浙江农业学报 ›› 2025, Vol. 37 ›› Issue (5): 1159-1171.DOI: 10.3969/j.issn.1004-1524.20240379

• 生物系统工程 • 上一篇    下一篇

基于近红外光谱技术和机器学习模型的基质氮含量快速检测

吴昊霖1, 王淑珍1, 朱祝军1,2, 何勇1,2,*()   

  1. 1.浙江农林大学 园艺科学学院,浙江 杭州 311300
    2.农业农村部亚热带果品蔬菜质量安全控制重点实验室,浙江 杭州 311300
  • 收稿日期:2024-04-26 出版日期:2025-05-25 发布日期:2025-06-11
  • 作者简介:吴昊霖(1996—),男,浙江宁波人,硕士研究生,研究方向为设施土壤养分。E-mail:wuhaolin233@126.com
  • 通讯作者: *何勇,E-mail:heyong@zafu.edu.cn
  • 基金资助:
    浙江省重点研发计划(2019C02012)

Rapid detection of contents of different types of nitrogen in substrates using near-infrared spectrum and machine learning

WU Haolin1, WANG Shuzhen1, ZHU Zhujun1,2, HE Yong1,2,*()   

  1. 1. College of Horticultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
    2. Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, China
  • Received:2024-04-26 Online:2025-05-25 Published:2025-06-11

摘要: 为建立常见基质泥炭、蛭石和珍珠岩中铵态氮和硝态氮含量测定的近红外模型,采用铵态氮和硝态氮对3种基质进行处理,采集基质的近红外光谱;并采用化学法测定铵态氮和硝态氮含量,通过偏最小二乘法(partial least squares regression, PLSR)和机器学习算法支持向量机(support vector machine, SVM)构建了3种基质硝态氮和铵态氮含量的数学模型。结果表明,对铵态氮含量而言,最佳光谱预处理方法为一阶导数+平滑处理;对硝态氮含量而言,泥炭、蛭石和珍珠岩的最佳预处理方法分别为多元散射校正+平滑、一阶导数、多元散射校正+一阶导数+平滑。采用PLSR法和SVM法均能建立基质铵态氮和硝态氮含量预测模型,且SVM模型预测集的决定系数( R p 2)和预测相对分析误差(RPD)高于PLSR模型,预测均方根误差(RMSEP)低于PLSR模型。泥炭、蛭石和珍珠岩的铵态氮含量SVM模型的 R p 2分别为0.983、0.936和0.925,RMSEP分别为0.073、0.528和0.540,RPD分别为7.74、4.50和4.80。泥炭、蛭石和珍珠岩的硝态氮含量SVM模型的 R p 2分别为0.912、0.956和0.921,RMSEP分别为0.716、0.933和0.976,RPD分别为3.23、3.75和3.30。本试验所构建的泥炭、蛭石和珍珠岩SVM模型可靠,可用于分析基质的硝态氮和铵态氮含量。

关键词: 基质, 硝态氮, 铵态氮, 近红外光谱, 机器学习

Abstract:

To establish near-infrared(NIR) models for determining ammonium nitrogen and nitrate nitrogen contents in common substrates(peat, vermiculite, and perlite), exogenous nitrate and ammonium nitrogen treatments were applied to the three substrates, and their NIR spectra were collected. Chemical methods were employed to measure ammonium nitrogen and nitrate nitrogen contents. Mathematical models for predicting ammonium nitrogen and nitrate nitrogen contents in the three substrates were constructed using partial least squares regression(PLSR) and support vector machine(SVM) model. The results demonstrated that for ammonium nitrogen content, the optimal spectral preprocessing method was first derivative+smoothing. For nitrate nitrogen content, the best preprocessing methods for peat, vermiculite, and perlite were multiplicative scatter correction(MSC)+smoothing, first derivative, and MSC+first derivative+smoothing, respectively. Both PLSR and SVM methods effectively established prediction models for substrate ammonium nitrogen and nitrate nitrogen contents. The SVM models exhibited higher coefficient of determination in prediction set( R p 2) and relative prediction deviation(RPD) values in the prediction set, along with lower root mean square error in prediction set(RMSEP) compared to PLSR models. For ammonium nitrogen content, the SVM models achieved R p 2 values of 0.983, 0.936, and 0.925 for peat, vermiculite, and perlite, respectively, with RMSEP values of 0.073, 0.528, and 0.540, and RPD values of 7.74, 4.50, and 4.80. For nitrate nitrogen content, the SVM models showed R p 2 values of 0.912, 0.956, and 0.921 for the respective substrates, with RMSEP values of 0.716, 0.933, and 0.976, and RPD values of 3.23, 3.75, and 3.30. The SVM models developed for peat, vermiculite, and perlite demonstrate reliability and can be effectively applied for analyzing ammonium nitrogen and nitrate nitrogen contents in these substrates.

Key words: substrate, nitrate nitrogen, ammonium nitrogen, near-infrared spectrum, machine learning

中图分类号: