浙江农业学报 ›› 2023, Vol. 35 ›› Issue (3): 647-657.DOI: 10.3969/j.issn.1004-1524.2023.03.18
肖小兰1(), 张浩1, 付传僡2, 刘皓1, 阮文权1,*(
)
收稿日期:
2022-03-15
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
*阮文权,E-mail: wqruan@jiangnan.edu.cn
作者简介:
肖小兰(1986—),女,江西吉安人,博士,助理研究员,主要从事固体废弃物资源化利用研究。E-mail: 516140212@qq.com
基金资助:
XIAO Xiaolan1(), ZHANG Hao1, FU Chuanhui2, LIU Hao1, RUAN Wenquan1,*(
)
Received:
2022-03-15
Online:
2023-03-25
Published:
2023-04-07
摘要:
于餐厨有机浆液厌氧沼渣和黑水虻虫粪共堆肥的高温期筛选嗜热菌,通过酶活分析,优选能够高效降解有机物的菌株复配成嗜热菌剂进行接种,考查接种嗜热菌剂后沼渣和虫粪共堆肥的效果。结果表明,本研究共筛选得到4株细菌和4株真菌,其中,属于地衣芽孢杆菌(Bacillus licheniformis)和空气芽孢杆菌(Bacillus aerius)的细菌菌株具有较高的糖化酶、纤维素酶、漆酶、脲酶、蛋白酶和木聚糖酶活性,属于疏绵状嗜热丝孢菌(Thermomyces lanuginosus)和烟曲霉(Aspergillus fumigatus)的真菌菌株具有较高的纤维素酶和漆酶活性。将上述4种菌株复配并接种于沼渣和虫粪共堆肥后,与不接种的空白组相比,高温期延长了2 d,有机质降解率、种子发芽指数、腐殖质含量和胡富比分别由12.09%、85.98%、107.95 g·kg-1、2.67提高到15.08%、90.77%、117.40 g·kg-1、3.01。此外,接种嗜热菌剂后,堆肥第5天的厚壁菌门(Firmicutes)和放线菌门(Actinobacteria)的相对丰度分别提高到76.84%和18.12%,而酵母菌目(Saccharomycetales)的相对丰度下降到1.70%。综上,接种嗜热菌剂可延长堆肥高温期,降低植物毒性,促进腐殖化进程,优化微生物群落结构,提高堆肥质量和效率。
中图分类号:
肖小兰, 张浩, 付传僡, 刘皓, 阮文权. 嗜热菌筛选及其促进沼渣和虫粪共堆肥的效果[J]. 浙江农业学报, 2023, 35(3): 647-657.
XIAO Xiaolan, ZHANG Hao, FU Chuanhui, LIU Hao, RUAN Wenquan. Screening thermophiles to promote co-composting of biogas residue and black soldier fly larval frass[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 647-657.
原料 Raw material | 含水率 Moisture content/% | 总碳 Total C/ (g·kg-1) | 总氮 Total N/ (g·kg-1) | C/N | pH | P2O5/ (g·kg-1) | K2O/ (g·kg-1) |
---|---|---|---|---|---|---|---|
沼渣Biogas residue | 89.16±0.52 | 274.4±4.8 | 40.7±1.0 | 6.52±0.01 | 8.51±0.12 | 68.6±2.4 | 40.6±2.6 |
虫粪Larval frass | 59.88±0.25 | 336.9±14.5 | 39.9±1.1 | 8.12±0.20 | 9.12±0.12 | 65.4±1.9 | 64.3±5.3 |
水稻秸秆Rice straw | 12.15±0.06 | 396.6±14.6 | 12.0±0.7 | 32.65±0.69 | — | 2.9±0.8 | 94.4±2.9 |
表1 堆肥原料的基础理化性质
Table 1 Basic properties of raw materials for composting
原料 Raw material | 含水率 Moisture content/% | 总碳 Total C/ (g·kg-1) | 总氮 Total N/ (g·kg-1) | C/N | pH | P2O5/ (g·kg-1) | K2O/ (g·kg-1) |
---|---|---|---|---|---|---|---|
沼渣Biogas residue | 89.16±0.52 | 274.4±4.8 | 40.7±1.0 | 6.52±0.01 | 8.51±0.12 | 68.6±2.4 | 40.6±2.6 |
虫粪Larval frass | 59.88±0.25 | 336.9±14.5 | 39.9±1.1 | 8.12±0.20 | 9.12±0.12 | 65.4±1.9 | 64.3±5.3 |
水稻秸秆Rice straw | 12.15±0.06 | 396.6±14.6 | 12.0±0.7 | 32.65±0.69 | — | 2.9±0.8 | 94.4±2.9 |
图4 堆肥过程中腐殖质(a)、富里酸(b)、胡敏酸(c)含量和胡富比(d)的变化
Fig.4 Dynamics of humic substance (a), fulvic aic (b), humic acid (c) contents and ration of humic acid to fluvic acid (HA/FA) (d) during composting
图5 堆肥原料(a)、空白组堆肥最终产品(b)、接种组堆肥最终产品(c)的三维荧光光谱 EX,激发波长;EM,发射波长。
Fig.5 Three dimensional fluorescence spectra raw material (a), final composting product in blank group(b) and final composting product in inoculation group (c) EX, Excitation wavelength; EM, Emission wavelength
图6 堆肥过程中门水平细菌(a)和目水平真菌(b)相对丰度的变化 B和I分别代表空白组和接种组;5、15和30分别代表第5、15、30天的堆肥样品。
Fig.6 Changes of relative abundance of bacteria at phylum level (a) and fungi at order level (b) during composting B and I represent the blank group and inoculation group, respectively. 5,15, 30 represent composting samples on 5, 15, 30 d, respectively.
[1] | 郝晓地, 周鹏, 曹达啓. 餐厨垃圾处置方式及其碳排放分析[J]. 环境工程学报, 2017, 11(2): 673-682. |
HAO X D, ZHOU P, CAO D Q. Analyses of disposal methods and carbon emissions of food wastes[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 673-682. (in Chinese with English abstract) | |
[2] | 梅彩虹. 餐厨垃圾固体处理与资源化利用分析[J]. 环境与发展, 2018, 30(10): 56. |
MEI C H. Analysis of solid waste treatment and resource utilization of kitchen waste[J]. Environment and Development, 2018, 30(10): 56. (in Chinese with English abstract) | |
[3] |
LIU C C, WANG C W, YAO H Y. Comprehensive resource utilization of waste using the black soldier fly (Hermetia illucens(L.)) (Diptera: Stratiomyidae)[J]. Animals: an Open Access Journal from MDPI, 2019, 9(6): 349.
DOI URL |
[4] |
BESKIN K V, et al. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions[J]. Waste Management, 2018, 74: 213-220.
DOI PMID |
[5] |
LIU N, HOU T, YIN H J, et al. Effects of amoxicillin on nitrogen transformation and bacterial community succession during aerobic composting[J]. Journal of Hazardous Materials, 2019, 362: 258-265.
DOI PMID |
[6] |
NAKASAKI K, ARAYA S, MIMOTO H, et al. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting[J]. Bioresource Technology, 2013, 144: 521-528.
DOI URL |
[7] | 李昌宁, 苏明, 姚拓, 等. 微生物菌剂对猪粪堆肥过程中堆肥理化性质和优势细菌群落的影响[J]. 植物营养与肥料学报, 2020, 26(9): 1600-1611. |
LI C N, SU M, YAO T, et al. Effects of microbial inoculation on compost physical and chemical properties and dominant bacterial communities during composting of pig manure[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1600-1611. (in Chinese with English abstract) | |
[8] | 钱玉婷, 杜静, 曹云, 等. 接种嗜热菌促进鸡粪超高温堆肥处理的效果[J]. 江苏农业科学, 2018, 46(23): 321-325. |
QIAN Y T, DU J, CAO Y, et al. Impact of inoculating thermophilic bacteria on promotion of hyperthermia composting of chicken manure[J]. Jiangsu Agricultural Sciences, 2018, 46(23): 321-325. (in Chinese) | |
[9] | 王玉, 张晶, 曹云, 等. 极端嗜热功能菌筛选及其促进堆肥腐熟效果研究[J]. 农业环境科学学报, 2020, 39(7): 1633-1642. |
WANG Y, ZHANG J, CAO Y, et al. Screening of functional extreme thermophiles and their effects on improving the maturation of composting[J]. Journal of Agro-Environment Science, 2020, 39(7): 1633-1642. (in Chinese with English abstract) | |
[10] | 马放, 冯玉杰, 任南琪. 环境生物技术[M]. 北京: 化学工业出版社, 2003. |
[11] | 徐谞, 王心怡, 王定一, 等. 接种高温芽孢杆菌促进堆肥腐熟研究[J]. 土壤通报, 2020, 51(5): 1134-1141. |
XU X, WANG X Y, WANG D Y, et al. Effects of inoculation of thermophiles Bacillus strains on composting efficiency[J]. Chinese Journal of Soil Science, 2020, 51(5): 1134-1141. (in Chinese with English abstract) | |
[12] |
XU J Q, JIANG Z W, LI M Q, et al. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting[J]. Journal of Environmental Management, 2019, 243: 240-249.
DOI PMID |
[13] |
ZHANG Z P, HU M, BIAN B, et al. Full-scale thermophilic aerobic co-composting of blue-green algae sludge with livestock faeces and straw[J]. Science of the Total Environment, 2021, 753: 142079.
DOI URL |
[14] |
白玲, 宋飞跃, 季蒙蒙, 等. 不同调理剂对秸秆沼渣堆肥的影响[J]. 浙江农业学报, 2020, 32(1): 124-133.
DOI |
BAI L, SONG F Y, JI M M, et al. Effects of different bulking agents on compost of straw biogas residue[J]. Acta Agriculturae Zhejiangensis, 2020, 32(1): 124-133. (in Chinese with English abstract)
DOI |
|
[15] |
WU J Q, ZHAO Y, ZHAO W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresource Technology, 2017, 226: 191-199.
DOI PMID |
[16] |
BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment: a review[J]. Bioresource Technology, 2009, 100(22): 5444-5453.
DOI URL |
[17] |
YU J, GU J, WANG X J, et al. Effects of inoculation with lignocellulose-degrading microorganisms on nitrogen conversion and denitrifying bacterial community during aerobic composting[J]. Bioresource Technology, 2020, 313: 123664.
DOI URL |
[18] |
TIQUIA S M, TAM N F Y. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge[J]. Bioresource Technology, 1998, 65(1/2): 43-49.
DOI URL |
[19] |
NAKHSHINIEV B, BIDDINIKA M K, GONZALES H B, et al. Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity[J]. Bioresource Technology, 2014, 151: 306-313.
DOI PMID |
[20] | WEI Y S, FAN Y B, WANG M J, et al. Composting and compost application in China[J]. Resources, Conservation and Recycling, 2000, 30(4): 277-300. |
[21] | INSAM H, DE BERTOLDI M. Microbiology of the composting process[J]. Waste Management Series, 2007, 8: 25-48. |
[22] |
ZMORA-NAHUM S, MARKOVITCH O, TARCHITZKY J, et al. Dissolved organic carbon (DOC) as a parameter of compost maturity[J]. Soil Biology and Biochemistry, 2005, 37(11): 2109-2116.
DOI URL |
[23] |
ZHU N, ZHU Y Y, KAN Z X, et al. Effects of two-stage microbial inoculation on organic carbon turnover and fungal community succession during co-composting of cattle manure and rice straw[J]. Bioresource Technology, 2021, 341: 125842.
DOI URL |
[24] | SENESI N, PLAZA C. Role of humification processes in recycling organic wastes of various nature and sources as soil amendments[J]. CLEAN:Soil, Air, Water, 2007, 35(1): 26-41. |
[25] | 李孟婵, 张鹤, 杨慧珍, 等. 不同原料好氧堆肥过程中碳转化特征及腐殖质组分的变化[J]. 干旱地区农业研究, 2019, 37(2): 81-87. |
LI M C, ZHANG H, YANG H Z, et al. Effects of different compost materials on carbon transformation and the change of humus during composting process[J]. Agricultural Research in the Arid Areas, 2019, 37(2): 81-87. (in Chinese with English abstract) | |
[26] |
LAOR Y, AVNIMELECH Y. Fractionation of compost-derived dissolved organic matter by flocculation process[J]. Organic Geochemistry, 2002, 33(3): 257-263.
DOI URL |
[27] |
ZHOU Y, SELVAM A, WONG J W C. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues[J]. Bioresource Technology, 2014, 168: 229-234.
DOI PMID |
[28] | 崔玉波, 孙红杰, 杨少华, 等. 污泥生态稳定化过程中的腐殖质变化特征[J]. 安全与环境学报, 2013, 13(3): 90-92. |
CUI Y B, SUN H J, YANG S H, et al. Changing humus features in the process of sewage sludge ecological stabilization[J]. Journal of Safety and Environment, 2013, 13(3): 90-92. (in Chinese with English abstract) | |
[29] |
WANG C, TU Q P, DONG D, et al. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting[J]. Journal of Hazardous Materials, 2014, 280: 409-416.
DOI PMID |
[30] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
DOI URL |
[31] | SONG C H, LI M X, XI B D, et al. Characterisation of dissolved organic matter extracted from the bio-oxidative phase of co-composting of biogas residues and livestock manure using spectroscopic techniques[J]. International Biodeterioration & Biodegradation, 2015, 103: 38-50. |
[32] |
KONG Z J, WANG X Q, WANG M M, et al. Bacterial ecosystem functioning in organic matter biodegradation of different composting at the thermophilic phase[J]. Bioresource Technology, 2020, 317: 123990.
DOI URL |
[33] |
ZHANG L L, LI L J, PAN X G, et al. Enhanced growth and activities of the dominant functional microbiota of chicken manure composts in the presence of maize straw[J]. Frontiers in Microbiology, 2018, 9: 1131.
DOI PMID |
[34] |
WANG C, DONG D, WANG H S, et al. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition[J]. Biotechnology for Biofuels, 2016, 9: 22.
DOI PMID |
[35] |
ZHANG L H, DONG H R, ZHANG J C, et al. Influence of FeONPs amendment on nitrogen conservation and microbial community succession during composting of agricultural waste: relative contributions of ammonia-oxidizing bacteria and Archaea to nitrogen conservation[J]. Bioresource Technology, 2019, 287: 121463.
DOI URL |
[1] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[2] | 李祥, 朱海霞. 杂草致病菌株GD-0221的分离、鉴定与除草潜力[J]. 浙江农业学报, 2022, 34(9): 1967-1975. |
[3] | 吕倩, 骆巧, 罗雪, 陈久兵, 马莉, 罗正中, 姚学萍, 余树民, 沈留红, 曹随忠. 基于高通量测序技术分析奶牛场垫沙和橡胶垫卧床中的菌群差异[J]. 浙江农业学报, 2022, 34(7): 1377-1385. |
[4] | 冯娟, 朱廷恒, 罗春萍, 杨佳玥, 祝思瑜, 李彤. 黄粉虫(Tenebrio molitor)肠道中聚乳酸塑料降解菌的筛选及其降解特性[J]. 浙江农业学报, 2022, 34(6): 1277-1287. |
[5] | 杜红, 李玉鹏, 程文, 肖荣英, 胡鹏. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
[6] | 孙文艳, 刘小刚, 张文慧, 李慧永, 吴朗, 杨启良, 熊国美. 基于根区土壤质量指数优化小粒种咖啡滴灌施肥方案[J]. 浙江农业学报, 2022, 34(3): 566-573. |
[7] | 唐晓山, 侯小琴, 孙力军, 房志家, 邓旗. 纳豆菌NT-6发酵患病畜禽肉骨粉制备微生物肥料[J]. 浙江农业学报, 2022, 34(3): 574-581. |
[8] | 袁文雅, 康益晨, 杨昕宇, 张茹艳, 周春涛, 王勇, 陈喜鹏, 余慧芳, 秦舒浩. 清水苜蓿土壤浸提液对连作马铃薯根际土壤环境酶活性和微生物群落的影响[J]. 浙江农业学报, 2022, 34(2): 240-247. |
[9] | 张鑫鹏, 王信, 孙健, 伊国云, 李松龄. 一株假单胞菌的分离鉴定及其在青海地区堆肥中的应用潜力[J]. 浙江农业学报, 2022, 34(2): 343-351. |
[10] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[11] | 马石霞, 摆倩文, 周魏, 马咸莹, 田攀, 蔡新东, 范思思, 王晓航, 马忠仁, 陈士恩, 孙娜, 丁功涛. 微生物除臭剂应用于畜禽养殖场的研究现状[J]. 浙江农业学报, 2021, 33(8): 1552-1564. |
[12] | 黄书超, 侯栋, 岳宏忠, 孔维萍, 张东琴, 李亚莉, 撖冬荣, 颉博杰. 三株促生菌及其混合微生物菌剂对莴笋生长和品质的影响[J]. 浙江农业学报, 2021, 33(7): 1212-1221. |
[13] | 刘丹丹, 孙宛玉, 王鹤. 三株降解阿特拉津菌株的特性与固定载体分析[J]. 浙江农业学报, 2021, 33(6): 1078-1087. |
[14] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[15] | 孙筱君, 沈琦, 吴逸飞, 姚晓红, 李园成, 孙宏, 王新, 汤江武, 葛向阳. 氨氮降解微生物的筛选和初步应用[J]. 浙江农业学报, 2020, 32(9): 1683-1691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||