浙江农业学报 ›› 2024, Vol. 36 ›› Issue (7): 1646-1656.DOI: 10.3969/j.issn.1004-1524.20230574
        
               		肖银润(
), 马吉平, 王赟萍, 王素贞, 钟国祥, 熊小文, 张诚*(
)
                  
        
        
        
        
    
收稿日期:2023-05-06
									
				
									
				
									
				
											出版日期:2024-07-25
									
				
											发布日期:2024-08-05
									
			作者简介:肖银润(1995—),男,湖南衡阳人,硕士研究生,研究方向为食用菌生态栽培与重金属污染防控。E-mail: 1447106591@qq.com
				
							通讯作者:
					*张诚,E-mail: 693871908@qq.com
							基金资助:
        
               		XIAO Yinrun(
), MA Jiping, WANG Yunping, WANG Suzhen, ZHONG Guoxiang, XIONG Xiaowen, ZHANG Cheng*(
)
			  
			
			
			
                
        
    
Received:2023-05-06
									
				
									
				
									
				
											Online:2024-07-25
									
				
											Published:2024-08-05
									
			摘要:
通过田间试验,以不添加钝化剂的处理为对照,研究添加0.5 kg·m-2的生石灰、钙镁磷肥和有机肥这3种钝化剂对土壤重金属有效态含量及六妹羊肚菌(Morchella sextelata)子实体重金含量的影响。结果表明,与CK相比,添加生石灰、钙镁磷肥和有机肥使羊肚菌子实体干重分别显著(P<0.05)增加1.04倍、1.46倍和44%;添加生石灰和钙镁磷肥还显著提高了土壤的pH。添加生石灰显著降低了土壤有效态Pb、Fe含量,以及羊肚菌子实体中的Cr、Cu含量,显著增加了土壤有效态Cr含量和羊肚菌子实体中的Mn含量。添加钙镁磷肥显著降低了土壤中的有效态Pb、Cu、Zn、Fe、Mn含量,显著增加了羊肚菌子实体中的Cu、Zn、Fe、Mn含量,且使羊肚菌中子实体中的Cr含量显著降低。添加有机肥能显著降低土壤中的有效态Cd、Pb、Fe含量和羊肚菌子实体中的Cd、Cr、Mn含量,显著增加土壤中的有效态Zn、Mn含量和羊肚菌子实体中的Zn含量。综合而言,生石灰、钙镁磷肥和有机肥对土壤中的重金属表现出钝化潜力,有助于减少羊肚菌子实体中非必需重金属(Cd、Pb、Cr)的积累。
中图分类号:
肖银润, 马吉平, 王赟萍, 王素贞, 钟国祥, 熊小文, 张诚. 三种钝化剂对土壤重金属和羊肚菌子实体重金属含量的影响[J]. 浙江农业学报, 2024, 36(7): 1646-1656.
XIAO Yinrun, MA Jiping, WANG Yunping, WANG Suzhen, ZHONG Guoxiang, XIONG Xiaowen, ZHANG Cheng. Effects of passivators on contents of heavy metals in soil and morel fruiting body[J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1646-1656.
																													图1 不同处理对土壤pH值和羊肚菌第一潮子实体干重的影响 柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.1 Effect of treatments on soil pH value and the dry weight of morel fruiting body Bars marked without the same letters indicate significant difference at P<0.05. The same as below.
																													图2 不同处理对土壤中有效态镉、铅、铬含量及羊肚菌子实体中镉、铅、铬含量的影响
Fig.2 Effect of treatments on the contents of available Cd, Pb, Cr in soil and Cd, Pb, Cr in fruiting body of morel
																													图3 不同处理对土壤中有效态铜、锌、铁、锰含量及羊肚菌子实体中铜、锌、铁、锰含量的影响
Fig.3 Effect of treatments on the contents of available Cu, Zn, Fe, Mn in soil and Cu, Zn, Fe, Mn in fruiting body of morel
																													图4 土壤中各重金属有效态含量和羊肚菌第一潮子实体中重金属含量的相关性 SCd,土壤有效态镉含量;SPb,土壤有效态铅含量;SCr,土壤有效态铬含量;SCu,土壤有效态铜含量;SZn,土壤有效态锌含量;SFe,土壤有效态铁含量;SMn,土壤有效态锰含量;MCd,羊肚菌镉含量;MPb,羊肚菌铅含量;MCr,羊肚菌铬含量;MCu,羊肚菌铜含量;MZn,羊肚菌锌含量;MFe,羊肚菌铁含量;MMn,羊肚菌锰含量。“*”和“**”分别表示在P<0.05和P<0.01水平上显著相关。
Fig.4 Correlations within the contents of available heavy metals in soil and heavy metals in the fruiting body of morel SCd, Available Cd content in soil; SPb, Available Pb content in soil; SCr, Available Cr content in soil; SCu, Available Cu content in soil; SZn, Available Zn content in soil; SFe, Available Fe content in soil; SMn, Available Mn content in soil; MCd, Cd content in morel; MPb, Pb content in morel; MCr, Cr content in morel; MCu, Cu content in morel; MZn, Zn content in morel; MFe, Fe content in morel; MMn, Mn content in morel. “*” and “**” indicate significant correlation at P<0.05 and P<0.01 level, respectively.
| [1] | SCHLECHT M T, SÄUMEL I. Wild growing mushrooms for the Edible City?: cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany[J]. Environmental Pollution, 2015, 204: 298-305. | 
| [2] | IGBIRI S, UDOWELLE N A, EKHATOR O C, et al. Edible mushrooms from Niger delta, Nigeria with heavy metal levels of public health concern: a human health risk assessment[J]. Recent Patents on Food, Nutrition & Agriculture, 2018, 9(1): 31-41. | 
| [3] | KOKKORIS V, MASSAS I, POLEMIS E, et al. Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece)[J]. The Science of the Total Environment, 2019, 685: 280-296. | 
| [4] | RONDA O, GRZADKA E, OSTOLSKA I, et al. Accumulation of radioisotopes and heavy metals in selected species of mushrooms[J]. Food Chemistry, 2022, 367: 130670. | 
| [5] | LIU H M, XU J J, LI X, et al. Effects of microelemental fertilizers on yields, mineral element levels and nutritional compositions of the artificially cultivated Morchella conica[J]. Scientia Horticulturae, 2015, 189: 86-93. | 
| [6] | HAO H B, ZHANG J J, WANG H, et al. Comparative transcriptome analysis reveals potential fruiting body formation mechanisms in Morchella importuna[J]. AMB Express, 2019, 9(1): 103. | 
| [7] | GURSOY N, SARIKURKCU C, CENGIZ M, et al. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species[J]. Food and Chemical Toxicology, 2009, 47(9): 2381-2388. | 
| [8] | STIHI C, GHEBOIANU A, RADULESCU C, et al. Studies concerning the accumulation of minerals and heavy metals in fruiting bodies of wild mushrooms[J]. AIP Conference Proceedings, 2011, 1387(1): 282-287. | 
| [9] | MOHAMMAD J, KHAN S, SHAH M T, et al. Essential and nonessential metal concentrations in morel mushroom (Morchella esculenta) in Dir-Kohistan, Pakistan[J]. Pakistan Journal of Botany, 2015, 47: 133-138. | 
| [10] | GEBRELIBANOS M, MEGERSA N, TADDESSE A M. Levels of essential and non-essential metals in edible mushrooms cultivated in Haramaya, Ethiopia[J]. International Journal of Food Contamination, 2016, 3(1): 1-12. | 
| [11] | WANG Y Z, TAN R H, ZHOU L, et al. Heavy metal fixation of lead-contaminated soil using Morchella mycelium[J]. Environmental Pollution, 2021, 289: 117829. | 
| [12] | LI N, FENG A X, LIU N, et al. Silicon application improved the yield and nutritional quality while reduced cadmium concentration in rice[J]. Environmental Science and Pollution Research, 2020, 27(16): 20370-20379. | 
| [13] | HE Y B, HUANG D Y, ZHU Q H, et al. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar[J]. Ecotoxicology and Environmental Safety, 2017, 136: 135-141. | 
| [14] | 黎红亮, 袁毳, 符云聪, 等. 钝化剂对中碱性农田土壤重金属镉及其在小麦中累积的影响[J]. 生态与农村环境学报, 2023, 39(2): 244-249. | 
| LI H L, YUAN C, FU Y C, et al. The effect of soil passivator on heavy metal cadmium in alkaline farmland soil and its accumulation in wheat[J]. Journal of Ecology and Rural Environment, 2023, 39(2): 244-249.(in Chinese with English abstract) | |
| [15] | 冯敬云, 聂新星, 刘波, 等. 镉污染农田原位钝化修复效果及其机理研究进展[J]. 农业资源与环境学报, 2021, 38(5): 764-777. | 
| FENG J Y, NIE X X, LIU B, et al. Efficiency of in situ passivation remediation in cadmium-contaminated farmland soil and its mechanism: a review[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 764-777.(in Chinese with English abstract) | |
| [16] | MEHMOOD S, IMTIAZ M, BASHIR S, et al. Leaching behavior of Pb and Cd and transformation of their speciation in co-contaminated soil receiving different passivators[J]. Environmental Engineering Science, 2019, 36(6): 749-759. | 
| [17] | BASHIR S, SHAABAN M, HUSSAIN Q, et al. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil[J]. Journal of Soils and Sediments, 2018, 18(9): 2948-2959. | 
| [18] | LI Z Y, CAO H, YUAN Y J, et al. Combined passivators regulate the heavy metal accumulation and antioxidant response of Brassica chinensis grown in multi-metal contaminated soils[J]. Environmental Science and Pollution Research International, 2021, 28(35): 49166-49178. | 
| [19] | FENG Y, YANG J J, LIU W, et al. Hydroxyapatite as a passivator for safe wheat production and its impacts on soil microbial communities in a Cd-contaminated alkaline soil[J]. Journal of Hazardous Materials, 2021, 404: 124005. | 
| [20] | DAMODARAN D, VIDYA SHETTY K, RAJ MOHAN B. Effect of chelaters on bioaccumulation of Cd (II), Cu (II), Cr (VI), Pb (II) and Zn (II) in Galerina vittiformis from soil[J]. International Biodeterioration & Biodegradation, 2013, 85: 182-188. | 
| [21] | HUANG Y, SHENG H, ZHOU P, et al. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109903. | 
| [22] | JIANG Y X, HU T, PENG O, et al. Responses of microbial community and soil enzyme to heavy metal passivators in cadmium contaminated paddy soils: an in situ field experiment[J]. International Biodeterioration & Biodegradation, 2021, 164: 105292. | 
| [23] | LIU H Y, GUO S S, JIA Z L, et al. Alleviating the toxicity of heavy metals by combined amendments in cultivated bag of Pleurotus cornucopiae[J]. Environmental Science and Pollution Research, 2015, 22(21): 17182-17191. | 
| [24] | 李仔密, 马渊浩, 刘萍, 等. 不同颜色地膜对羊肚菌生长发育的影响[J]. 食用菌学报, 2023, 30(3): 19-29. | 
| LI Z M, MA Y H, LIU P, et al. Effects of colored plastic mulches on growth and development of Morchella[J]. Acta Edulis Fungi, 2023, 30(3): 19-29.(in Chinese with English abstract) | |
| [25] | 尹卫, 梁健, 董全民, 等. 高原羊肚菌营养成分与栽培土壤养分相关性探讨[J]. 食用菌学报, 2023, 30(3): 39-49. | 
| YIN W, LIANG J, DONG Q M, et al. Correlation analysis of Morchella nutritional components and soil nutrients in plateau[J]. Acta Edulis Fungi, 2023, 30(3): 39-49.(in Chinese with English abstract) | |
| [26] | 宋肖琴, 陈国安, 马嘉伟, 等. 不同钝化剂对水稻田镉污染的修复效应[J]. 浙江农业科学, 2021, 62(3): 474-476. | 
| SONG X Q, CHEN G A, MA J W, et al. Effect of different passivation agents on remediation of cadmium contaminated paddy soil[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(3): 474-476.(in Chinese) | |
| [27] | GARCÍA M A, ALONSO J, MELGAR M J. Bioconcentration of chromium in edible mushrooms: influence of environmental and genetic factors[J]. Food and Chemical Toxicology, 2013, 58: 249-254. | 
| [28] | FANG Y, SUN X Y, YANG W J, et al. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China[J]. Food Chemistry, 2014, 147: 147-151. | 
| [29] | BELYKH E S, MAYSTRENKO T A, VELEGZHANINOV I O. Recent trends in enhancing the resistance of cultivated plants to heavy metal stress by transgenesis and transcriptional programming[J]. Molecular Biotechnology, 2019, 61(10): 725-741. | 
| [30] | ZHANG Y H, SA G, ZHANG Y N, et al. Paxillus involutus-facilitated Cd2+ influx through plasma membrane Ca2+-permeable channels is stimulated by H2O2 and H+-ATPase in ectomycorrhizal Populus×canescens under cadmium stress[J]. Frontiers in Plant Science, 2017, 7: 1975. | 
| [31] | PLAZA S, TEARALL K L, ZHAO F J, et al. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens[J]. Journal of Experimental Botany, 2007, 58(7): 1717-1728. | 
| [32] | FENG J J, JIA W T, LV S L, et al. Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes[J]. Plant Biotechnology Journal, 2018, 16(2): 558-571. | 
| [33] | HUANG Q Q, JIA Y, WAN Y N, et al. Market survey and risk assessment for trace metals in edible fungi and the substrate role in accumulation of heavy metals[J]. Journal of Food Science, 2015, 80(7): H1612-H1618. | 
| [34] | MURATI E, HRISTOVSKI S, KARADELEV M, et al. The impact of thermal power plant Oslomej (Kichevo valley, Macedonia) on heavy metal contents (Ni, Cu, Zn, Fe, Mn, Pb, Cd) in fruiting bodies of 15 species of wild fungi[J]. Air Quality, Atmosphere & Health, 2019, 12(3): 353-358. | 
| [35] | 胡洁, 周海燕, 刘成, 等. 无机有机钝化剂对土壤镉有效态及小白菜吸收镉的影响[J]. 工业安全与环保, 2018, 44(11): 91-95. | 
| HU J, ZHOU H Y, LIU C, et al. Effects of inorganic organic amendments on soil cadmium availability and cadmium uptake in pakchoi[J]. Industrial Safety and Environmental Protection, 2018, 44(11): 91-95.(in Chinese with English abstract) | |
| [36] | 骆文轩, 宋肖琴, 陈国安, 等. 田间施用石灰和有机肥对水稻吸收镉的影响[J]. 水土保持学报, 2020, 34(3): 232-237. | 
| LUO W X, SONG X Q, CHEN G A, et al. Effects of applying lime and organic fertilizer on cadmium uptake by rice[J]. Journal of Soil and Water Conservation, 2020, 34(3): 232-237.(in Chinese with English abstract) | |
| [37] | 苗秀荣, 来雪慧, 李梦茜, 等. 不同钝化剂对土壤有效态重金属含量及其在小白菜中累积的影响[J]. 河南农业科学, 2020, 49(8): 63-71. | 
| MIAO X R, LAI X H, LI M X, et al. Effects of different passivators on available heavy metal contents in soil and their accumulation in pakchoi[J]. Journal of Henan Agricultural Sciences, 2020, 49(8): 63-71.(in Chinese with English abstract) | |
| [38] | 张剑, 卢升高. 12种钝化剂在镉污染稻田上的应用效果对比[J]. 浙江农业科学, 2020, 61(12): 2527-2529. | 
| ZHANG J, LU S G. Comparison of remediation effect of cadmium contaminated paddy fields using 12 kinds of soil amendments[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(12): 2527-2529.(in Chinese) | |
| [39] | 朱奇宏, 黄道友, 刘国胜, 等. 改良剂对镉污染酸性水稻土的修复效应与机理研究[J]. 中国生态农业学报, 2010, 18(4): 847-851. | 
| ZHU Q H, HUANG D Y, LIU G S, et al. Effects and mechanisms of amendments on remediation of cadmium contaminated acid paddy soils[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 847-851.(in Chinese with English abstract) | |
| [40] | 殷飞, 王海娟, 李燕燕, 等. 不同钝化剂对重金属复合污染土壤的修复效应研究[J]. 农业环境科学学报, 2015, 34(3): 438-448. | 
| YIN F, WANG H J, LI Y Y, et al. Remediation of multiple heavy metal polluted soil using different immobilizing agents[J]. Journal of Agro-Environment Science, 2015, 34(3): 438-448.(in Chinese with English abstract) | |
| [41] | 杨金康, 朱利楠, 杨秋云, 等. 硅钙镁肥和改性腐殖酸对土壤镉形态和小麦镉积累的影响[J]. 生态与农村环境学报, 2021, 37(6): 808-816. | 
| YANG J K, ZHU L N, YANG Q Y, et al. Effects of silicon-calcium-magnesium fertilizer and modified humic acid on soil cadmium chemical fractions and accumulation in wheat[J]. Journal of Ecology and Rural Environment, 2021, 37(6): 808-816.(in Chinese with English abstract) | |
| [42] | 姚臻晖, 涂理达, 周慧平, 等. 稻田镉污染原位钝化修复及磷积累与迁移特征[J]. 中国环境科学, 2021, 41(5): 2374-2379. | 
| YAO Z H, TU L D, ZHOU H P, et al. In situ immobilization remediation of cadmium-contaminated paddy soil and the characteristics of phosphorus accumulation and movement in water-soil environment[J]. China Environmental Science, 2021, 41(5): 2374-2379.(in Chinese with English abstract) | |
| [43] | 吴曼, 徐明岗, 徐绍辉, 等. 有机质对红壤和黑土中外源铅镉稳定化过程的影响[J]. 农业环境科学学报, 2011, 30(3): 461-467. | 
| WU M, XU M G, XU S H, et al. Effects of organic matter on the stabilization process of added cadmium and lead in red soil and black soil[J]. Journal of Agro-Environment Science, 2011, 30(3): 461-467.(in Chinese with English abstract) | |
| [44] | 茹淑华, 侯利敏, 赵欧亚, 等. 钝化剂种类和添加比例对土壤镉钝化效果和小白菜吸收镉的影响[J]. 华北农学报, 2020, 35(S1): 274-281. | 
| RU S H, HOU L M, ZHAO O Y, et al. Effects of different types of amendment and addition rate on soil Cd availability and Cd uptake by Chinese cabbage[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(S1): 274-281.(in Chinese with English abstract) | |
| [45] | 张丽娜, 宗良纲, 沈振国. 有机肥和生态肥对土壤中镉行为以及水稻生长的影响[J]. 土壤通报, 2007, 38(6): 1182-1186. | 
| ZHANG L N, ZONG L G, SHEN Z G. Effects of organic fertilizer and ecological fertilizer on behaviors of cadmium and rice growth in Cd contaminated soil[J]. Chinese Journal of Soil Science, 2007, 38(6): 1182-1186.(in Chinese with English abstract) | |
| [46] | 李平, 王兴祥, 郎漫, 等. 改良剂对Cu、Cd污染土壤重金属形态转化的影响[J]. 中国环境科学, 2012, 32(7): 1241-1249. | 
| LI P, WANG X X, LANG M, et al. Effects of amendments on the fraction transform of heavy metals in soil contaminated by copper and cadmium[J]. China Environmental Science, 2012, 32(7): 1241-1249.(in Chinese with English abstract) | |
| [47] | KUZIEMSKA B, WYSOKIŃSKI A, JAREMKO D, et al. The content of some heavy metals in edible mushrooms[J]. Inżynieria Ekologiczna, 2018, 19(1): 66-70. | 
| [48] | WANG X M, LIU H G, ZHANG J, et al. Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China[J]. Journal of Environmental Science and Health, Part B, 2017, 52(3): 178-183. | 
| [1] | 罗阳兰, 黄丽玲, 黄世旅, 阎勇, 王灿琴. 羊肚菌WSJD-1的基质配方优化及其在广西地区的栽培技术[J]. 浙江农业学报, 2025, 37(9): 1881-1890. | 
| [2] | 吴菊, 杨飞, 吴国泉, 傅贤, 徐晨光. 砂培和土壤栽培对黄瓜生长、产量与品质的影响[J]. 浙江农业学报, 2025, 37(9): 1905-1913. | 
| [3] | 朱为静, 吴佳, 洪春来, 朱凤香, 洪磊东, 张涛, 张硕, 诸惠芬. 秸秆覆盖对土壤水热肥及蟠桃产量和品质的影响[J]. 浙江农业学报, 2025, 37(9): 1924-1932. | 
| [4] | 韦庆翠, 姜娜英, 沈骏扬, 张焕朝, 张衡锋. 化肥减量配施生物质炭对高沙土氮磷淋失及土壤性质的影响[J]. 浙江农业学报, 2025, 37(9): 1943-1950. | 
| [5] | 谭海霞, 彭红丽, 王连龙, 魏建梅. 马铃薯健康株与疮痂病株根区土壤微生物群落多样性差异分析[J]. 浙江农业学报, 2025, 37(8): 1743-1754. | 
| [6] | 高扬, 张瑜昕, 卜爱爱, 徐佳怡, 马嘉伟, 叶正钱, 柳丹, 方先芝. 基于改进的内梅罗综合指数法的浙江省典型“非粮化”土壤肥力质量评价[J]. 浙江农业学报, 2025, 37(8): 1755-1765. | 
| [7] | 严福林, 郎云虎, 简应权, 陈雄飞, 魏巍, 王志威, 安江勇, 任得强, 丁宁, 魏升华. 八爪金龙药材产量与品质对土壤理化性状的响应[J]. 浙江农业学报, 2025, 37(8): 1766-1775. | 
| [8] | 陈星星, 虞雯煊, 徐健炜, 张鹏. 裙带菜不同部位重金属含量特征分析及健康风险评估[J]. 浙江农业学报, 2025, 37(8): 1794-1804. | 
| [9] | 江振蓝, 陈付勋, 罗双飞, 罗烨琴, 沙晋明. 基于多光谱变换和主成分分析的土壤全铁含量随机森林模型反演[J]. 浙江农业学报, 2025, 37(7): 1521-1532. | 
| [10] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. | 
| [11] | 何昕昀, 邓碧纯, 胡清钰, 冯宏, 郭彦彪. 基于土壤溶液中硝态氮浓度的香蕉氮肥施用研究[J]. 浙江农业学报, 2025, 37(6): 1319-1326. | 
| [12] | 任宁, 俞国红, 郑航, 陈志东. 基于离散元法的茶园土壤参数标定[J]. 浙江农业学报, 2025, 37(6): 1353-1359. | 
| [13] | 卓文琪, 麻万诸, 卓志清, 朱康莹. 亚热带残积与坡积母质发育的低山林地土壤性状比较[J]. 浙江农业学报, 2025, 37(5): 1121-1129. | 
| [14] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. | 
| [15] | 朱哲毅, 施芳, 宁可, 郑姗. 政策激励对农户保护性耕作技术采纳行为的影响——基于要素质量和时间偏好的视角[J]. 浙江农业学报, 2025, 37(5): 1172-1181. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||