亮. 不同制备条件下油菜秸秆生物炭用作缓释载体的综合评价[J]. 浙江农业学报, 2023, 35(4): 893-902. |
[7] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[8] | 宋碧清, 杨晓东, 郑昀晔, 王国平, 徐盛春, 赵燕, 赵珊珊, 马宇轩, 李素娟. 不同烟草品种烟籽油理化性质及脂肪酸和挥发性成分评价[J]. 浙江农业学报, 2022, 34(6): 1152-1161. |
[9] | 李文略, 骆霞虹, 柳婷婷, 金关荣, 葛亚英, 陈常理, 安霞. 不同类型向日葵籽粒的理化性质[J]. 浙江农业学报, 2022, 34(4): 671-677. |
[10] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[11] | 杨晓盼, 刘丽莉, 黄正迪, 李媛媛, 郝威铭, 张孟军, 史胜娟. 常温贮藏期间鸡蛋清流变特性和蛋白质成分的变化[J]. 浙江农业学报, 2021, 33(3): 526-533. |
[12] | 杨颖, 唐伟敏, 陆胜民. 加工条件对细菌纤维素凝胶理化性质的影响[J]. 浙江农业学报, 2018, 30(4): 661-665. |
[13] | 徐多多, 王海洋, 孙濛濛, 韩苗苗, 赵鑫, 高其品. 平菇等六种食用真菌糖蛋白的理化性质及对顺铂诱导肾细胞损伤恢复的作用[J]. 浙江农业学报, 2016, 28(9): 1538-1543. |
[14] | 刘岳贞, 陈倩倩, 陈晓旸, 洪春来, 陈林童, 鲁建江. 棉渣堆肥过程理化性质变化及腐熟度评价[J]. 浙江农业学报, 2016, 28(10): 1764-1771. |
[15] | 于明含;孙保平 . 广西平果县退耕还林土壤环境效应及生态效益价值估算[J]. , 2012, 24(1): 0-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||