浙江农业学报 ›› 2024, Vol. 36 ›› Issue (5): 1113-1123.DOI: 10.3969/j.issn.1004-1524.20230165
高虎(), 穆晓国, 李海俊, 高富成, 张莹, 李建设, 叶林*(
)
收稿日期:
2023-02-14
出版日期:
2024-05-25
发布日期:
2024-05-29
作者简介:
高虎(1997—),男,陕西榆林人,硕士研究生,主要从事设施园艺与蔬菜逆境生理生态研究。E-mail: 1085202806@qq.com
通讯作者:
* 叶林,E-mail:yelin.3993@163.com
基金资助:
GAO Hu(), MU Xiaoguo, LI Haijun, GAO Fucheng, ZHANG Ying, LI Jianshe, YE Lin*(
)
Received:
2023-02-14
Online:
2024-05-25
Published:
2024-05-29
摘要:
为揭示粉垄耕作对坝地土壤特性和甘蓝产量的影响,设置平畦旋耕、平畦粉垄30 cm、平畦粉垄40 cm、起垄旋耕、起垄粉垄30 cm和起垄粉垄40 cm共6个处理,测定不同处理对土壤理化性质、酶活性、甘蓝品质与产量的影响。结果显示,在0~20、>20~40 cm土层,与平畦旋耕处理相比,起垄粉垄40 cm处理显著(P<0.05)降低了土壤容重,降幅分别为4.14%、11.45%;显著提高了土壤孔隙度,增幅分别为2.38、5.12百分点;显著降低了土壤pH值(pH值分别下降0.25、0.20)和电导率(降幅分别为25.98%和28.20%);显著提高了土壤的有机质(增幅分别为25.34%、34.57%)、碱解氮(增幅分别为37.89%、18.57%)、速效钾(增幅分别为31.64%、24.64%)、总氮(增幅分别为38.24%、46.67%)、总磷(增幅分别为44.44%、72.22%)含量;显著增强了土壤脲酶(增幅分别为40.06%、166.97%)、过氧化氢酶(增幅分别为25.92%、19.23%)、转化酶(增幅分别为24.01%、50.84%)、碱性磷酸酶(增幅分别为66.67%、26.58%)的活性。与平畦旋耕处理相比,起垄粉垄40 cm处理的甘蓝硝酸盐含量显著降低23.54%,可溶性糖、维生素C、可溶性蛋白质含量分别显著增加34.42%、21.69%、49.39%,单株球重和产量分别显著增加14.50%、13.59%。综上,起垄粉垄40 cm的耕作方式改善了坝地土壤的理化性质,提高了土壤养分含量,激发了土壤酶活性,提升了甘蓝的品质和产量,是本试验条件下的最佳耕作方式。
中图分类号:
高虎, 穆晓国, 李海俊, 高富成, 张莹, 李建设, 叶林. 粉垄耕作对坝地土壤特性及甘蓝产量的影响[J]. 浙江农业学报, 2024, 36(5): 1113-1123.
GAO Hu, MU Xiaoguo, LI Haijun, GAO Fucheng, ZHANG Ying, LI Jianshe, YE Lin. Effect of Fenlong tillage on soil characteristics and cabbage yield in dam land[J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1113-1123.
SL/cm | BD/ (g·cm-3) | EC/ (μS·cm-1) | OM/ (g·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) | TN/ (g·kg-1) | TP/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|
0~20 | 1.45 | 317 | 12.15 | 32.68 | 68.12 | 91.53 | 0.72 | 0.54 |
>20~40 | 1.56 | 375 | 11.86 | 30.47 | 28.88 | 65.25 | 0.55 | 0.22 |
表1 试验区耕层土壤的主要理化性质
Table 1 Main physical and chemical properties of topsoil in the test area
SL/cm | BD/ (g·cm-3) | EC/ (μS·cm-1) | OM/ (g·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) | TN/ (g·kg-1) | TP/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|
0~20 | 1.45 | 317 | 12.15 | 32.68 | 68.12 | 91.53 | 0.72 | 0.54 |
>20~40 | 1.56 | 375 | 11.86 | 30.47 | 28.88 | 65.25 | 0.55 | 0.22 |
处理 Treatment | 土层 Soil depth/cm | 土壤三相比例Ratio of three phases in soil/% | STPSD | GSSI | 容重 Bulk density/ (g·cm-3) | 孔隙度 Porosity/% | ||
---|---|---|---|---|---|---|---|---|
气相 Gas phase | 液相 Liquid phase | 固相 Solid phase | ||||||
T1 | 0~20 | 27.59± 0.34 a | 14.55± 0.38 c | 57.86± 0.52 a | 20.72± 0.86 a | 92.20± 0.66 d | 1.45± 0.01 a | 42.14± 0.52 d |
>20~40 | 22.52± 1.01 e | 19.23± 1.06 a | 58.25± 0.09 a | 19.43± 0.43 a | 95.96± 0.51 b | 1.57± 0.01 a | 41.75± 0.09 d | |
T2 | 0~20 | 24.49± 0.62 b | 19.04± 0.57 b | 56.47± 0.06 cd | 16.79± 0.12 c | 96.99± 0.27 bc | 1.45± 0.01 a | 43.53± 0.06 ab |
>20~40 | 24.40± 0.09 de | 18.49± 0.12 a | 57.10± 0.03 b | 17.91± 0.09 b | 96.47± 0.09 b | 1.52± 0.01 b | 42.90± 0.03 c | |
T3 | 0~20 | 20.73± 0.24 c | 22.53± 0.37 a | 56.75± 0.13 bc | 16.31± 0.27 cd | 97.50± 0.04 abc | 1.43± 0.01 b | 43.25± 0.13 bc |
>20~40 | 24.88± 0.04 cd | 19.64± 0.02 a | 55.49± 0.01 c | 15.04± 0.01 c | 97.74± 0.01 a | 1.50± 0.01 c | 44.51± 0.01 b | |
T4 | 0~20 | 22.67± 0.54 bc | 19.65± 0.54 ab | 57.68± 0.01 ab | 18.41± 0.15 b | 96.63± 0.14 c | 1.45± 0.01 a | 42.32± 0.01 cd |
>20~40 | 26.92± 0.18 bc | 17.70± 0.12 a | 55.37± 0.06 c | 15.66± 0.03 c | 96.43± 0.09 b | 1.52± 0.01 b | 44.63± 0.06 b | |
T5 | 0~20 | 21.32± 1.08 c | 22.62± 1.13 a | 56.06± 0.05 cd | 15.27± 0.23 de | 97.77± 0.22 ab | 1.37± 0.01 d | 43.94± 0.05 ab |
>20~40 | 27.79± 0.18 ab | 15.34± 0.13 b | 56.87± 0.07 b | 18.96± 0.07 a | 93.55± 0.15 c | 1.48± 0.01 d | 43.13± 0.07 c | |
T6 | 0~20 | 22.50± 0.55 bc | 22.03± 0.53 ab | 55.48± 0.02 d | 14.36± 0.08 e | 98.34± 0.03 a | 1.39± 0.01 c | 44.52± 0.02 a |
>20~40 | 29.18± 0.19 a | 17.69± 0.11 a | 53.13± 0.30 d | 12.29± 0.53 d | 96.56± 0.09 b | 1.39± 0.01 e | 46.87± 0.30 a |
表2 不同处理对土壤物理性质的影响
Table 2 Effects of treatments on soil physical properties
处理 Treatment | 土层 Soil depth/cm | 土壤三相比例Ratio of three phases in soil/% | STPSD | GSSI | 容重 Bulk density/ (g·cm-3) | 孔隙度 Porosity/% | ||
---|---|---|---|---|---|---|---|---|
气相 Gas phase | 液相 Liquid phase | 固相 Solid phase | ||||||
T1 | 0~20 | 27.59± 0.34 a | 14.55± 0.38 c | 57.86± 0.52 a | 20.72± 0.86 a | 92.20± 0.66 d | 1.45± 0.01 a | 42.14± 0.52 d |
>20~40 | 22.52± 1.01 e | 19.23± 1.06 a | 58.25± 0.09 a | 19.43± 0.43 a | 95.96± 0.51 b | 1.57± 0.01 a | 41.75± 0.09 d | |
T2 | 0~20 | 24.49± 0.62 b | 19.04± 0.57 b | 56.47± 0.06 cd | 16.79± 0.12 c | 96.99± 0.27 bc | 1.45± 0.01 a | 43.53± 0.06 ab |
>20~40 | 24.40± 0.09 de | 18.49± 0.12 a | 57.10± 0.03 b | 17.91± 0.09 b | 96.47± 0.09 b | 1.52± 0.01 b | 42.90± 0.03 c | |
T3 | 0~20 | 20.73± 0.24 c | 22.53± 0.37 a | 56.75± 0.13 bc | 16.31± 0.27 cd | 97.50± 0.04 abc | 1.43± 0.01 b | 43.25± 0.13 bc |
>20~40 | 24.88± 0.04 cd | 19.64± 0.02 a | 55.49± 0.01 c | 15.04± 0.01 c | 97.74± 0.01 a | 1.50± 0.01 c | 44.51± 0.01 b | |
T4 | 0~20 | 22.67± 0.54 bc | 19.65± 0.54 ab | 57.68± 0.01 ab | 18.41± 0.15 b | 96.63± 0.14 c | 1.45± 0.01 a | 42.32± 0.01 cd |
>20~40 | 26.92± 0.18 bc | 17.70± 0.12 a | 55.37± 0.06 c | 15.66± 0.03 c | 96.43± 0.09 b | 1.52± 0.01 b | 44.63± 0.06 b | |
T5 | 0~20 | 21.32± 1.08 c | 22.62± 1.13 a | 56.06± 0.05 cd | 15.27± 0.23 de | 97.77± 0.22 ab | 1.37± 0.01 d | 43.94± 0.05 ab |
>20~40 | 27.79± 0.18 ab | 15.34± 0.13 b | 56.87± 0.07 b | 18.96± 0.07 a | 93.55± 0.15 c | 1.48± 0.01 d | 43.13± 0.07 c | |
T6 | 0~20 | 22.50± 0.55 bc | 22.03± 0.53 ab | 55.48± 0.02 d | 14.36± 0.08 e | 98.34± 0.03 a | 1.39± 0.01 c | 44.52± 0.02 a |
>20~40 | 29.18± 0.19 a | 17.69± 0.11 a | 53.13± 0.30 d | 12.29± 0.53 d | 96.56± 0.09 b | 1.39± 0.01 e | 46.87± 0.30 a |
处理 Treatment | 土层 Soil depth/cm | pH | EC/ (μS·cm-1) | OM/ (g·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) | TN/ (g·kg-1) | TP/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
T1 | 0~20 | 8.62± 0.01 a | 323.33± 5.84 a | 9.67± 0.01 d | 26.60± 0.16 c | 54.94± 4.59 c | 80.82± 1.26 d | 0.68± 0.01 d | 0.45± 0.01 d |
>20~40 | 8.52± 0.01 b | 393.67± 1.33 a | 9.69± 0.34 c | 28.65± 0.09 cd | 21.77± 2.69 c | 64.73± 0.23 c | 0.45± 0.01 c | 0.18± 0.01 c | |
T2 | 0~20 | 8.51± 0.01 b | 296.33± 2.91 b | 10.79± 0.02 c | 30.33± 1.17 b | 81.46± 0.56 b | 93.08± 1.83 bc | 0.81± 0.01 c | 0.50± 0.01 c |
>20~40 | 8.43± 0.01 c | 334.00± 0.58 c | 11.47± 0.08 b | 32.67± 0.61 ab | 53.24± 5.76 a | 73.04± 1.05 b | 0.57± 0.01 b | 0.25± 0.01 b | |
T3 | 0~20 | 8.33± 0.01 c | 244.67± 3.28 c | 11.27± 0.02 bc | 34.44± 0.16 a | 103.41± 1.04 a | 98.62± 0.86 ab | 0.91± 0.01 b | 0.65± 0.01 b |
>20~40 | 8.31± 0.01 d | 315.00± 2.08 d | 12.96± 0.16 a | 31.45± 0.25 b | 40.17± 0.63 b | 82.79± 1.26 a | 0.69± 0.01 a | 0.29± 0.01 a | |
T4 | 0~20 | 8.62± 0.01 a | 278.67± 3.53 b | 10.91± 0.07 c | 25.76± 0.43 c | 29.42± 1.04 d | 86.22± 1.13 cd | 0.69± 0.01 d | 0.48± 0.01 cd |
>20~40 | 8.58± 0.01 a | 355.00± 5.77 b | 10.45± 0.05 bc | 27.35± 0.80 d | 22.62± 0.97 c | 68.95± 0.26 bc | 0.43± 0.01 c | 0.19± 0.01 c | |
T5 | 0~20 | 8.50± 0.01 b | 290.67± 1.20 b | 11.78± 0.13 ab | 34.44± 0.74 a | 86.17± 0.35 b | 104.68± 2.51 a | 0.92± 0.01 ab | 0.74± 0.01 a |
>20~40 | 8.42± 0.01 c | 294.67± 3.84 e | 12.95± 0.35 a | 30.71± 0.41 bc | 28.19± 0.58 bc | 79.10± 1.13 a | 0.55± 0.01 b | 0.23± 0.00 b | |
T6 | 0~20 | 8.37± 0.03 c | 239.33± 4.63 c | 12.12± 0.35 a | 36.68± 0.16 a | 59.34± 0.28 c | 106.39± 2.53 a | 0.94± 0.01 a | 0.65± 0.01 b |
>20~40 | 8.32± 0.01 d | 282.67± 0.88 e | 13.04± 0.21 a | 33.97± 0.52 a | 27.34± 0.56 c | 80.68± 1.49 a | 0.66± 0.01 a | 0.31± 0.01 a |
表3 不同处理对土壤化学性质的影响
Table 3 Effects of treatments on soil chemical properties
处理 Treatment | 土层 Soil depth/cm | pH | EC/ (μS·cm-1) | OM/ (g·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) | TN/ (g·kg-1) | TP/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
T1 | 0~20 | 8.62± 0.01 a | 323.33± 5.84 a | 9.67± 0.01 d | 26.60± 0.16 c | 54.94± 4.59 c | 80.82± 1.26 d | 0.68± 0.01 d | 0.45± 0.01 d |
>20~40 | 8.52± 0.01 b | 393.67± 1.33 a | 9.69± 0.34 c | 28.65± 0.09 cd | 21.77± 2.69 c | 64.73± 0.23 c | 0.45± 0.01 c | 0.18± 0.01 c | |
T2 | 0~20 | 8.51± 0.01 b | 296.33± 2.91 b | 10.79± 0.02 c | 30.33± 1.17 b | 81.46± 0.56 b | 93.08± 1.83 bc | 0.81± 0.01 c | 0.50± 0.01 c |
>20~40 | 8.43± 0.01 c | 334.00± 0.58 c | 11.47± 0.08 b | 32.67± 0.61 ab | 53.24± 5.76 a | 73.04± 1.05 b | 0.57± 0.01 b | 0.25± 0.01 b | |
T3 | 0~20 | 8.33± 0.01 c | 244.67± 3.28 c | 11.27± 0.02 bc | 34.44± 0.16 a | 103.41± 1.04 a | 98.62± 0.86 ab | 0.91± 0.01 b | 0.65± 0.01 b |
>20~40 | 8.31± 0.01 d | 315.00± 2.08 d | 12.96± 0.16 a | 31.45± 0.25 b | 40.17± 0.63 b | 82.79± 1.26 a | 0.69± 0.01 a | 0.29± 0.01 a | |
T4 | 0~20 | 8.62± 0.01 a | 278.67± 3.53 b | 10.91± 0.07 c | 25.76± 0.43 c | 29.42± 1.04 d | 86.22± 1.13 cd | 0.69± 0.01 d | 0.48± 0.01 cd |
>20~40 | 8.58± 0.01 a | 355.00± 5.77 b | 10.45± 0.05 bc | 27.35± 0.80 d | 22.62± 0.97 c | 68.95± 0.26 bc | 0.43± 0.01 c | 0.19± 0.01 c | |
T5 | 0~20 | 8.50± 0.01 b | 290.67± 1.20 b | 11.78± 0.13 ab | 34.44± 0.74 a | 86.17± 0.35 b | 104.68± 2.51 a | 0.92± 0.01 ab | 0.74± 0.01 a |
>20~40 | 8.42± 0.01 c | 294.67± 3.84 e | 12.95± 0.35 a | 30.71± 0.41 bc | 28.19± 0.58 bc | 79.10± 1.13 a | 0.55± 0.01 b | 0.23± 0.00 b | |
T6 | 0~20 | 8.37± 0.03 c | 239.33± 4.63 c | 12.12± 0.35 a | 36.68± 0.16 a | 59.34± 0.28 c | 106.39± 2.53 a | 0.94± 0.01 a | 0.65± 0.01 b |
>20~40 | 8.32± 0.01 d | 282.67± 0.88 e | 13.04± 0.21 a | 33.97± 0.52 a | 27.34± 0.56 c | 80.68± 1.49 a | 0.66± 0.01 a | 0.31± 0.01 a |
处理 Treatment | 土层 Soil depth/cm | URE/ (mg·g-1) | CAT/ (mg·g-1) | IVN/ (mg·g-1) | AKP/ (mg·g-1) | SCL/ (mg·g-1) |
---|---|---|---|---|---|---|
T1 | 0~20 | 9.76±0.38 c | 0.27±0.01 d | 9.37±0.04 b | 0.84±0.02 c | 0.61±0.03 d |
>20~40 | 9.81±0.29 d | 0.26±0.01 d | 8.36±0.60 bc | 0.79±0.04 b | 0.63±0.01 b | |
T2 | 0~20 | 14.27±0.07 a | 0.31±0.01 b | 7.41±0.22 c | 1.43±0.02 ab | 0.78±0.02 bc |
>20~40 | 11.08±0.33 cd | 0.30±0.01 c | 8.41±0.11 bc | 1.01±0.03 a | 0.74±0.01 b | |
T3 | 0~20 | 12.62±0.07 ab | 0.33±0.01 a | 7.64±0.47 c | 1.52±0.01 a | 1.05±0.03 a |
>20~40 | 22.70±0.94 b | 0.33±0.01 a | 8.56±0.14 bc | 1.05±0.03 a | 0.91±0.01 a | |
T4 | 0~20 | 10.61±0.18 bc | 0.29±0.01 c | 8.72±0.18 bc | 0.94±0.02 c | 0.67±0.05 cd |
>20~40 | 10.34±0.45 d | 0.26±0.01 d | 9.25±0.16 b | 0.82±0.02 b | 0.67±0.02 b | |
T5 | 0~20 | 11.08±0.27 bc | 0.33±0.01 a | 9.05±0.32 bc | 1.33±0.02 b | 0.87±0.03 b |
>20~40 | 13.28±0.07 c | 0.30±0.01 c | 6.98±0.35 c | 1.12±0.05 a | 0.73±0.03 b | |
T6 | 0~20 | 13.67±0.43 a | 0.34±0.01 a | 11.62±0.47 a | 1.40±0.03 ab | 1.05±0.04 a |
>20~40 | 26.19±0.80 a | 0.31±0.01 b | 12.61±0.33 a | 1.00±0.02 a | 0.75±0.02 b |
表4 不同处理对土壤酶活性的影响
Table 4 Effects of treatments on soil enzymes activities
处理 Treatment | 土层 Soil depth/cm | URE/ (mg·g-1) | CAT/ (mg·g-1) | IVN/ (mg·g-1) | AKP/ (mg·g-1) | SCL/ (mg·g-1) |
---|---|---|---|---|---|---|
T1 | 0~20 | 9.76±0.38 c | 0.27±0.01 d | 9.37±0.04 b | 0.84±0.02 c | 0.61±0.03 d |
>20~40 | 9.81±0.29 d | 0.26±0.01 d | 8.36±0.60 bc | 0.79±0.04 b | 0.63±0.01 b | |
T2 | 0~20 | 14.27±0.07 a | 0.31±0.01 b | 7.41±0.22 c | 1.43±0.02 ab | 0.78±0.02 bc |
>20~40 | 11.08±0.33 cd | 0.30±0.01 c | 8.41±0.11 bc | 1.01±0.03 a | 0.74±0.01 b | |
T3 | 0~20 | 12.62±0.07 ab | 0.33±0.01 a | 7.64±0.47 c | 1.52±0.01 a | 1.05±0.03 a |
>20~40 | 22.70±0.94 b | 0.33±0.01 a | 8.56±0.14 bc | 1.05±0.03 a | 0.91±0.01 a | |
T4 | 0~20 | 10.61±0.18 bc | 0.29±0.01 c | 8.72±0.18 bc | 0.94±0.02 c | 0.67±0.05 cd |
>20~40 | 10.34±0.45 d | 0.26±0.01 d | 9.25±0.16 b | 0.82±0.02 b | 0.67±0.02 b | |
T5 | 0~20 | 11.08±0.27 bc | 0.33±0.01 a | 9.05±0.32 bc | 1.33±0.02 b | 0.87±0.03 b |
>20~40 | 13.28±0.07 c | 0.30±0.01 c | 6.98±0.35 c | 1.12±0.05 a | 0.73±0.03 b | |
T6 | 0~20 | 13.67±0.43 a | 0.34±0.01 a | 11.62±0.47 a | 1.40±0.03 ab | 1.05±0.04 a |
>20~40 | 26.19±0.80 a | 0.31±0.01 b | 12.61±0.33 a | 1.00±0.02 a | 0.75±0.02 b |
处理 Treatment | 硝酸盐含量 Nitrate content/ (mg·kg-1) | 可溶性糖含量 Soluble sugar content/% | 维生素C含量 Vitamin C content/ (mg·kg-1) | 可溶性蛋白质含量 Soluble protein content/(mg·g-1) |
---|---|---|---|---|
T1 | 68.83±1.23 ab | 6.45±0.08 c | 477.7±6.5 cd | 4.13±0.08 b |
T2 | 64.87±1.33 b | 6.25±0.07 c | 523.8±10.3 bc | 4.56±0.16 b |
T3 | 54.32±0.68 c | 7.85±0.12 b | 529.0±12.4 b | 5.57±0.17 a |
T4 | 72.14±1.93 a | 6.58±0.09 c | 462.6±15.7 d | 2.90±0.34 c |
T5 | 57.93±0.97 c | 6.48±0.22 c | 518.4±6.2 bc | 4.48±0.09 b |
T6 | 52.63±0.46 c | 8.67±0.06 a | 581.3±4.1 a | 6.17±0.19 a |
表5 不同处理对甘蓝品质的影响
Table 5 Effects of treatments on cabbage quality
处理 Treatment | 硝酸盐含量 Nitrate content/ (mg·kg-1) | 可溶性糖含量 Soluble sugar content/% | 维生素C含量 Vitamin C content/ (mg·kg-1) | 可溶性蛋白质含量 Soluble protein content/(mg·g-1) |
---|---|---|---|---|
T1 | 68.83±1.23 ab | 6.45±0.08 c | 477.7±6.5 cd | 4.13±0.08 b |
T2 | 64.87±1.33 b | 6.25±0.07 c | 523.8±10.3 bc | 4.56±0.16 b |
T3 | 54.32±0.68 c | 7.85±0.12 b | 529.0±12.4 b | 5.57±0.17 a |
T4 | 72.14±1.93 a | 6.58±0.09 c | 462.6±15.7 d | 2.90±0.34 c |
T5 | 57.93±0.97 c | 6.48±0.22 c | 518.4±6.2 bc | 4.48±0.09 b |
T6 | 52.63±0.46 c | 8.67±0.06 a | 581.3±4.1 a | 6.17±0.19 a |
处理 Treatment | 单株球重 Leafy head weight per plant/kg | 紧实度 Compactness/ (g·cm-3) | 球形指数 Leafy head index | 中心柱长 Central length/cm | 产量 Yield/ (t·hm-2) |
---|---|---|---|---|---|
T1 | 1.31±0.03 c | 0.54±0.04 a | 0.90±0.01 b | 4.93±0.15 a | 8.61±0.05 d |
T2 | 1.30±0.01 c | 0.66±0.04 a | 0.93±0.02 b | 5.33±0.29 a | 8.77±0.01 c |
T3 | 1.41±0.01 b | 0.67±0.04 a | 0.95±0.01 b | 5.73±0.29 a | 9.17±0.04 b |
T4 | 1.36±0.04 bc | 0.58±0.04 a | 1.04±0.02 a | 5.37±0.03 a | 8.58±0.04 d |
T5 | 1.40±0.03 b | 0.68±0.05 a | 0.98±0.01 ab | 5.50±0.35 a | 9.18±0.04 b |
T6 | 1.50±0.01 a | 0.67±0.04 a | 0.95±0.01 b | 5.67±0.20 a | 9.78±0.05 a |
表6 不同处理对甘蓝产量的影响
Table 6 Effects of treatments on cabbage yield
处理 Treatment | 单株球重 Leafy head weight per plant/kg | 紧实度 Compactness/ (g·cm-3) | 球形指数 Leafy head index | 中心柱长 Central length/cm | 产量 Yield/ (t·hm-2) |
---|---|---|---|---|---|
T1 | 1.31±0.03 c | 0.54±0.04 a | 0.90±0.01 b | 4.93±0.15 a | 8.61±0.05 d |
T2 | 1.30±0.01 c | 0.66±0.04 a | 0.93±0.02 b | 5.33±0.29 a | 8.77±0.01 c |
T3 | 1.41±0.01 b | 0.67±0.04 a | 0.95±0.01 b | 5.73±0.29 a | 9.17±0.04 b |
T4 | 1.36±0.04 bc | 0.58±0.04 a | 1.04±0.02 a | 5.37±0.03 a | 8.58±0.04 d |
T5 | 1.40±0.03 b | 0.68±0.05 a | 0.98±0.01 ab | 5.50±0.35 a | 9.18±0.04 b |
T6 | 1.50±0.01 a | 0.67±0.04 a | 0.95±0.01 b | 5.67±0.20 a | 9.78±0.05 a |
[1] | 戴忠良, 侯喜林, 潘跃平. 结球甘蓝种质资源主要品质性状的研究[J]. 上海农业学报, 2007, 23(1): 44-47. |
DAI Z L, HOU X L, PAN Y P. The main qualitative characters of 19 common head cabbage materials[J]. Acta Agriculturae Shanghai, 2007, 23(1): 44-47. (in Chinese with English abstract) | |
[2] | 艾开开. 化害为利:黄土高原淤地坝旱作农业系统探析[J]. 水土保持研究, 2022, 29(5): 404-410. |
AI K K. Turning a disadvantage into an advantage: an analysis of dry farming system of warping dams in the loess plateau[J]. Research of Soil and Water Conservation, 2022, 29(5): 404-410. (in Chinese with English abstract) | |
[3] | 袁和第, 信忠保, 侯健, 等. 黄土高原丘陵沟壑区典型小流域水土流失治理模式[J]. 生态学报, 2021, 41(16): 6398-6416. |
YUAN H D, XIN Z B, HOU J, et al. Models of soil and water conservation in the loess hilly region of China[J]. Acta Ecologica Sinica, 2021, 41(16): 6398-6416. (in Chinese with English abstract) | |
[4] | 李荣, 王艳丽, 吴鹏年, 等. 宁南旱区沟垄覆盖改善土壤水热状况提高马铃薯产量[J]. 农业工程学报, 2017, 33(10): 168-175. |
LI R, WANG Y L, WU P N, et al. Ridge and furrow mulching improving soil water-temperature condition and increasing potato yield in dry-farming areas of South Ningxia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 168-175. (in Chinese with English abstract) | |
[5] | 吴春晓, 高小峰, 闫本帅, 等. 长期施肥对黄土高原梯田土壤养分特征和微生物资源限制的影响[J]. 环境科学, 2022, 43(1): 521-529. |
WU C X, GAO X F, YAN B S, et al. Effects of long-term fertilization on soil nutrient characteristics and microbial resource restrictions in a terrace on the Loess Plateau[J]. Environmental Science, 2022, 43(1): 521-529. (in Chinese with English abstract) | |
[6] | 李娜, 龙静泓, 韩晓增, 等. 短期翻耕和有机物还田对东北暗棕壤物理性质和玉米产量的影响[J]. 农业工程学报, 2021, 37(12): 99-107. |
LI N, LONG J H, HAN X Z, et al. Effects of short-term plowing and organic amendments on soil physical properties and maize yield in dark brown soil in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 99-107. (in Chinese with English abstract) | |
[7] | 韦本辉, 申章佑, 甘秀芹, 等. 粉垄栽培对旱地作物产量品质的影响[J]. 中国农业科技导报, 2012, 14(4): 101-105. |
WEI B H, SHEN Z Y, GAN X Q, et al. Effects of Fenlong cultivation on yield and quality of dryland crops[J]. Journal of Agricultural Science and Technology, 2012, 14(4): 101-105. (in Chinese with English abstract) | |
[8] | 陈仕林, 胡钧铭, 黄忠华, 等. 粉垄耕作对平地和坡耕地蔗田土壤有机碳矿化和结构的影响[J]. 中国农业气象, 2020, 41(5): 299-307. |
CHEN S L, HU J M, HUANG Z H, et al. Effects of smash ridging on soil organic carbon mineralization and structure of sugarcane field in flat and slope farmland[J]. Chinese Journal of Agrometeorology, 2020, 41(5): 299-307. (in Chinese with English abstract) | |
[9] | 张玉玲, 张玉龙, 黄毅, 等. 辽西半干旱地区深松中耕对土壤养分及玉米产量的影响[J]. 干旱地区农业研究, 2009, 27(4): 167-170. |
ZHANG Y L, ZHANG Y L, HUANG Y, et al. Effect of deep loosening cultivation on soil nutrients and corn yield in semiarid region of Western Liaoning Province[J]. Agricultural Research in the Arid Areas, 2009, 27(4): 167-170. (in Chinese with English abstract) | |
[10] | 焦彩强, 王益权, 刘军, 等. 关中地区耕作方法与土壤紧实度时空变异及其效应分析[J]. 干旱地区农业研究, 2009, 27(3): 7-12. |
JIAO C Q, WANG Y Q, LIU J, et al. Spatial-temporal variability of soil hardness and effect of soil hardness on other soil properties in rotary tillage in Guanzhong farmland[J]. Agricultural Research in the Arid Areas, 2009, 27(3): 7-12. (in Chinese with English abstract) | |
[11] | 熊梓沁, 荊永锋, 贺非, 等. 粉垄深度对稻作烟区土壤理化特性及作物周年产量的影响[J]. 中国烟草学报, 2021, 27(3): 46-55. |
XIONG Z Q, JING Y F, HE F, et al. Effect of ridge depth on soil physicochemical and annual crop yield in rice growing tobacco area[J]. Acta Tabacaria Sinica, 2021, 27(3): 46-55. (in Chinese with English abstract) | |
[12] | KUMAR S, SAINI S K, BHATNAGAR A, et al. Impact of subsoiling and preparatory tillage on productivity of sugarcane (Saccharum officinarum) and soil physico-chemical properties in sugarcane plant-ratoon cropping system[J]. Indian Journal of Agricultural Sciences, 2013, 83(10):1003-1008. (in Chinese with English abstract) |
[13] | ZHANG D J, HAO X G, FAN Z, et al. Optimizing tillage and fertilization patterns to improve soil physical properties, NUE and economic benefits of wheat-maize crop rotation systems[J]. Agriculture, 2022, 12(8): 1264. |
[14] | 高伟, 张俊, 郝西, 等. 粉垄耕作对土壤物理性状及花生根系的影响[J]. 花生学报, 2021, 50(4): 67-71. |
GAO W, ZHANG J, HAO X, et al. Effect of smash-ridging on soil physical properties and peanut growth[J]. Journal of Peanut Science, 2021, 50(4): 67-71. (in Chinese with English abstract) | |
[15] | 申章佑, 李艳英, 周佳, 等. 粉垄耕作下减施肥料对木薯产量品质的影响初探[J]. 中国土壤与肥料, 2022(2): 99-105. |
SHEN Z Y, LI Y Y, ZHOU J, et al. Effect of fertilizer reduction on cassava yield and quality under Fenlong tillage[J]. Soil and Fertilizer Sciences in China, 2022(2): 99-105. (in Chinese with English abstract) | |
[16] | 白玉龙, 马忠明, 薛亮. 栽培模式对旱地嫁接西瓜生长、产量和品质的影响[J]. 干旱地区农业研究, 2013, 31(6): 39-43. |
BAI Y L, MA Z M, XUE L. Effects of cultivation practices on growth, yield and quality of dryland grafted watermelon[J]. Agricultural Research in the Arid Areas, 2013, 31(6): 39-43. (in Chinese with English abstract) | |
[17] | 梁玉刚, 胡文彬, 刘烨, 等. 中国垄作栽培模式的研究进展[J]. 生态学杂志, 2022, 41(7): 1414-1422. |
LIANG Y G, HU W B, LIU Y, et al. The research progress of ridge cultivation mode in China[J]. Chinese Journal of Ecology, 2022, 41(7): 1414-1422. (in Chinese with English abstract) | |
[18] | 陈娇, 黄召存, 熊瑛, 等. 西南紫色土丘陵区不同耕作方式对土壤水热条件、有机碳含量及蚕豆产量的影响[J]. 干旱地区农业研究, 2018, 36(4): 67-73. |
CHEN J, HUANG Z C, XIONG Y, et al. Effects of different tillage modes on soil hydrothermal condition, organic carbon content and broad bean yield in purple soil hilly region of Southwest China[J]. Agricultural Research in the Arid Areas, 2018, 36(4): 67-73. (in Chinese with English abstract) | |
[19] | 成欣, 杜娟, 谢小玉, 等. 保护性耕作措施对轮作蚕豆碳氮积累及产量的影响[J]. 干旱地区农业研究, 2021, 39(5): 160-168. |
CHENG X, DU J, XIE X Y, et al. Effects of conservation cultivation measures on carbon nitrogen accumulation and yield of rotation broad bean[J]. Agricultural Research in the Arid Areas, 2021, 39(5): 160-168. (in Chinese with English abstract) | |
[20] | 靳乐乐, 乔匀周, 董宝娣, 等. 起垄覆膜栽培技术的增产增效作用与发展[J]. 中国生态农业学报(中英文), 2019, 27(9): 1364-1374. |
JIN L L, QIAO Y Z, DONG B D, et al. Crop yield increasing and efficiency improving effects and development of technology of ridge-furrow cultivation with plastic film mulching[J]. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1364-1374. (in Chinese with English abstract) | |
[21] | 杨世梅, 王世余, 严宗山, 等. 设施条件下不同黄沙栽培模式对番茄生长、产量和品质的影响[J]. 北方园艺, 2021(13): 25-29. |
YANG S M, WANG S Y, YAN Z S, et al. Effects of different cultivation patterns of yellow sand on growth, yield and quality of tomato in greenhouse[J]. Northern Horticulture, 2021(13): 25-29. (in Chinese with English abstract) | |
[22] | 王凯博, 陈怡平, 郑太波, 等. 施肥、起垄和品种对黄土高原新造耕地马铃薯氮磷钾吸收与分配的影响[J]. 干旱地区农业研究, 2022, 40(2): 144-152. |
WANG K B, CHEN Y P, ZHENG T B, et al. Effects of fertilization, ridging and variety on absorption and allocation of nitrogen, phosphorus, and potassium in newly cultivated potato on the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2022, 40(2): 144-152. (in Chinese with English abstract) | |
[23] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[24] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[25] | 阿不都卡地尔·库尔班, 郑峰, 潘竟海, 等. 深松深度对甜菜生长发育及产量和产糖量的调控[J]. 干旱地区农业研究, 2021, 39(5): 178-185. |
ABDUKADIER K, ZHENG F, PAN J H, et al. Regulation of subsoiling on growth, development, yield and sugar yield of sugarbeet[J]. Agricultural Research in the Arid Areas, 2021, 39(5): 178-185. (in Chinese with English abstract) | |
[26] | 谢孟林, 查丽, 郭萍, 等. 垄作覆膜对川中丘区土壤物理性状和春玉米产量的影响[J]. 干旱地区农业研究, 2017, 35(2): 31-38. |
XIE M L, ZHA L, GUO P, et al. Effects of different ridging and mulching measures on soil physical properties and yield of spring maize in hilly area of central Sichuan Basin[J]. Agricultural Research in the Arid Areas, 2017, 35(2): 31-38. (in Chinese with English abstract) | |
[27] | 任晓月, 陈彦云, 梁新华. 粉垄耕作对宁夏银北盐碱地土壤养分及玉米产量的影响[J]. 西南农业学报, 2022, 35(5): 1063-1068. |
REN X Y, CHEN Y Y, LIANG X H. Effect of Fenlong tillage on soil nutrients and maize yield in saline land of Ningxia Yinbei irrigation area[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(5): 1063-1068. (in Chinese with English abstract) | |
[28] | 万琪慧, 马黎华, 蒋先军. 垄作免耕对水稻根系特性和氮磷钾养分累积的影响[J]. 草业学报, 2019, 28(10): 44-52. |
WAN Q H, MA L H, JIANG X J. Root characteristics and accumulation of nitrogen, phosphorus, and potassium in rice plants cultivated under three different systems[J]. Acta Prataculturae Sinica, 2019, 28(10): 44-52. (in Chinese with English abstract) | |
[29] | 管赛赛, 于晓娜, 李志鹏, 等. 起垄方式和垄间覆盖物互作对坡地烟田土壤理化性状及烤烟经济性状的影响[J]. 西南农业学报, 2016, 29(7): 1573-1578. |
GUAN S S, YU X N, LI Z P, et al. Effects of ridging method and ridge covering interaction on soil physicochemical property of slope tobacco field and economic characters of flue-cured tobacco[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(7): 1573-1578. (in Chinese with English abstract) | |
[30] | WEI B H, GAN X Q, LI Y Y, et al. Effects of once Fenlong cultivation on soil properties and rice yield and quality for 7 consecutive years[J]. Agricultural Science & Technology, 2017, 18(12): 2365-2371. |
[31] | 李浩, 黄金玲, 李志刚, 等. 粉垄耕作提高土壤养分有效性并促进甘蔗维管组织发育和养分吸收[J]. 植物营养与肥料学报, 2021, 27(2): 204-214. |
LI H, HUANG J L, LI Z G, et al. Fenlong tillage increase soil nutrient availability, and benefit vascular tissue structure and nutrient absorption of sugarcane[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 204-214. (in Chinese with English abstract) | |
[32] | JI B, HU H, ZHAO Y L, et al. Effects of deep tillage and straw returning on soil microorganism and enzyme activities[J]. Scientific World Journal, 2014, 12(5):35-43. |
[33] | 陈彦云, 夏皖豫, 赵辉, 等. 粉垄耕作对耕地土壤酶活性、微生物群落结构和功能多样性的影响[J]. 生态学报, 2022, 42(12): 5009-5021. |
CHEN Y Y, XIA W Y, ZHAO H, et al. Effects of deep vertical rotary tillage on soil enzyme activity, microbial community structure and functional diversity of cultivated land[J]. Acta Ecologica Sinica, 2022, 42(12): 5009-5021. (in Chinese with English abstract) | |
[34] | 张万锋, 杨树青, 娄帅, 等. 耕作方式与秸秆覆盖对夏玉米根系分布及产量的影响[J]. 农业工程学报, 2020, 36(7): 117-124. |
ZHANG W F, YANG S Q, LOU S, et al. Effects of tillage methods and straw mulching on the root distribution and yield of summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 117-124. (in Chinese with English abstract) | |
[35] | 陆阳, 韩小龙, 王乐. 滴灌条件下不同垄规格对土壤水盐分布及番茄产量的影响[J]. 安徽农业科学, 2018, 46(33): 108-110. |
LU Y, HAN X L, WANG L. Effects of different ridge sizes on distribution of soil water-salt and tomato yield under drip irrigation[J]. Journal of Anhui Agricultural Sciences, 2018, 46(33): 108-110. (in Chinese with English abstract) | |
[36] | 李宝石, 刘文科, 李宗耕, 等. 起垄高度对日光温室土垄内嵌式基质栽培甜椒根区温热及产量的影响[J]. 中国农业气象, 2020, 41(1): 16-23. |
LI B S, LIU W K, LI Z G, et al. Effects of ridge height on root zone temperature and yield of soil-ridged substrate-embedded cultivation sweet pepper in Chinese solar greenhouse[J]. Chinese Journal of Agrometeorology, 2020, 41(1): 16-23. (in Chinese with English abstract) | |
[37] | 王立革, 焦晓燕, 韩雄, 等. 起垄高度对设施土壤温度、黄瓜根系生长及产量的影响[J]. 山西农业科学, 2015, 43(11): 1450-1453. |
WANG L G, JIAO X Y, HAN X, et al. Effects of ridge height on root growth and yield of cucumber and the soil temperature in the greenhouse[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(11): 1450-1453. (in Chinese with English abstract) | |
[38] | NIE S W, EGRINYA E A, HU S M, et al. Smash-ridging tillage increases wheat yield and yield components in the Huai-He valley, China[J]. Journal of Food Agriculture & Environment, 2013, 11(2):453-455. |
[39] | WU X, ZHANG Y, HE P Y, et al. Effects of tillage methods on senescence and grain filling characteristics of Tartary buckwheat[J]. Zemdirbyste-Agriculture, 2020, 107: 301-308. |
[40] | 张邦彦, 何文寿, 李惠霞, 等. 粉垄与覆膜对宁南旱区土壤物理性状及马铃薯产量的影响[J]. 干旱地区农业研究, 2022, 40(2): 27-37. |
ZHANG B Y, HE W S, LI H X, et al. Effects of deep vertically rotary tillage and film mulching on soil physical properties and potato yield in the arid area of Southern Ningxia[J]. Agricultural Research in the Arid Areas, 2022, 40(2): 27-37. (in Chinese with English abstract) |
[1] | 范琳娟, 吴彩云, 徐雪亮, 刘子荣, 姚健, 康宏波, 胡平华, 姚英娟. 两种杀线虫剂处理对山药土壤线虫群落和理化性质的影响[J]. 浙江农业学报, 2024, 36(5): 1102-1112. |
[2] | 侯栋, 李亚莉, 岳宏忠, 张东琴, 姚拓, 黄书超, 杨海兴. 微生物菌肥替代部分化肥对花椰菜产量、品质及土壤微生物的影响[J]. 浙江农业学报, 2024, 36(3): 589-599. |
[3] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[4] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||