浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1805-1813.DOI: 10.3969/j.issn.1004-1524.20221274
收稿日期:
2022-09-01
出版日期:
2023-08-25
发布日期:
2023-08-29
作者简介:
傅鸿妃(1980—),女,浙江嵊州人,硕士,正高级农艺师,主要从事蔬菜新品种新技术研究与示范推广工作。E-mail:hffu223@163.com
基金资助:
FU Hongfei(), GUO Saisai, ZHENG Jirong
Received:
2022-09-01
Online:
2023-08-25
Published:
2023-08-29
摘要:
为更好地解决茄果类蔬菜残体处置问题,以茄果类蔬菜残体为原料,以鸡粪、发酵菌剂为添加物,设置4个残体堆置发酵处理,将发酵完成残体与商品育苗基质复配成混合基质,研究混合基质对黄瓜种子出苗率、幼苗形态和叶绿素含量、幼苗生物量、幼苗根系生长指标的影响,并对幼苗生物量、根系指标等进行相关性分析。结果表明,没有添加物的茄果类蔬菜残体发酵后,与商品育苗基质1:3复配的混合基质,使单株黄瓜幼苗根系体积和根系表面积分别增加0.30 cm3和8.66 cm2。黄瓜幼苗干物质积累速率(G值)与单株鲜重、单株干重、地上部分干重、地下部分干重和壮苗指数呈极显著(P<0.01)正相关;壮苗指数与单株鲜重、单株干重、地上部分干重和地下部分干重呈极显著(P<0.01)正相关;干物质含量与单株鲜重呈极显著(P<0.01)负相关。此外,黄瓜幼苗根尖数与根系长度、根系体积和根系表面积呈极显著(P<0.01)正相关;根系长度与根系体积和根系表面积呈极显著(P<0.01)正相关;根系直径与根尖数和根系长度呈显著(P<0.05)负相关。因此,没有添加物的茄果类蔬菜残体发酵后,与商品育苗基质1∶3配制成的混合基质适合黄瓜育苗。
中图分类号:
傅鸿妃, 郭赛赛, 郑积荣. 茄果类蔬菜残体混合基质对黄瓜育苗的影响[J]. 浙江农业学报, 2023, 35(8): 1805-1813.
FU Hongfei, GUO Saisai, ZHENG Jirong. Effects of compound substrate with residues of Solanaceous vegetables on cucumber seedling[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1805-1813.
处理 Treatment | pH | EC值 EC value/ (mS·cm-1) | 容重 Bulk density/ (g·cm-3) | 总氮含量 Total N content/ (g·kg-1) | 总磷含量 Total P content/ (μg·g-1) | 总钾含量 Total K content/ (mg·g-1) |
---|---|---|---|---|---|---|
A1T3 | 7.2 | 0.88 | 0.23 | 3.05 | 348.07 | 21.18 |
A2T2 | 7.6 | 1.25 | 0.26 | 3.27 | 346.98 | 21.48 |
A3T1 | 7.5 | 1.58 | 0.30 | 3.15 | 348.82 | 22.48 |
B1T3 | 7.5 | 0.93 | 0.23 | 3.70 | 351.00 | 20.42 |
B2T2 | 7.6 | 1.28 | 0.25 | 3.53 | 354.62 | 19.97 |
B3T1 | 7.8 | 1.67 | 0.27 | 3.02 | 351.33 | 19.61 |
C1T3 | 7.1 | 0.96 | 0.23 | 3.71 | 342.15 | 22.03 |
C2T2 | 7.7 | 1.30 | 0.26 | 3.19 | 344.05 | 20.64 |
C3T1 | 7.8 | 1.86 | 0.29 | 2.93 | 345.21 | 22.82 |
D1T3 | 7.5 | 0.86 | 0.20 | 3.48 | 343.99 | 21.31 |
D2T2 | 7.7 | 1.23 | 0.23 | 3.70 | 338.76 | 22.90 |
D3T1 | 7.8 | 1.56 | 0.27 | 3.35 | 344.35 | 21.41 |
CK | 5.8 | 0.53 | 0.18 | 3.48 | 343.18 | 21.61 |
表1 混合基质基本性质
Table 1 Basic characters of compound substrate
处理 Treatment | pH | EC值 EC value/ (mS·cm-1) | 容重 Bulk density/ (g·cm-3) | 总氮含量 Total N content/ (g·kg-1) | 总磷含量 Total P content/ (μg·g-1) | 总钾含量 Total K content/ (mg·g-1) |
---|---|---|---|---|---|---|
A1T3 | 7.2 | 0.88 | 0.23 | 3.05 | 348.07 | 21.18 |
A2T2 | 7.6 | 1.25 | 0.26 | 3.27 | 346.98 | 21.48 |
A3T1 | 7.5 | 1.58 | 0.30 | 3.15 | 348.82 | 22.48 |
B1T3 | 7.5 | 0.93 | 0.23 | 3.70 | 351.00 | 20.42 |
B2T2 | 7.6 | 1.28 | 0.25 | 3.53 | 354.62 | 19.97 |
B3T1 | 7.8 | 1.67 | 0.27 | 3.02 | 351.33 | 19.61 |
C1T3 | 7.1 | 0.96 | 0.23 | 3.71 | 342.15 | 22.03 |
C2T2 | 7.7 | 1.30 | 0.26 | 3.19 | 344.05 | 20.64 |
C3T1 | 7.8 | 1.86 | 0.29 | 2.93 | 345.21 | 22.82 |
D1T3 | 7.5 | 0.86 | 0.20 | 3.48 | 343.99 | 21.31 |
D2T2 | 7.7 | 1.23 | 0.23 | 3.70 | 338.76 | 22.90 |
D3T1 | 7.8 | 1.56 | 0.27 | 3.35 | 344.35 | 21.41 |
CK | 5.8 | 0.53 | 0.18 | 3.48 | 343.18 | 21.61 |
图1 不同混合基质的黄瓜种子出苗率 柱上无相同字母代表0.05水平差异显著。下同。
Fig.1 Cucumber seed germination rates in different compound substrates Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as bellow.
处理 Treatment | 鲜重 Fresh weight/g | 干重Dry weight/g | 壮苗指数 Seedling index | 干物质含量 Dry matter content/% | G值 G value | ||
---|---|---|---|---|---|---|---|
全株 Whole plant | 地上部 Above ground | 地下部 Underground | |||||
A1T3 | 4.565± 0.856 a | 0.304± 0.083 a | 0.265± 0.070 a | 0.039± 0.014 a | 0.054± 0.020 a | 6.59± 0.64 c | 0.023± 0.006 a |
A2T2 | 2.475± 0.658 cd | 0.222± 0.047 bcde | 0.188± 0.039 bcd | 0.034± 0.008 ab | 0.048± 0.011 ab | 9.06± 0.89 a | 0.017± 0.004 bcde |
A3T1 | 2.206± 0.065 d | 0.189± 0.015 cdef | 0.160± 0.012 cde | 0.029± 0.003 ab | 0.044± 0.006 ab | 8.56± 0.44 a | 0.015± 0.001 cdef |
B1T3 | 3.324± 0.787 bc | 0.227± 0.014 bcd | 0.199± 0.014 bc | 0.029± 0.004 ab | 0.039± 0.004 ab | 7.07± 1.60 bc | 0.017± 0.001 bcd |
B2T2 | 1.781± 0.444 d | 0.162± 0.036 defg | 0.138± 0.030 def | 0.024± 0.006 b | 0.037± 0.008 ab | 9.16± 0.73 a | 0.012± 0.003 defg |
B3T1 | 1.948± 0.283 d | 0.158± 0.033 efg | 0.136± 0.030 def | 0.022± 0.003 b | 0.034± 0.005 ab | 8.06± 0.68 ab | 0.012± 0.003 efg |
C1T3 | 3.116± 0.006 bc | 0.218± 0.012 bcdef | 0.196± 0.009 bcd | 0.022± 0.003 b | 0.031± 0.004 b | 6.99± 0.36 bc | 0.017± 0.001 bcde |
C2T2 | 3.248± 0.381 bc | 0.235± 0.033 bc | 0.199± 0.020 bc | 0.035± 0.013 ab | 0.054± 0.019 a | 7.21± 0.24 bc | 0.018± 0.002 bc |
C3T1 | 1.704± 0.354 d | 0.119± 0.033 g | 0.095± 0.030 f | 0.023± 0.003 b | 0.035± 0.003 ab | 6.90± 0.48 bc | 0.009± 0.003 g |
D1T3 | 3.783± 0.657 ab | 0.222± 0.027 bcde | 0.200± 0.026 bc | 0.022± 0.004 b | 0.032± 0.006 b | 5.91± 0.37 c | 0.017± 0.002 bcde |
D2T2 | 2.263± 0.209 d | 0.146± 0.018 fg | 0.122± 0.012 ef | 0.024± 0.006 b | 0.039± 0.012 ab | 6.44± 0.19 c | 0.011± 0.001 fg |
D3T1 | 0.582± 0.124 e | 0.047± 0.009 h | 0.040± 0.007 g | 0.008± 0.001 c | 0.012± 0.002 c | 8.18± 0.39 ab | 0.004± 0.001 h |
CK | 4.355± 0.180 a | 0.271± 0.031 ab | 0.241± 0.020 ab | 0.030± 0.014 ab | 0.040± 0.018 ab | 6.21± 0.59 c | 0.021± 0.002 ab |
表2 不同混合基质的黄瓜单株幼苗生物量
Table 2 Single seedling biomass of cucumber in different compound substrates
处理 Treatment | 鲜重 Fresh weight/g | 干重Dry weight/g | 壮苗指数 Seedling index | 干物质含量 Dry matter content/% | G值 G value | ||
---|---|---|---|---|---|---|---|
全株 Whole plant | 地上部 Above ground | 地下部 Underground | |||||
A1T3 | 4.565± 0.856 a | 0.304± 0.083 a | 0.265± 0.070 a | 0.039± 0.014 a | 0.054± 0.020 a | 6.59± 0.64 c | 0.023± 0.006 a |
A2T2 | 2.475± 0.658 cd | 0.222± 0.047 bcde | 0.188± 0.039 bcd | 0.034± 0.008 ab | 0.048± 0.011 ab | 9.06± 0.89 a | 0.017± 0.004 bcde |
A3T1 | 2.206± 0.065 d | 0.189± 0.015 cdef | 0.160± 0.012 cde | 0.029± 0.003 ab | 0.044± 0.006 ab | 8.56± 0.44 a | 0.015± 0.001 cdef |
B1T3 | 3.324± 0.787 bc | 0.227± 0.014 bcd | 0.199± 0.014 bc | 0.029± 0.004 ab | 0.039± 0.004 ab | 7.07± 1.60 bc | 0.017± 0.001 bcd |
B2T2 | 1.781± 0.444 d | 0.162± 0.036 defg | 0.138± 0.030 def | 0.024± 0.006 b | 0.037± 0.008 ab | 9.16± 0.73 a | 0.012± 0.003 defg |
B3T1 | 1.948± 0.283 d | 0.158± 0.033 efg | 0.136± 0.030 def | 0.022± 0.003 b | 0.034± 0.005 ab | 8.06± 0.68 ab | 0.012± 0.003 efg |
C1T3 | 3.116± 0.006 bc | 0.218± 0.012 bcdef | 0.196± 0.009 bcd | 0.022± 0.003 b | 0.031± 0.004 b | 6.99± 0.36 bc | 0.017± 0.001 bcde |
C2T2 | 3.248± 0.381 bc | 0.235± 0.033 bc | 0.199± 0.020 bc | 0.035± 0.013 ab | 0.054± 0.019 a | 7.21± 0.24 bc | 0.018± 0.002 bc |
C3T1 | 1.704± 0.354 d | 0.119± 0.033 g | 0.095± 0.030 f | 0.023± 0.003 b | 0.035± 0.003 ab | 6.90± 0.48 bc | 0.009± 0.003 g |
D1T3 | 3.783± 0.657 ab | 0.222± 0.027 bcde | 0.200± 0.026 bc | 0.022± 0.004 b | 0.032± 0.006 b | 5.91± 0.37 c | 0.017± 0.002 bcde |
D2T2 | 2.263± 0.209 d | 0.146± 0.018 fg | 0.122± 0.012 ef | 0.024± 0.006 b | 0.039± 0.012 ab | 6.44± 0.19 c | 0.011± 0.001 fg |
D3T1 | 0.582± 0.124 e | 0.047± 0.009 h | 0.040± 0.007 g | 0.008± 0.001 c | 0.012± 0.002 c | 8.18± 0.39 ab | 0.004± 0.001 h |
CK | 4.355± 0.180 a | 0.271± 0.031 ab | 0.241± 0.020 ab | 0.030± 0.014 ab | 0.040± 0.018 ab | 6.21± 0.59 c | 0.021± 0.002 ab |
生物量 Biomass | 鲜重 Fresh weight | 干重 Dry weight | 地上部干重 Above ground dry weight | 地下部干重 Underground dry weight | 壮苗指数 Seedling index | 干物质含量 Dry matter content |
---|---|---|---|---|---|---|
干重Dry weight | 0.922** | |||||
地上部干重Above ground dry weight | 0.940** | 0.996** | ||||
地下部干重Underground dry weight | 0.609** | 0.811** | 0.754** | |||
壮苗指数Seedling index | 0.539** | 0.746** | 0.685** | 0.981** | ||
干物质含量Dry matter content | -0.565** | -0.231 | -0.268 | 0.058 | 0.09 | |
G值G value | 0.927** | 0.997** | 0.995** | 0.798** | 0.735** | -0.239 |
表3 黄瓜单株幼苗生物量的Pearson相关性分析
Table 3 Pearson correlation analysis of cucumber single seedling biomass
生物量 Biomass | 鲜重 Fresh weight | 干重 Dry weight | 地上部干重 Above ground dry weight | 地下部干重 Underground dry weight | 壮苗指数 Seedling index | 干物质含量 Dry matter content |
---|---|---|---|---|---|---|
干重Dry weight | 0.922** | |||||
地上部干重Above ground dry weight | 0.940** | 0.996** | ||||
地下部干重Underground dry weight | 0.609** | 0.811** | 0.754** | |||
壮苗指数Seedling index | 0.539** | 0.746** | 0.685** | 0.981** | ||
干物质含量Dry matter content | -0.565** | -0.231 | -0.268 | 0.058 | 0.09 | |
G值G value | 0.927** | 0.997** | 0.995** | 0.798** | 0.735** | -0.239 |
处理 Treatment | 根系长度 Root length/m | 根系直径 Root diameter/mm | 根系体积 Root volume/cm3 | 根系表面积 Root superficial area/cm2 | 根尖数 Root tip number |
---|---|---|---|---|---|
A1T3 | 1.76±0.17 a | 0.76±0.05 bcde | 1.34±0.20 a | 42.14±7.59 a | 289.67±20.23 a |
A2T2 | 0.86±0.34 c | 0.65±0.07 ef | 0.52±0.16 de | 17.86±3.54 fg | 170.00±14.11 c |
A3T1 | 1.53±0.13 a | 0.69±0.03 def | 0.89±0.03 bc | 32.87±1.78 bc | 215.67±7.51 b |
B1T3 | 0.74±0.25 cd | 0.84±0.09 abc | 0.65±0.11 cde | 18.12±1.27 efg | 141.67±31.21 cde |
B2T2 | 0.78±0.32 cd | 0.62±0.03 f | 0.40±0.13 e | 15.06±5.68 g | 168.00±19.97 c |
B3T1 | 0.47±0.18 de | 0.89±0.14 ab | 0.56±0.07 de | 12.67±3.28 g | 103.33±8.74 e |
C1T3 | 0.77±0.12 cd | 0.81±0.05 abcd | 0.65±0.12 cde | 19.52±2.59 defg | 123.00±21.38 de |
C2T2 | 1.54±0.12 a | 0.82±0.03 abcd | 1.29±0.17 a | 39.01±1.81 ab | 269.67±17.21 a |
C3T1 | 1.11±0.20 bc | 0.71±0.04 cdef | 0.70±0.17 cd | 24.62±4.49 def | 159.67±38.37 cd |
D1T3 | 1.07±0.20 c | 0.79±0.03 abcd | 0.88±0.19 bc | 26.67±5.55 cd | 178.00±42.58 bc |
D2T2 | 1.06±0.20 c | 0.79±0.02 abcd | 0.85±0.12 bc | 26.18±5.28 cde | 180.00±25.24 bc |
D3T1 | 0.16±0.10 e | 0.91±0.16 a | 0.16±0.07 f | 4.44±2.31 h | 33.67±15.63 f |
CK | 1.45±0.19 ab | 0.76±0.05 bcdef | 1.04±0.13 b | 33.48±6.78 bc | 274.33±20.13 a |
表4 不同混合基质的黄瓜单株幼苗根系指标
Table 4 Root index of cucumber single seedling in different compound substrates
处理 Treatment | 根系长度 Root length/m | 根系直径 Root diameter/mm | 根系体积 Root volume/cm3 | 根系表面积 Root superficial area/cm2 | 根尖数 Root tip number |
---|---|---|---|---|---|
A1T3 | 1.76±0.17 a | 0.76±0.05 bcde | 1.34±0.20 a | 42.14±7.59 a | 289.67±20.23 a |
A2T2 | 0.86±0.34 c | 0.65±0.07 ef | 0.52±0.16 de | 17.86±3.54 fg | 170.00±14.11 c |
A3T1 | 1.53±0.13 a | 0.69±0.03 def | 0.89±0.03 bc | 32.87±1.78 bc | 215.67±7.51 b |
B1T3 | 0.74±0.25 cd | 0.84±0.09 abc | 0.65±0.11 cde | 18.12±1.27 efg | 141.67±31.21 cde |
B2T2 | 0.78±0.32 cd | 0.62±0.03 f | 0.40±0.13 e | 15.06±5.68 g | 168.00±19.97 c |
B3T1 | 0.47±0.18 de | 0.89±0.14 ab | 0.56±0.07 de | 12.67±3.28 g | 103.33±8.74 e |
C1T3 | 0.77±0.12 cd | 0.81±0.05 abcd | 0.65±0.12 cde | 19.52±2.59 defg | 123.00±21.38 de |
C2T2 | 1.54±0.12 a | 0.82±0.03 abcd | 1.29±0.17 a | 39.01±1.81 ab | 269.67±17.21 a |
C3T1 | 1.11±0.20 bc | 0.71±0.04 cdef | 0.70±0.17 cd | 24.62±4.49 def | 159.67±38.37 cd |
D1T3 | 1.07±0.20 c | 0.79±0.03 abcd | 0.88±0.19 bc | 26.67±5.55 cd | 178.00±42.58 bc |
D2T2 | 1.06±0.20 c | 0.79±0.02 abcd | 0.85±0.12 bc | 26.18±5.28 cde | 180.00±25.24 bc |
D3T1 | 0.16±0.10 e | 0.91±0.16 a | 0.16±0.07 f | 4.44±2.31 h | 33.67±15.63 f |
CK | 1.45±0.19 ab | 0.76±0.05 bcdef | 1.04±0.13 b | 33.48±6.78 bc | 274.33±20.13 a |
指标 Indexes | 根尖数 Root tip number | 根系长度 Root length | 根系直径 Root diameter | 根系体积 Root volume |
---|---|---|---|---|
根系长度 | 0.909** | |||
Root length | ||||
根系直径 | -0.381* | -0.366* | ||
Root diameter | ||||
根系体积 | 0.857** | 0.878** | -0.069 | |
Root volume | ||||
根表面积 | 0.900** | 0.942** | -0.245 | 0.942** |
Root surface area |
表5 根系指标的Pearson相关性分析
Table 5 Pearson correlation analysis of root index
指标 Indexes | 根尖数 Root tip number | 根系长度 Root length | 根系直径 Root diameter | 根系体积 Root volume |
---|---|---|---|---|
根系长度 | 0.909** | |||
Root length | ||||
根系直径 | -0.381* | -0.366* | ||
Root diameter | ||||
根系体积 | 0.857** | 0.878** | -0.069 | |
Root volume | ||||
根表面积 | 0.900** | 0.942** | -0.245 | 0.942** |
Root surface area |
[1] | 联合国粮农组织. 粮食与农业数据[EB/OL]. [2022-09-01]. http://www.fao.org/faostat/zh/#data/QCL. |
[2] | 庞英华, 朱徐燕, 袁福权, 等. 蔬菜植株残体无害化处理及利用技术[J]. 上海蔬菜, 2011(2): 52-53. |
PANG Y H, ZHU X Y, YUAN F Q, et al. Harmless treatment and utilization technology of vegetable plant residues[J]. Shanghai Vegetables, 2011(2): 52-53. (in Chinese) | |
[3] | 时连辉. 几种农业废弃物堆肥过程中理化性状的变化研究[J]. 山东农业大学学报(自然科学版), 2017, 48(5): 716-721. |
SHI L H. Study on the changes of physicochemical properties in composting processes of several agricultural wastes[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2017, 48(5): 716-721. (in Chinese with English abstract) | |
[4] | 郭远, 宋爽, 高琪, 等. 食用菌菌渣资源化利用进展[J]. 食用菌学报, 2022, 29(2): 103-114. |
GUO Y, SONG S, GAO Q, et al. Progress in utilization of spent mushroom substrate[J]. Acta Edulis Fungi, 2022, 29(2): 103-114. (in Chinese with English abstract) | |
[5] | 李希越, 王洪波, 赵玉晓, 等. 好氧生物预处理时间对玉米秸秆水解酸化的影响[J]. 生物质化学工程, 2022, 56(1): 13-22. |
LI X Y, WANG H B, ZHAO Y X, et al. Effect of aerobic biological pretreatment time on hydrolytic acidification of corn straw[J]. Biomass Chemical Engineering, 2022, 56(1): 13-22. (in Chinese with English abstract) | |
[6] | 刘子刚, 卢海博, 赵海超, 等. 旱作区春玉米秸秆还田方式对土壤微生物量碳氮磷及酶活性的影响[J]. 西北农业学报, 2022, 31(2): 183-192. |
LIU Z G, LU H B, ZHAO H C, et al. Effects of methods for spring maize straw-returning to field on soil microbial biomass C, N, P and enzyme activities in dry farming area[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(2): 183-192. (in Chinese with English abstract) | |
[7] | 唐如雪, 田蓉, 年雪妍, 等. 添加菜籽壳对甜玉米秸秆青贮品质的影响[J]. 饲料研究, 2022, 45(2): 83-87. |
TANG R X, TIAN R, NIAN X Y, et al. Effect of rapeseed shell addition on fermentation quality of sweet corn straw silage[J]. Feed Research, 2022, 45(2): 83-87. (in Chinese with English abstract) | |
[8] | 杨惠杰, 叶亚峰, 郭均瑶, 等. 水稻脆性秸秆青贮发酵品质特性的研究[J]. 饲料研究, 2021, 44(22): 92-95. |
YANG H J, YE Y F, GUO J Y, et al. Study on fermentation quality characteristics of rice brittle straw silage[J]. Feed Research, 2021, 44(22): 92-95. (in Chinese with English abstract) | |
[9] | 丁安强, 唐强荣. 水稻秸秆生料栽培大球盖菇主要模式及效益分析[J]. 农业技术与装备, 2021(11): 60-61. |
DING A Q, TANG Q R. Main modes and benefit analysis of cultivating Pleurotus ostreatus with rice straw raw meal[J]. Agricultural Technology & Equipment, 2021(11): 60-61. (in Chinese) | |
[10] | 钱永明, 任东, 唐凤琳, 等. 水稻秸秆生物质炭对Shewanella oneidensis MR-1异化铁还原过程的抑制作用及其潜在机制分析[J]. 农业环境科学学报, 2022, 41(4): 841-848. |
QIAN Y M, REN D, TANG F L, et al. Inhibitory effects and mechanisms of biochar on microbial Fe(Ⅲ)reduction using Shewanella oneidensis MR-1[J]. Journal of Agro-Environment Science, 2022, 41(4): 841-848. (in Chinese with English abstract) | |
[11] | 李阳阳, 陈帅民, 范作伟, 等. 水稻秸秆降解复合菌系的筛选构建及其田间应用效果[J]. 植物营养与肥料学报, 2021, 27(12): 2083-2093. |
LI Y Y, CHEN S M, FAN Z W, et al. Construction and screening of complex microbial system for efficient degradation of rice straw and their application effects under field condition[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2083-2093. (in Chinese with English abstract) | |
[12] | 刘亦凝, 张志飞, 谢展, 等. 葡萄糖和尿素对新鲜水稻秸秆氨化品质的影响[J]. 作物研究, 2022, 36(1): 63-70. |
LIU Y N, ZHANG Z F, XIE Z, et al. Effects of glucose and urea on ammoniated quality of fresh rice straw[J]. Crop Research, 2022, 36(1): 63-70. (in Chinese with English abstract) | |
[13] | 康雅茹, 田光明, 何若. 小麦秸秆预处理对厌氧消化性能的影响研究[J]. 环境污染与防治, 2022, 44(1): 1-7. |
KANG Y R, TIAN G M, HE R. Effect of wheat straw pretreatment on anaerobic digestion performance[J]. Environmental Pollution & Control, 2022, 44(1): 1-7. (in Chinese with English abstract) | |
[14] | 张剑霞, 赵子鑫, 杜瑞平, 等. 苜蓿和小麦秸秆组合对断奶羔羊生长性能、肝脏糖、脂代谢相关基因表达和瘤胃黏膜形态的影响[J]. 动物营养学报, 2022, 34(4): 2613-2625. |
ZHANG J X, ZHAO Z X, DU R P, et al. Effects of combination of alfalfa and wheat straw on growth performance, expression of genes related to liver glucose and lipid metabolism and rumen mucosal morphology of weaned lambs[J]. Chinese Journal of Animal Nutrition, 2022, 34(4): 2613-2625. (in Chinese with English abstract) | |
[15] | 涂坤, 胡斐南, 许晨阳, 等. 小麦秸秆及其生物炭添加对黄绵土表面电化学性质的影响[J]. 水土保持学报, 2022, 36(1): 360-367. |
TU K, HU F N, XU C Y, et al. Effect of wheat straw and its biochar addition on surface electrochemical characteristics of loessal soil[J]. Journal of Soil and Water Conservation, 2022, 36(1): 360-367. (in Chinese with English abstract) | |
[16] | 王玉珑, 于爱忠, 吕汉强, 等. 绿洲灌区小麦秸秆还田与耕作措施对玉米产量的影响[J]. 作物学报, 2022, 48(10): 2671-2679. |
WANG Y L, YU A Z, LYU H Q, et al. Effects of wheat straw returning and tillage practices on corn yield in oasis irrigation area[J]. Acta Agronomica Sinica, 2022, 48(10): 2671-2679. (in Chinese with English abstract) | |
[17] | 陶玥玥, 周新伟, 金梅娟, 等. 湿润稻作体系中还田小麦秸秆分解及土壤活性碳变化特征[J]. 江苏农业学报, 2022, 38(1): 94-101. |
TAO Y Y, ZHOU X W, JIN M J, et al. Decomposition of returned wheat straw and change characteristics of soil active carbon in water-saturated rice production system[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(1): 94-101. (in Chinese with English abstract) | |
[18] | 杨红丽, 王子崇, 张慎璞, 等. 农业有机废弃物发酵基质番茄育苗的试验研究[J]. 中国农学通报, 2009, 25(18): 304-307. |
YANG H L, WANG Z C, ZHANG S P, et al. Study on tomato seedlings in fermentation substrate of agricultural organic wastes[J]. Chinese Agricultural Science Bulletin, 2009, 25(18): 304-307. (in Chinese with English abstract) | |
[19] | 贾荣, 程智慧, 徐文俊, 等. 辣椒穴盘育苗有机基质配方的筛选[J]. 西北农林科技大学学报(自然科学版), 2010, 38(7): 135-140. |
JIA R, CHENG Z H, XU W J, et al. Screening of organic substrate for plug seedling of pepper[J]. Journal of Northwest A & F University (Natural Science Edition), 2010, 38(7): 135-140. (in Chinese with English abstract) | |
[20] | 王春雨. 基于农业废弃物利用的茄果类蔬菜育苗基质研究[D]. 泰安: 山东农业大学, 2010. |
WANG C Y. Study on seedling substrate of Solanum melongena based on utilization of agricultural wastes[D]. Taian: Shandong Agricultural University, 2010. (in Chinese with English abstract) | |
[21] | 余文娟, 田雪梅, 夏文通, 等. 农业废弃物作为番茄穴盘育苗基质配方的筛选[J]. 山东农业科学, 2011, 43(4): 33-35. |
YU W J, TIAN X M, XIA W T, et al. Formula screening of nursing media with agricultural wastes for tomato plug seedlings[J]. Shandong Agricultural Sciences, 2011, 43(4): 33-35. (in Chinese with English abstract) | |
[22] | 常晓晓, 白永娟, 徐炜南, 等. 农业废弃物基质对黄瓜育苗的效果[J]. 西北农业学报, 2017, 26(10): 1492-1498. |
CHANG X X, BAI Y J, XU W N, et al. Effect of agricultural wastes composting substrates on cucumber seedling[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(10): 1492-1498. (in Chinese with English abstract) | |
[23] | 刘丹, 张霞, 柴小媛, 等. 添加矿粉对农业废弃物育苗基质化学性质的影响[J]. 北方园艺, 2017(11): 170-174. |
LIU D, ZHANG X, CHAI X Y, et al. Effect of mineral powder on chemical property of seedling substrate produced from agricultural waste[J]. Northern Horticulture, 2017(11): 170-174. (in Chinese with English abstract) | |
[24] | 于红梅, 赵密珍, 袁华招, 等. 不同农业废弃物复配基质对宁玉草莓高架育苗的影响[J]. 江西农业学报, 2020, 32(4): 33-37. |
YU H M, ZHAO M Z, YUAN H Z, et al. Effects of different compound substrates of agricultural waste on strawberry ‘Ningyu’ viaduct seedlings[J]. Acta Agriculturae Jiangxi, 2020, 32(4): 33-37. (in Chinese with English abstract) | |
[25] | 田红梅, 王朋成, 刘松年, 等. 农业废弃物制备生物菌基质在西瓜育苗中的应用研究[J]. 现代农业科技, 2021(11): 62-64. |
TIAN H M, WANG P C, LIU S N, et al. Study on the application of biological bacteria substrate prepared from agricultural wastes in watermelon seedling raising[J]. Modern Agricultural Science and Technology, 2021(11): 62-64. (in Chinese) | |
[26] | 邓文. 秸秆/菇渣组合基质对三种蔬菜穴盘育苗的影响[D]. 合肥: 安徽农业大学, 2019. |
DENG W. Effect of straw/mushroom residue composite substrate on plug seedling of three vegetables[D]. Hefei: Anhui Agricultural University, 2019. (in Chinese with English abstract) | |
[27] | 崔新卫, 鲁耀雄, 龙世平, 等. 不同农业废弃物营养块对西瓜育苗效果的影响[J]. 南方农业学报, 2011, 42(9): 1087-1090. |
CUI X W, LU Y X, LONG S P, et al. Effect of different agricultural waste nutrition sources on growth of watermelon seedlings[J]. Journal of Southern Agriculture, 2011, 42(9): 1087-1090. (in Chinese with English abstract) | |
[28] | 李蕊. 利用农业废弃物堆肥生产水稻育秧基质的研究[D]. 南京: 南京农业大学, 2013. |
LI R. Study on the production of rice seedling substrate by composting of agricultural waste[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese with English abstract) | |
[29] | 薛颖昊, 徐志宇, 张明明, 等. 我国蔬菜秸秆无害化处理技术优化探讨[J]. 中国农业资源与区划, 2021, 42(10): 75-83. |
XUE Y H, XU Z Y, ZHANG M M, et al. Discussion on optimization for harmless disposal technology of vegetable straw[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(10): 75-83. (in Chinese with English abstract) | |
[30] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[31] | 许金亮, 谢鹏飞, 向世鹏, 等. 喷施外源EBR和H2O2对低温胁迫烟苗恢复生长期生理特性的影响[J]. 中国烟草学报, 2022, 28(3): 44-51. |
XU J L, XIE P F, XIANG S P, et al. Effects of spraying exogenous EBR and H2O2 on the physiological characteristics of tobacco seedlings in the recovery period under low temperature stress[J]. Acta Tabacaria Sinica, 2022, 28(3): 44-51. (in Chinese with English abstract) | |
[32] | 何平, 杨楠, 尚刚林, 等. 多样性混合间栽模式对水稻光合作用的影响[J]. 西南农业学报, 2021, 34(10): 2117-2122. |
HE P, YANG N, SHANG G L, et al. Effects of diversity-interplanting models on rice photosynthesis[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(10): 2117-2122. (in Chinese with English abstract) | |
[33] | 廖映秀, 戴红燕, 杨蛟, 等. 温度对陇藜1号种子萌发和幼苗生长的影响[J]. 安徽农业科学, 2020, 48(19): 30-33. |
LIAO Y X, DAI H Y, YANG J, et al. Effects of different temperatures on the germination and seedling growth of Longli 1[J]. Journal of Anhui Agricultural Sciences, 2020, 48(19): 30-33. (in Chinese with English abstract) | |
[34] | 史元春, 赵成章, 宋清华, 等. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39(4): 362-370. |
SHI Y C, ZHAO C Z, SONG Q H, et al. Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou[J]. Chinese Journal of Plant Ecology, 2015, 39(4): 362-370. (in Chinese with English abstract) | |
[35] | 张咏梅, 胡海英, 白小明, 等. 多年生黑麦草、雀麦根系形态和生长对土壤干旱的适应性[J]. 中国生态农业学报(中英文), 2022, 30(11): 1784-1794. |
ZHANG Y M, HU H Y, BAI X M, et al. Adaptability of root morphology and growth of perennial ryegrass and Bromus to soil drought[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1784-1794. (in Chinese) | |
[36] | YıLDıRıM K, YAĞCı A, SUCU S D, et al. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations[J]. Plant Physiology and Biochemistry, 2018, 127: 256-268. |
[1] | 马新超, 轩正英, 谭占明, 周宇, 王旭峰. 温室沙培黄瓜生产效应的水氮耦合方案优化[J]. 浙江农业学报, 2023, 35(4): 809-820. |
[2] | 娄茜棋, 梁燕. 五类不同果色番茄种质资源品质分析[J]. 浙江农业学报, 2023, 35(3): 582-589. |
[3] | 唐卫东, 刘振文, 刘冬生, 胡雪华. 低温弱光胁迫对设施黄瓜叶片面积与干物质量的影响[J]. 浙江农业学报, 2022, 34(3): 517-524. |
[4] | 疏再发, 刘瑜, 邵静娜, 郑生宏, 周慧娟, 吉庆勇, 何卫中. 浙南早生茶树种质资源主要品质成分分析及优异资源鉴选[J]. 浙江农业学报, 2022, 34(11): 2438-2450. |
[5] | 吴燕君, 洪文英, 章忠梅, 吴耀, 缪强. 设施黄瓜白粉病流行动态与预测模型[J]. 浙江农业学报, 2022, 34(1): 104-111. |
[6] | 殷泽欣, 张璐, 郝丹, 白一帆. 牛粪堆肥替代泥炭用于3种茄科植物育苗的可行性[J]. 浙江农业学报, 2021, 33(9): 1700-1709. |
[7] | 朱诗君, 金树权, 汪峰, 韩永江, 孙杰. 典型城市废弃物混合好氧堆肥的基本特征及其育苗应用潜力[J]. 浙江农业学报, 2021, 33(6): 1069-1077. |
[8] | 牛博, 李丽娜, 庞广昌, 鲁丁强. 植物根尖分生组织传感器的构建及其对尿素传感动力学研究[J]. 浙江农业学报, 2020, 32(8): 1466-1474. |
[9] | 兰挚谦, 张凯歌, 张雪艳. 耕层厚度对黄瓜叶片光合荧光与根系生理特性的影响[J]. 浙江农业学报, 2020, 32(7): 1196-1205. |
[10] | 朱森林, 王丹媚, 唐秀梅, 陈瑞, 杨蓉, 徐月妹, 金璐懿, 任晴雯, 刘鹏, 罗军. 木霉水分散粒剂的培养条件优化及其对黄瓜枯萎病的防治效果[J]. 浙江农业学报, 2020, 32(6): 1009-1018. |
[11] | 林辉, 张锦, 原倩宇, 叶静, 孙万春, 虞轶俊, 俞巧钢, 马军伟. 棘孢木霉和超微粉腐殖质改善连作土壤微生态[J]. 浙江农业学报, 2020, 32(6): 1060-1069. |
[12] | 沈迪, 陈龙正, 路晓华, 陶建平, 冯顾城, 刘洁霞, 冯凯, 尹莲, 丁旭, 贾丽丽, 徐志胜, 刘惠吉, 熊爱生. 苏南地区29个秋冬茬芹菜品种资源评价[J]. 浙江农业学报, 2020, 32(4): 653-660. |
[13] | 白俊艳, 卢军浩, 付学言, 武晓红, 杨又兵, 雷莹, 庞有志, 卢小宁, 巩慧荣, 胡陆星, 刘红涛, 樊红灯, 曹恒, 时坤鹏, 陈梦柯, 马永康. 蛋用鹌鹑IGF-1R基因的多态性与体尺性状相关性分析[J]. 浙江农业学报, 2020, 32(3): 398-405. |
[14] | 邵文奇, 钟平, 董玉兵, 孙春梅, 纪力, 庄春, 陈川, 章安康. 托盘育苗中光温资源差异及其对水稻秧苗素质的影响[J]. 浙江农业学报, 2020, 32(2): 191-199. |
[15] | 金宁, 吕剑, 郁继华, 金莉, 张国斌, 肖雪梅, 胡琳莉. 基质栽培黄瓜叶片水分状况、光合与荧光参数对不同灌水下限的响应[J]. 浙江农业学报, 2020, 32(12): 2162-2172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||