浙江农业学报 ›› 2025, Vol. 37 ›› Issue (5): 1172-1181.DOI: 10.3969/j.issn.1004-1524.20240385
收稿日期:
2024-04-27
出版日期:
2025-05-25
发布日期:
2025-06-11
作者简介:
朱哲毅(1990—),女,江苏南通人,博士,副教授,主要研究方向为农业经营制度与农村发展。E-mail: zzy_121121@163.com
通讯作者:
*郑姗,E-mail: 2019206017@stu.njau.edu.cn
基金资助:
ZHU Zheyi1,2(), SHI Fang1, NING Ke1,2, ZHENG Shan3,*(
)
Received:
2024-04-27
Online:
2025-05-25
Published:
2025-06-11
摘要:
采用保护性耕作技术被认为是缓解耕地质量退化的重要措施,但不同类型保护性耕作技术的扩散速度存在差异。该研究系统探讨了保护性耕作技术的效益,从要素质量和时间偏好视角,识别了政策补贴对农户保护性耕作技术采纳的影响机制,并在理论分析的基础上,利用在黑龙江、河南、四川和浙江4省调查的地块数据进行实证检验。结果表明,采纳保护性耕作技术能提高地块单产和土壤全氮含量;政策激励能提高农户采纳保护性耕作技术的概率,其激励作用随着土壤质量变差而增强、随着时间偏好减弱而减弱。因此,为提高我国耕地质量、保障粮食安全,建议结合土壤和农户特征完善公共政策,促进保护性耕作技术扩散。
中图分类号:
朱哲毅, 施芳, 宁可, 郑姗. 政策激励对农户保护性耕作技术采纳行为的影响——基于要素质量和时间偏好的视角[J]. 浙江农业学报, 2025, 37(5): 1172-1181.
ZHU Zheyi, SHI Fang, NING Ke, ZHENG Shan. Effect of policy incentives on farmer's adoption behavior of conservation tillage technologies: based on the perspectives of factor quality and time preference[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1172-1181.
变量 Variable | 符号 Symbol | 定义与说明 Definition and explanation | 样本量 Sample size | 平均值 Mean | 标准差 Standard deviation |
---|---|---|---|---|---|
单产Yield/(kg·hm-2) | E1 | 单位面积耕地的作物产量Yield per capita arable land | 1 475 | 837.25 | 217.71 |
N含量 N content/(g·kg-1) | E2 | 土壤全氮含量的自然对数值Natural logarithm value of total nitrogen content of soil | 732 | 0.92 | 0.24 |
P含量P content/(mg·kg-1) | E3 | 土壤速效磷含量的自然对数值Natural logarithm value of available phosphorus content of soil | 732 | 3.11 | 0.96 |
K含量K content/(mg·kg-1) | E4 | 土壤速效钾含量的自然对数值Natural logarithm value of available potassium content of soil | 732 | 5.02 | 0.62 |
保护性耕作技术采纳情况 Adoption of conservation tillage | B1 | 采纳,1;不采纳,0 Yes, 1; No, 0 | 1 475 | 0.64 | 0.48 |
深松技术采纳情况Adoption of subsoiling | B2 | 采纳,1;不采纳,0 Yes, 1; No, 0 | 1 475 | 0.09 | 0.28 |
秸秆还田技术采纳情况 Adoption of straw returning | B3 | 采纳,1;不采纳,0 Yes, 1; No, 0 | 1 475 | 0.63 | 0.48 |
保护性耕作技术补贴情况 Subsidy for conservation tillage | P1 | 有补贴,1;没有补贴,0 Yes, 1; No, 0 | 1 475 | 0.22 | 0.41 |
深松补贴情况Subsidies for subsoiling | P2 | 有补贴,1;没有补贴,0 Yes, 1; No, 0 | 1 475 | 0.04 | 0.21 |
秸秆还田补贴情况 Subsidy for straw returning | P3 | 有补贴,1;没有补贴,0 Yes, 1; No, 0 | 1 475 | 0.19 | 0.39 |
土壤质量Soil quality | M1 | 差,1;好,0 Bad, 1; Good, 0 | 1 475 | 0.07 | 0.26 |
时间偏好 Time preference | M2 | 规模户,1;小农户,0 Scale household, 1; Small household, 0 | 1 475 | 0.56 | 0.50 |
性别Gender | X1 | 女,0;男,1 Female, 0; Male, 1 | 1 475 | 0.97 | 0.18 |
年龄Age | X2 | 受访者的实际年龄Age of the interviewee | 1 475 | 56.01 | 10.86 |
健康情况Health | X3 | 好,0;差,1 Good, 0; Bad, 1 | 1 475 | 0.03 | 0.17 |
受教育年限Years of education/a | X4 | 受访者的受教育年限Years of education of the interviewee | 1 475 | 6.81 | 3.12 |
风险偏好 Risk preference | X5 | 0~1取值,数值越高,越偏好风险 The value range is 0 to 1. The higher the value, the more inclined the risk is | 1 475 | 0.38 | 0.41 |
家庭人口数量 Household population | X6 | 受访者家庭的人口数 Number of family members of the interviewee | 1 475 | 4.16 | 1.75 |
农业经验 Agricultural experience/a | X7 | 受访者从事农业生产的年限 Years of working in agricultural production of the interviewee | 1 475 | 32.37 | 13.88 |
参加农技培训次数 Participation in agricultural technology training | X8 | 受访者参加农技培训的次数 Participation times in agricultural technology training | 1 475 | 2.20 | 3.63 |
地块面积 Land area/hm2 | X9 | 受访者家庭的耕地面积 Cultivated area of the interviewed family | 1 475 | 0.89 | 2.43 |
离家距离 Distance between the plot and house/km | X10 | 地块离家的距离 Distance between the plot and home | 1 475 | 0.85 | 1.46 |
化肥使用量 Fertilizer application rate/(kg·hm-2) | X11 | 受访者的化肥施用量(折纯) Application rate (for pure) of fertilizers of the interviewee | 1 475 | 252.94 | 162.23 |
作物类型Crop type | X12 | 水稻,1;玉米,0 Rice, 1; corn,0 | 1 475 | 0.49 | 0.50 |
村人均纯收入 Per capita net income of the village/yuan | X13 | 受访者所在村人均纯收入的自然对数值 Natural logarithm value of per capita net income of the village of the interviewee | 1 475 | 9.07 | 0.64 |
到乡镇的距离 Distance to township/km | X14 | 所在村到其所属乡镇的距离 Distance from the village to its township | 1 475 | 2.47 | 2.36 |
表1 变量定义与描述性统计
Table 1 Definition and descriptive statistics of variables
变量 Variable | 符号 Symbol | 定义与说明 Definition and explanation | 样本量 Sample size | 平均值 Mean | 标准差 Standard deviation |
---|---|---|---|---|---|
单产Yield/(kg·hm-2) | E1 | 单位面积耕地的作物产量Yield per capita arable land | 1 475 | 837.25 | 217.71 |
N含量 N content/(g·kg-1) | E2 | 土壤全氮含量的自然对数值Natural logarithm value of total nitrogen content of soil | 732 | 0.92 | 0.24 |
P含量P content/(mg·kg-1) | E3 | 土壤速效磷含量的自然对数值Natural logarithm value of available phosphorus content of soil | 732 | 3.11 | 0.96 |
K含量K content/(mg·kg-1) | E4 | 土壤速效钾含量的自然对数值Natural logarithm value of available potassium content of soil | 732 | 5.02 | 0.62 |
保护性耕作技术采纳情况 Adoption of conservation tillage | B1 | 采纳,1;不采纳,0 Yes, 1; No, 0 | 1 475 | 0.64 | 0.48 |
深松技术采纳情况Adoption of subsoiling | B2 | 采纳,1;不采纳,0 Yes, 1; No, 0 | 1 475 | 0.09 | 0.28 |
秸秆还田技术采纳情况 Adoption of straw returning | B3 | 采纳,1;不采纳,0 Yes, 1; No, 0 | 1 475 | 0.63 | 0.48 |
保护性耕作技术补贴情况 Subsidy for conservation tillage | P1 | 有补贴,1;没有补贴,0 Yes, 1; No, 0 | 1 475 | 0.22 | 0.41 |
深松补贴情况Subsidies for subsoiling | P2 | 有补贴,1;没有补贴,0 Yes, 1; No, 0 | 1 475 | 0.04 | 0.21 |
秸秆还田补贴情况 Subsidy for straw returning | P3 | 有补贴,1;没有补贴,0 Yes, 1; No, 0 | 1 475 | 0.19 | 0.39 |
土壤质量Soil quality | M1 | 差,1;好,0 Bad, 1; Good, 0 | 1 475 | 0.07 | 0.26 |
时间偏好 Time preference | M2 | 规模户,1;小农户,0 Scale household, 1; Small household, 0 | 1 475 | 0.56 | 0.50 |
性别Gender | X1 | 女,0;男,1 Female, 0; Male, 1 | 1 475 | 0.97 | 0.18 |
年龄Age | X2 | 受访者的实际年龄Age of the interviewee | 1 475 | 56.01 | 10.86 |
健康情况Health | X3 | 好,0;差,1 Good, 0; Bad, 1 | 1 475 | 0.03 | 0.17 |
受教育年限Years of education/a | X4 | 受访者的受教育年限Years of education of the interviewee | 1 475 | 6.81 | 3.12 |
风险偏好 Risk preference | X5 | 0~1取值,数值越高,越偏好风险 The value range is 0 to 1. The higher the value, the more inclined the risk is | 1 475 | 0.38 | 0.41 |
家庭人口数量 Household population | X6 | 受访者家庭的人口数 Number of family members of the interviewee | 1 475 | 4.16 | 1.75 |
农业经验 Agricultural experience/a | X7 | 受访者从事农业生产的年限 Years of working in agricultural production of the interviewee | 1 475 | 32.37 | 13.88 |
参加农技培训次数 Participation in agricultural technology training | X8 | 受访者参加农技培训的次数 Participation times in agricultural technology training | 1 475 | 2.20 | 3.63 |
地块面积 Land area/hm2 | X9 | 受访者家庭的耕地面积 Cultivated area of the interviewed family | 1 475 | 0.89 | 2.43 |
离家距离 Distance between the plot and house/km | X10 | 地块离家的距离 Distance between the plot and home | 1 475 | 0.85 | 1.46 |
化肥使用量 Fertilizer application rate/(kg·hm-2) | X11 | 受访者的化肥施用量(折纯) Application rate (for pure) of fertilizers of the interviewee | 1 475 | 252.94 | 162.23 |
作物类型Crop type | X12 | 水稻,1;玉米,0 Rice, 1; corn,0 | 1 475 | 0.49 | 0.50 |
村人均纯收入 Per capita net income of the village/yuan | X13 | 受访者所在村人均纯收入的自然对数值 Natural logarithm value of per capita net income of the village of the interviewee | 1 475 | 9.07 | 0.64 |
到乡镇的距离 Distance to township/km | X14 | 所在村到其所属乡镇的距离 Distance from the village to its township | 1 475 | 2.47 | 2.36 |
技术 Technology | 采纳情况 Adoption status | 单产 Yield/(kg·hm-2) | N含量 Nitrogen content/ (g·kg-1) | P含量 P content/ (mg·kg-1) | K含量 K content/ (mg·kg-1) |
---|---|---|---|---|---|
保护性耕作技术 | 不采纳Not adopted | 6 387.77±69.69 | 0.94±0.02 | 3.28±0.06 | 5.13±0.04 |
Conservation tillage | 采纳Adopted | 6 219.10±53.54* | 0.92±0.01 | 3.03±0.04*** | 4.97±0.03*** |
深松技术 | 不采纳Not adopted | 6 305.77±44.37 | 0.93±0.01 | 3.09±0.04 | 4.98±0.02 |
Subsoiling | 采纳Adopted | 5 999.05±146.54** | 0.85±0.02*** | 3.29±0.11* | 5.34±0.06*** |
秸秆还田技术 | 不采纳Not adopted | 6 389.80±69.67 | 0.93±0.02 | 3.29±0.06 | 5.13±0.04 |
Straw returning | 采纳Adopted | 6 214.27±53.58** | 0.92±0.01 | 3.02±0.04*** | 4.97±0.03*** |
表2 技术采纳情况对地块单产和土壤氮、磷、钾含量的影响
Table 2 Impact of technology adoption on the yield and soil nitrogen, phosphorus, potassium content of plot
技术 Technology | 采纳情况 Adoption status | 单产 Yield/(kg·hm-2) | N含量 Nitrogen content/ (g·kg-1) | P含量 P content/ (mg·kg-1) | K含量 K content/ (mg·kg-1) |
---|---|---|---|---|---|
保护性耕作技术 | 不采纳Not adopted | 6 387.77±69.69 | 0.94±0.02 | 3.28±0.06 | 5.13±0.04 |
Conservation tillage | 采纳Adopted | 6 219.10±53.54* | 0.92±0.01 | 3.03±0.04*** | 4.97±0.03*** |
深松技术 | 不采纳Not adopted | 6 305.77±44.37 | 0.93±0.01 | 3.09±0.04 | 4.98±0.02 |
Subsoiling | 采纳Adopted | 5 999.05±146.54** | 0.85±0.02*** | 3.29±0.11* | 5.34±0.06*** |
秸秆还田技术 | 不采纳Not adopted | 6 389.80±69.67 | 0.93±0.02 | 3.29±0.06 | 5.13±0.04 |
Straw returning | 采纳Adopted | 6 214.27±53.58** | 0.92±0.01 | 3.02±0.04*** | 4.97±0.03*** |
技术 Technology | 采纳情况 Adoption status | 不同土壤质量的技术采纳率 Adoption rate with different soil quality | |
---|---|---|---|
好Good | 差Bad | ||
保护性耕作技术 Conservation tillage | 不采纳 Not adopted | 34.99 | 45.28** |
采纳Adopted | 65.01 | 54.72 | |
深松技术 Subsoiling | 不采纳 Not adopted | 91.09 | 95.28 |
采纳Adopted | 8.91 | 4.72 | |
秸秆还田技术 Straw returning | 不采纳 Not adopted | 36.23 | 48.11** |
采纳Adopted | 63.77 | 51.89 |
表3 不同质量地块的技术采纳率
Table 3 Technology adoption rate of farmer with different soil quality %
技术 Technology | 采纳情况 Adoption status | 不同土壤质量的技术采纳率 Adoption rate with different soil quality | |
---|---|---|---|
好Good | 差Bad | ||
保护性耕作技术 Conservation tillage | 不采纳 Not adopted | 34.99 | 45.28** |
采纳Adopted | 65.01 | 54.72 | |
深松技术 Subsoiling | 不采纳 Not adopted | 91.09 | 95.28 |
采纳Adopted | 8.91 | 4.72 | |
秸秆还田技术 Straw returning | 不采纳 Not adopted | 36.23 | 48.11** |
采纳Adopted | 63.77 | 51.89 |
技术 Technology | 采纳情况 Adoption status | 不同农户的技术采纳率 Adoption rate of different farmers | |
---|---|---|---|
小农户 Small household | 规模户 Scale household | ||
保护性耕作技术 Conservation tillage | 不采纳 Not adopted | 38.18 | 33.82** |
采纳Adopted | 61.82 | 66.18 | |
深松技术 Subsoiling | 不采纳 Not adopted | 93.82 | 89.49*** |
采纳Adopted | 6.18 | 10.51 | |
秸秆还田技术 Straw returning | 不采纳 Not adopted | 39.57 | 35.14* |
采纳Adopted | 60.43 | 64.86 |
表4 不同时间偏好农户的技术采纳率
Table 4 Technology adoption rate of farmer with different time preference %
技术 Technology | 采纳情况 Adoption status | 不同农户的技术采纳率 Adoption rate of different farmers | |
---|---|---|---|
小农户 Small household | 规模户 Scale household | ||
保护性耕作技术 Conservation tillage | 不采纳 Not adopted | 38.18 | 33.82** |
采纳Adopted | 61.82 | 66.18 | |
深松技术 Subsoiling | 不采纳 Not adopted | 93.82 | 89.49*** |
采纳Adopted | 6.18 | 10.51 | |
秸秆还田技术 Straw returning | 不采纳 Not adopted | 39.57 | 35.14* |
采纳Adopted | 60.43 | 64.86 |
指标 | E1 | E1 | E1 | E2 | E2 | E2 | E3 | E3 | E3 | E4 | E4 | E4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | |||||||||||||
B1 | 226.30** (2.45) | — | — | 0.04** (2.34) | — | — | 0.01 (0.05) | — | — | -0.07 (-1.62) | — | — | |
B2 | — | 237.85* (1.78) | — | — | 0.01 (0.42) | — | — | 0.02 (0.18) | — | — | 0.07 (0.97) | — | |
B3 | — | — | 219.30** (2.32) | — | — | 0.05*** (2.77) | — | — | 0.02 (0.38) | — | — | -0.04 (-0.90) | |
常数项 Constant | 3 390.98*** (4.60) | 3 415.14*** (4.61) | 3 408.71*** (4.63) | 1.37*** (8.21) | 1.39*** (8.34) | 1.37*** (8.23) | 4.08*** (7.46) | 4.08*** (7.45) | 4.07*** (7.46) | 4.92*** (11.97) | 4.89*** (12.05) | 4.90*** (11.98) | |
F | 28.23*** | 27.56*** | 27.83*** | 23.88*** | 22.99*** | 24.09*** | 40.79*** | 41.40*** | 40.92*** | 23.11*** | 23.30*** | 23.09*** | |
n | 1 475 | 1 475 | 1 475 | 732 | 732 | 732 | 732 | 732 | 732 | 732 | 732 | 732 |
表5 保护性耕作技术采纳情况对地块效益的估计结果
Table 5 Estimated results of conservation tillage technology adoption on land benefits of plots
指标 | E1 | E1 | E1 | E2 | E2 | E2 | E3 | E3 | E3 | E4 | E4 | E4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | |||||||||||||
B1 | 226.30** (2.45) | — | — | 0.04** (2.34) | — | — | 0.01 (0.05) | — | — | -0.07 (-1.62) | — | — | |
B2 | — | 237.85* (1.78) | — | — | 0.01 (0.42) | — | — | 0.02 (0.18) | — | — | 0.07 (0.97) | — | |
B3 | — | — | 219.30** (2.32) | — | — | 0.05*** (2.77) | — | — | 0.02 (0.38) | — | — | -0.04 (-0.90) | |
常数项 Constant | 3 390.98*** (4.60) | 3 415.14*** (4.61) | 3 408.71*** (4.63) | 1.37*** (8.21) | 1.39*** (8.34) | 1.37*** (8.23) | 4.08*** (7.46) | 4.08*** (7.45) | 4.07*** (7.46) | 4.92*** (11.97) | 4.89*** (12.05) | 4.90*** (11.98) | |
F | 28.23*** | 27.56*** | 27.83*** | 23.88*** | 22.99*** | 24.09*** | 40.79*** | 41.40*** | 40.92*** | 23.11*** | 23.30*** | 23.09*** | |
n | 1 475 | 1 475 | 1 475 | 732 | 732 | 732 | 732 | 732 | 732 | 732 | 732 | 732 |
变量Variable | B1 | B1 | B2 | B2 | B3 | B3 |
---|---|---|---|---|---|---|
Pi | 0.21* (1.96) | 0.15 (1.35) | 3.32*** (10.67) | 3.32*** (10.60) | 0.20* (1.78) | 0.14 (1.21) |
M1 | -0.07 (-0.52) | -0.21 (-1.33) | 0.02 (0.09) | 0.02 (0.06) | -0.12 (-0.85) | -0.25 (-1.60) |
Pi×M1 | — | 0.77* (1.95) | — | Omitted | — | 0.72* (1.80) |
n | 1 475 | 1 475 | 1 475 | 1 474 | 1 475 | 1 475 |
Wald统计量Static value of Wald | 277.41*** | 279.32*** | 187.16*** | 185.56*** | 297.69*** | 299.97*** |
表6 政策补贴、土壤质量对农户保护性耕作技术采纳影响的估计结果
Table 6 Estimation of the impact of subsidies and soil quality on conservation tillage adoption
变量Variable | B1 | B1 | B2 | B2 | B3 | B3 |
---|---|---|---|---|---|---|
Pi | 0.21* (1.96) | 0.15 (1.35) | 3.32*** (10.67) | 3.32*** (10.60) | 0.20* (1.78) | 0.14 (1.21) |
M1 | -0.07 (-0.52) | -0.21 (-1.33) | 0.02 (0.09) | 0.02 (0.06) | -0.12 (-0.85) | -0.25 (-1.60) |
Pi×M1 | — | 0.77* (1.95) | — | Omitted | — | 0.72* (1.80) |
n | 1 475 | 1 475 | 1 475 | 1 474 | 1 475 | 1 475 |
Wald统计量Static value of Wald | 277.41*** | 279.32*** | 187.16*** | 185.56*** | 297.69*** | 299.97*** |
变量Variable | B1 | B1 | B2 | B2 | B3 | B3 |
---|---|---|---|---|---|---|
Pi | 0.21* (1.96) | 0.22 (1.12) | 3.32*** (10.67) | 4.03*** (8.19) | 0.20* (1.78) | 0.13 (0.66) |
M2 | 0.32*** (3.84) | 0.31*** (3.40) | 0.40*** (2.97) | 0.49*** (3.27) | 0.34*** (4.10) | 0.32*** (3.55) |
Pi×M2 | — | -0.02 (-0.09) | — | -1.25** (-2.11) | — | 0.09 (0.37) |
n | 1 475 | 1 475 | 1 475 | 1 474 | 1 475 | 1 475 |
Wald统计量Static value of Wald | 277.41*** | 271.14*** | 187.16*** | 209.65*** | 297.69*** | 294.05*** |
表7 政策补贴、时间偏好对农户保护性耕作技术采纳影响的估计结果
Table 7 Estimation of the impact of subsidies and time preference on conservation tillage adoption
变量Variable | B1 | B1 | B2 | B2 | B3 | B3 |
---|---|---|---|---|---|---|
Pi | 0.21* (1.96) | 0.22 (1.12) | 3.32*** (10.67) | 4.03*** (8.19) | 0.20* (1.78) | 0.13 (0.66) |
M2 | 0.32*** (3.84) | 0.31*** (3.40) | 0.40*** (2.97) | 0.49*** (3.27) | 0.34*** (4.10) | 0.32*** (3.55) |
Pi×M2 | — | -0.02 (-0.09) | — | -1.25** (-2.11) | — | 0.09 (0.37) |
n | 1 475 | 1 475 | 1 475 | 1 474 | 1 475 | 1 475 |
Wald统计量Static value of Wald | 277.41*** | 271.14*** | 187.16*** | 209.65*** | 297.69*** | 294.05*** |
[1] | 高旺盛. 论保护性耕作技术的基本原理与发展趋势[J]. 中国农业科学, 2007, 40(12): 2702-2708. |
GAO W S. Development trends and basic principles of conservation tillage[J]. Scientia Agricultura Sinica, 2007, 40(12): 2702-2708. (in Chinese with English abstract) | |
[2] | 翟振, 李玉义, 逄焕成, 等. 黄淮海北部农田犁底层现状及其特征[J]. 中国农业科学, 2016, 49(12): 2322-2332. |
ZHAI Z, LI Y Y, PANG H C, et al. Study on present situation and characteristics of plow pan in the northern region of Huang Huai Hai Plain[J]. Scientia Agricultura Sinica, 2016, 49(12): 2322-2332. (in Chinese with English abstract) | |
[3] | VIGNOLA R, KOELLNER T, SCHOLZ R W, et al. Decision-making by farmers regarding ecosystem services: factors affecting soil conservation efforts in Costa Rica[J]. Land Use Policy, 2010, 27(4): 1132-1142. |
[4] | 薛彩霞, 李园园, 胡超, 等. 中国保护性耕作净碳汇的时空格局[J]. 自然资源学报, 2022, 37(5): 1164-1182. |
XUE C X, LI Y Y, HU C, et al. Study on spatio-temporal pattern of conservation tillage on net carbon sink in China[J]. Journal of Natural Resources, 2022, 37(5): 1164-1182. (in Chinese with English abstract) | |
[5] | HOBBS P R, GUPTA R. Problems and challenges of no-till farming for the rice-wheat systems of the Indo-Gangetic Plains in south Asia[M]// LALR, HOBBSP R, UPHOFFN. Sustainable agriculture and the international rice-wheat system. Boca Raton: CRC Press, 2004 |
[6] | 唐利群, 周洁红, 于晓华. 采用保护性耕作对减少水稻产量损失的实证分析: 基于4省1 080个稻农的调研数据[J]. 自然资源学报, 2017, 32(6): 1016-1028. |
TANG L Q, ZHOU J H, YU X H. The impact of conservation tillage on reduction in rice yield loss: evidence from 1 080 Chinese rice farmers[J]. Journal of Natural Resources, 2017, 32(6): 1016-1028. (in Chinese with English abstract) | |
[7] | 王金霞, 张丽娟. 保护性耕作技术对农业生产的影响: 黄河流域的实证研究[J]. 管理评论, 2010, 22(6): 77-84. |
WANG J X, ZHANG L J. Impacts of conservation tillage on agriculture: empirical research in the Yellow River Basin[J]. Management Review, 2010, 22(6): 77-84. (in Chinese with English abstract) | |
[8] | NAUDIN K, GOZÉ E, BALARABE O, et al. Impact of no tillage and mulching practices on cotton production in North Cameroon: a multi-locational on-farm assessment[J]. Soil and Tillage Research, 2010, 108(1/2): 68-76. |
[9] | 谢婉菲, 尹奇, 鲍海君. 基于农户行为的彭州市耕地保护现状及影响因素分析[J]. 中国农业资源与区划, 2012, 33(1): 67-72. |
XIE W F, YIN Q, BAO H J. Analysis of status and influence factors of cultivated land protection based on peasant households' behavior in Pengzhou City[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(1): 67-72. (in Chinese with English abstract) | |
[10] | 李文欢, 王桂霞. 社会资本、技术认知对黑土区农户保护性耕作技术采纳行为的影响[J]. 中国生态农业学报(中英文), 2022, 30(10): 1675-1686. |
LI W H, WANG G X. Effects of social capital and technology cognition on farmers' adoption of conservation tillage in black soil areas[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1675-1686. (in Chinese with English abstract) | |
[11] | 刘洪彬, 吴梦瑶, 马贤磊, 等. 基于分布式认知理论的农户保护性耕作技术采纳行为及其影响因素研究[J]. 中国土地科学, 2021, 35(10): 75-84. |
LIU H B, WU M Y, MA X L, et al. Research on influencing factors of farmers' adoption behavior of conservation tillage technology based on distributed cognition theory[J]. China Land Science, 2021, 35(10): 75-84. (in Chinese with English abstract) | |
[12] | 钱龙, 冯永辉, 钱文荣. 农地确权、调整经历与农户耕地质量保护行为: 来自广西的经验证据[J]. 农业技术经济, 2021(1): 61-76. |
QIAN L, FENG Y H, QIAN W R. Farmland certification, adjustment experience and farmer's land quality protection behavior: empirical evidence from Guangxi[J]. Journal of Agrotechnical Economics, 2021(1): 61-76. (in Chinese with English abstract) | |
[13] | 李卫, 薛彩霞, 姚顺波, 等. 农户保护性耕作技术采用行为及其影响因素: 基于黄土高原476户农户的分析[J]. 中国农村经济, 2017(1): 44-57. |
LI W, XUE C X, YAO S B, et al. The adoption behavior of households' conservation tillage technology: an empirical analysis based on data collected from 476 households on the Loess Plateau[J]. Chinese Rural Economy, 2017(1): 44-57. (in Chinese with English abstract) | |
[14] | LI H W, HE J, BHARUCHA Z P, et al. Improving China's food and environmental security with conservation agriculture[J]. International Journal of Agricultural Sustainability, 2016, 14(4): 377-391. |
[15] | KASSIE M, MARENYA P, TESSEMA Y, et al. Measuring farm and market level economic impacts of improved maize production technologies in Ethiopia: evidence from panel data[J]. Journal of Agricultural Economics, 2018, 69(1): 76-95. |
[16] | FİTRİATİN B N, AMANDA A P, KAMALUDDİN N N, et al. Some soil biological and chemical properties as affected by biofertilizers and organic ameliorants application on paddy rice[J]. Eurasian Journal of Soil Science, 2021,10(2):105-110. |
[17] | 黄景, 顾明华, 徐世宏, 等. 稻草还田免耕抛秧对土壤剖面氮、磷、钾含量的影响[J]. 中国农业科学, 2012, 45(13): 2648-2657. |
HUANG J, GU M H, XU S H, et al. Effects of no-tillage and rice-seedling casting with rice straw returning on content of nitrogen, phosphorus and potassium of soil profiles[J]. Scientia Agricultura Sinica, 2012, 45(13): 2648-2657. (in Chinese with English abstract) | |
[18] | 蔡荣, 蔡书凯. 保护性耕作技术采用及对作物单产影响的实证分析: 基于安徽省水稻种植户的调查数据[J]. 资源科学, 2012, 34(9): 1705-1711. |
CAI R, CAI S K. The adoption of conservation agricultural technology and the impact on crop yields based on rice farms in Anhui Province[J]. Resources Science, 2012, 34(9): 1705-1711. (in Chinese with English abstract) | |
[19] | 张霞, 杜昊辉, 王旭东, 等. 不同耕作措施对渭北旱塬土壤碳库管理指数及其构成的影响[J]. 自然资源学报, 2018, 33(12): 2223-2237. |
ZHANG X, DU H H, WANG X D, et al. Effects of different tillage methods on soil organic carbon pool management index and its composition in Weibei highland[J]. Journal of Natural Resources, 2018, 33(12): 2223-2237. (in Chinese with English abstract) | |
[20] | 赵政鑫, 王晓云, 李府阳, 等. 秸秆还田配施稳定性氮肥对麦玉轮作水氮利用的影响[J]. 农业机械学报, 2023, 54(6): 350-360. |
ZHAO Z X, WANG X Y, LI F Y, et al. Effects of straw returning and application of stable nitrogen fertilizer on water and nitrogen use efficiencies of wheat maize rotation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 350-360. (in Chinese with English abstract) | |
[21] | 郭芬, 金建君, 张晨阳, 等. 农户保护性耕作技术采纳行为及其影响因素研究综述[J]. 地理科学进展, 2022, 41(11): 2165-2177. |
GUO F, JIN J J, ZHANG C Y, et al. A review of farmers' conservation tillage technology adoption behavior and influencing factors[J]. Progress in Geography, 2022, 41(11): 2165-2177. (in Chinese with English abstract) | |
[22] | 李然嫣, 陈印军. 东北典型黑土区农户耕地保护利用行为研究: 基于黑龙江省绥化市农户调查的实证分析[J]. 农业技术经济, 2017(11): 80-91. |
LI R Y, CHEN Y J. A study on farmer's protection and utilization of farmland in typical black soil areas of northeast China: an empirical analysis based on a survey of farmers in Suihua City, Heilongjiang Province[J]. Journal of Agrotechnical Economics, 2017(11): 80-91. (in Chinese) | |
[23] | 陈菁, 陈迪, 刘顺国. 保护性耕作对土壤质量的影响及其综合效益[J]. 农业经济, 2022(12): 12-14. |
CHEN J, CHEN D, LIU S G. Effects of conservation tillage on soil quality and its comprehensive benefits[J]. Agricultural Economy, 2022(12): 12-14. (in Chinese) | |
[24] | TRAN D Q, KURKALOVA L A. Persistence in tillage decisions: aggregate data analysis[J]. International Soil and Water Conservation Research, 2019, 7(2): 109-118. |
[25] | 徐志刚, 张骏逸, 吕开宇. 经营规模、地权期限与跨期农业技术采用: 以秸秆直接还田为例[J]. 中国农村经济, 2018(3): 61-74. |
XU Z G, ZHANG J Y, LV K Y. The scale of operation, term of land ownership and the adoption of inter-temporal agricultural technology: an example of “straw return to soil directly”[J]. Chinese Rural Economy, 2018(3): 61-74. (in Chinese with English abstract) | |
[26] | 刘乐, 张娇, 张崇尚, 等. 经营规模的扩大有助于农户采取环境友好型生产行为吗: 以秸秆还田为例[J]. 农业技术经济, 2017(5): 17-26. |
LIU L, ZHANG J, ZHANG C S, et al. Does the expansion of business scale help farmers adopt environmentally friendly production behaviors: taking straw returning to the field as an example[J]. Journal of Agrotechnical Economics, 2017(5): 17-26. (in Chinese) | |
[27] | 薛建福, 赵鑫, DIKGWATLHE S, 等. 保护性耕作对农田碳、氮效应的影响研究进展[J]. 生态学报, 2013, 33(19): 6006-6013. |
XUE J F, ZHAO X, DIKGWATLHE S, et al. Advances in effects of conservation tillage on soil organic carbon and nitrogen[J]. Acta Ecologica Sinica, 2013, 33(19): 6006-6013. (in Chinese with English abstract) | |
[28] | 王淑兰, 王浩, 李娟, 等. 不同耕作方式下长期秸秆还田对旱作春玉米田土壤碳、氮、水含量及产量的影响[J]. 应用生态学报, 2016, 27(5): 1530-1540. |
WANG S L, WANG H, LI J, et al. Effects of long-term straw mulching on soil organic carbon, nitrogen and moisture and spring maize yield on rain-fed croplands under different patterns of soil tillage practice[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1530-1540. (in Chinese with English abstract) |
[1] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
[2] | 武佳龙, 迟铭, 高燕, 王祥, 沈海鸥. 施加生物炭对黑土区坡耕地土壤主要理化指标的动态影响[J]. 浙江农业学报, 2024, 36(9): 2060-2069. |
[3] | 傅志强, 刘祯, 马春花, 温梦玲, 奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响[J]. 浙江农业学报, 2024, 36(7): 1634-1645. |
[4] | 崔玲宇, 喻曼, 乔宇颖, 苏瑶, 王云龙, 沈阿林. 基于Web of Science数据库的土壤质量评价及其微生物指标研究趋势分析[J]. 浙江农业学报, 2023, 35(11): 2688-2697. |
[5] | 邱乐丰, 张玲, 徐保根, 吴绍华, 徐明星. 种植结构非粮化对农田氮磷流失负荷的影响[J]. 浙江农业学报, 2022, 34(9): 1995-2003. |
[6] | 孙文艳, 刘小刚, 张文慧, 李慧永, 吴朗, 杨启良, 熊国美. 基于根区土壤质量指数优化小粒种咖啡滴灌施肥方案[J]. 浙江农业学报, 2022, 34(3): 566-573. |
[7] | 林薇, 周海霞, 兰挚谦, 张凯歌, 刘吉青, 张雪艳. 基于葵花杆硫酸铵生物基肥的番茄不同生育期配方肥的效果[J]. 浙江农业学报, 2019, 31(5): 756-765. |
[8] | 王京文, 谢国雄, 李丹, 章明奎. 盐渍化与酸化对设施栽培土壤镉活化的叠加作用[J]. 浙江农业学报, 2018, 30(5): 810-816. |
[9] | 马南, 钱瑞雪, 杨慧敏, 陈智文, 蒋云峰. 免耕留茬耕作对中小型土壤动物群落的影响[J]. 浙江农业学报, 2018, 30(5): 825-831. |
[10] | 吴才武,夏建新*. 保护性耕作的水土保持机理及其在东北黑土区的推广建议[J]. 浙江农业学报, 2015, 27(2): 254-. |
[11] | 王卫平;朱凤香;陈晓旸;薛智勇;洪春来;刘健;*. 沼液农灌对土壤质量和青菜产量品质的影响[J]. , 2010, 22(1): 0-76. |
[12] | 吕晓男;孟赐福;麻万诸;陈晓佳 . 土壤质量及其演变[J]. , 2004, 16(2): 0-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||