浙江农业学报 ›› 2023, Vol. 35 ›› Issue (4): 809-820.DOI: 10.3969/j.issn.1004-1524.2023.04.08
马新超1,2(), 轩正英1,2,*(
), 谭占明1,2, 周宇3, 王旭峰4
收稿日期:
2022-01-11
出版日期:
2023-04-25
发布日期:
2023-05-05
通讯作者:
*轩正英,E-mail: xzyzky@163.com
作者简介:
马新超(1998—),男,河南南阳人,硕士,主要从事设施农业研究。E-mail:mxczky@163.com
基金资助:
MA Xinchao1,2(), XUAN Zhengying1,2,*(
), TAN Zhanming1,2, ZHOU Yu3, WANG Xufeng4
Received:
2022-01-11
Online:
2023-04-25
Published:
2023-05-05
摘要:
为探究水氮耦合对沙培黄瓜生长、产量、品质及水氮利用率的影响,制定沙培黄瓜高产、高效、优质生产的水氮管理方案,本研究以优胜美水果黄瓜为试材,采用二次饱和D-最优设计进行沙培黄瓜水氮耦合试验,利用二次多项式逐步回归分析建立了以灌水水平及施氮量为自变量,产量、品质综合评分及水氮利用率为目标函数的多目标优化问题模型,并使用遗传算法对数学模型进行模拟寻优。结果表明:各处理的生长、产量、品质、水分利用效率和氮肥利用率都存在显著差异,受到灌水水平、施氮量及其耦合效应在不同程度上的影响。当灌水上限在65.00%~89.40%,施氮量在623~1 250 kg·hm-2时,植株的生长状况较好;在沙培中施氮量是决定黄瓜产量的关键因子,增施氮肥能够显著增产,而过高的施氮量和灌水水平反而会降低产量,符合报酬递减规律;增施氮肥的同时降低灌水水平可获得较高的水分利用效率;过多地增施氮肥,并且灌水水平过高过低都会造成氮肥利用率和品质的下降;该试验条件下,最优的水氮耦合方案为:灌水水平79.12%(即基质田间持水量60.00%~79.12%的灌水上下限设置),施氮量1 100 kg·hm-2,此方案下植株生长健壮并且能够达到高产、高效、优质的农业生产目标,可为沙培黄瓜水氮科学精细化管理提供理论依据。
中图分类号:
马新超, 轩正英, 谭占明, 周宇, 王旭峰. 温室沙培黄瓜生产效应的水氮耦合方案优化[J]. 浙江农业学报, 2023, 35(4): 809-820.
MA Xinchao, XUAN Zhengying, TAN Zhanming, ZHOU Yu, WANG Xufeng. Optimization of water-nitrogen coupling scheme for production effect of cucumber in sand culture in greenhouse[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 809-820.
处理 Treatment | 码值方案Code value solution | 实际值The actual value | ||
---|---|---|---|---|
灌水水平Irrigation level | 施氮量N application | 灌水水平 Irrigation level/% | 施氮量 N application/(kg·hm-2) | |
T1 | -1 | -1 | 65 | 150 |
T2 | 1 | -1 | 100 | 150 |
T3 | -1 | 1 | 65 | 1 250 |
T4 | -0.131 5 | -0.131 5 | 80.20 | 623 |
T5 | 0.394 4 | 1 | 89.40 | 1 250 |
T6 | 1 | 0.394 4 | 100 | 917 |
T7 | 1 | 1 | 100 | 1 250 |
表1 黄瓜水氮耦合试验设计方案
Table 1 Design scheme of cucumber water nitrogen coupling test
处理 Treatment | 码值方案Code value solution | 实际值The actual value | ||
---|---|---|---|---|
灌水水平Irrigation level | 施氮量N application | 灌水水平 Irrigation level/% | 施氮量 N application/(kg·hm-2) | |
T1 | -1 | -1 | 65 | 150 |
T2 | 1 | -1 | 100 | 150 |
T3 | -1 | 1 | 65 | 1 250 |
T4 | -0.131 5 | -0.131 5 | 80.20 | 623 |
T5 | 0.394 4 | 1 | 89.40 | 1 250 |
T6 | 1 | 0.394 4 | 100 | 917 |
T7 | 1 | 1 | 100 | 1 250 |
处理Treatment | Ph/cm | Ts/cm | La/cm2 | Ln | Pw/cm | SPAD |
---|---|---|---|---|---|---|
T1 | 106.65 c | 9.34 e | 103.66 e | 25.67 d | 40.28 c | 50.58 f |
T2 | 84.05 d | 7.75 f | 83.07 e | 23.00 e | 34.90 d | 57.33 e |
T3 | 161.97 a | 12.75 a | 530.80 a | 33.00 a | 62.95 a | 107.38 a |
T4 | 140.62 b | 11.19 d | 328.99 d | 30.17 b | 55.02 b | 107.33 a |
T5 | 155.53 a | 12.05 bc | 452.28 b | 31.17 ab | 56.25 b | 87.60 d |
T6 | 154.35 a | 12.68 ab | 411.74 c | 30.33 b | 57.68 b | 93.90 c |
T7 | 140.97 b | 11.45 cd | 411.40 c | 28.17 c | 55.57 b | 100.73 b |
表2 水氮耦合对沙培黄瓜生长的影响
Table 2 Effects of water nitrogen coupling on the growth of cucumber in sand culture
处理Treatment | Ph/cm | Ts/cm | La/cm2 | Ln | Pw/cm | SPAD |
---|---|---|---|---|---|---|
T1 | 106.65 c | 9.34 e | 103.66 e | 25.67 d | 40.28 c | 50.58 f |
T2 | 84.05 d | 7.75 f | 83.07 e | 23.00 e | 34.90 d | 57.33 e |
T3 | 161.97 a | 12.75 a | 530.80 a | 33.00 a | 62.95 a | 107.38 a |
T4 | 140.62 b | 11.19 d | 328.99 d | 30.17 b | 55.02 b | 107.33 a |
T5 | 155.53 a | 12.05 bc | 452.28 b | 31.17 ab | 56.25 b | 87.60 d |
T6 | 154.35 a | 12.68 ab | 411.74 c | 30.33 b | 57.68 b | 93.90 c |
T7 | 140.97 b | 11.45 cd | 411.40 c | 28.17 c | 55.57 b | 100.73 b |
处理 Treatment | Ph | Ts | La | Ln | Pw | SPAD | Crv | 排序Sort |
---|---|---|---|---|---|---|---|---|
T1 | 0.29 | 0.32 | 0.05 | 0.27 | 0.19 | 0.00 | 0.18 | 6 |
T2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.02 | 7 |
T3 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1 |
T4 | 0.73 | 0.69 | 0.55 | 0.72 | 0.72 | 1.00 | 0.74 | 4 |
T5 | 0.92 | 0.86 | 0.82 | 0.82 | 0.76 | 0.65 | 0.80 | 3 |
T6 | 0.90 | 0.99 | 0.73 | 0.73 | 0.81 | 0.76 | 0.82 | 2 |
T7 | 0.73 | 0.74 | 0.73 | 0.52 | 0.74 | 0.88 | 0.73 | 5 |
表3 基于隶属函数法的各处理生长综合评价及排序
Table 3 Comprehensive evaluation and ranking of growth of each treatment based on membership function method
处理 Treatment | Ph | Ts | La | Ln | Pw | SPAD | Crv | 排序Sort |
---|---|---|---|---|---|---|---|---|
T1 | 0.29 | 0.32 | 0.05 | 0.27 | 0.19 | 0.00 | 0.18 | 6 |
T2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.02 | 7 |
T3 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1 |
T4 | 0.73 | 0.69 | 0.55 | 0.72 | 0.72 | 1.00 | 0.74 | 4 |
T5 | 0.92 | 0.86 | 0.82 | 0.82 | 0.76 | 0.65 | 0.80 | 3 |
T6 | 0.90 | 0.99 | 0.73 | 0.73 | 0.81 | 0.76 | 0.82 | 2 |
T7 | 0.73 | 0.74 | 0.73 | 0.52 | 0.74 | 0.88 | 0.73 | 5 |
处理 Treatment | Ssl/% | Ssg/% | Ta/% | Sar | Sp/(μg· g-1) | VC/(mg· kg-1) | kg-1) | Fn/(μg· kg-1) | Tp/(μg· kg-1) | Hd/N | Mc/% |
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 4.37 ab | 2.14 a | 0.38 a | 2.14 a | 308.65 bc | 117.9 c | 176.52 f | 1.6 ab | 1.8 c | 1.74 c | 94.60 a |
T2 | 3.50 ab | 2.09 a | 0.34 ab | 1.56 cd | 402.09 a | 95.1 e | 213.70 e | 2.0 ab | 1.9 bc | 1.92 bc | 93.50 a |
T3 | 4.70 a | 1.83 b | 0.24 c | 1.56 cd | 289.02 bc | 136.1 b | 325.54 a | 1.2 b | 1.8 c | 2.45 a | 95.45 a |
T4 | 3.27 b | 1.70 bc | 0.34 ab | 2.09 a | 318.05 b | 134.4 b | 234.01 d | 1.5 ab | 2.5 ab | 2.24 ab | 92.96 a |
T5 | 3.77 ab | 1.56 cd | 0.24 c | 1.83 b | 270.78 c | 153.2 a | 266.66 c | 1.6 ab | 2.6 a | 2.19 ab | 95.11 a |
T6 | 3.63 ab | 1.56 cd | 0.29 bc | 1.70 bc | 179.60 d | 107.1 d | 304.47 b | 2.3 a | 2.9 a | 2.16 ab | 94.52 a |
T7 | 4.53 ab | 1.37 d | 0.37 a | 1.37 d | 296.26 bc | 85.6 f | 311.36 b | 1.2 b | 2.4 ab | 2.17 ab | 93.15 a |
表4 水氮耦合对沙培黄瓜果实品质的影响
Table 4 Effect of water and nitrogen coupling on the quality of sand cultured cucumber
处理 Treatment | Ssl/% | Ssg/% | Ta/% | Sar | Sp/(μg· g-1) | VC/(mg· kg-1) | kg-1) | Fn/(μg· kg-1) | Tp/(μg· kg-1) | Hd/N | Mc/% |
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 4.37 ab | 2.14 a | 0.38 a | 2.14 a | 308.65 bc | 117.9 c | 176.52 f | 1.6 ab | 1.8 c | 1.74 c | 94.60 a |
T2 | 3.50 ab | 2.09 a | 0.34 ab | 1.56 cd | 402.09 a | 95.1 e | 213.70 e | 2.0 ab | 1.9 bc | 1.92 bc | 93.50 a |
T3 | 4.70 a | 1.83 b | 0.24 c | 1.56 cd | 289.02 bc | 136.1 b | 325.54 a | 1.2 b | 1.8 c | 2.45 a | 95.45 a |
T4 | 3.27 b | 1.70 bc | 0.34 ab | 2.09 a | 318.05 b | 134.4 b | 234.01 d | 1.5 ab | 2.5 ab | 2.24 ab | 92.96 a |
T5 | 3.77 ab | 1.56 cd | 0.24 c | 1.83 b | 270.78 c | 153.2 a | 266.66 c | 1.6 ab | 2.6 a | 2.19 ab | 95.11 a |
T6 | 3.63 ab | 1.56 cd | 0.29 bc | 1.70 bc | 179.60 d | 107.1 d | 304.47 b | 2.3 a | 2.9 a | 2.16 ab | 94.52 a |
T7 | 4.53 ab | 1.37 d | 0.37 a | 1.37 d | 296.26 bc | 85.6 f | 311.36 b | 1.2 b | 2.4 ab | 2.17 ab | 93.15 a |
处理 Treatment | Ci | 排序结果 Sort result | ||
---|---|---|---|---|
T1 | 0.506 | 0.344 | 0.405 | 6 |
T2 | 0.413 | 0.402 | 0.493 | 4 |
T3 | 0.438 | 0.447 | 0.505 | 3 |
T4 | 0.366 | 0.39 | 0.516 | 2 |
T5 | 0.358 | 0.409 | 0.533 | 1 |
T6 | 0.478 | 0.372 | 0.437 | 5 |
表5 基于TOPSIS法的各处理果实品质综合评价及排序
Table 5 Comprehensive evaluation and ranking of fruit quality of each treatment based on TOPSIS method
处理 Treatment | Ci | 排序结果 Sort result | ||
---|---|---|---|---|
T1 | 0.506 | 0.344 | 0.405 | 6 |
T2 | 0.413 | 0.402 | 0.493 | 4 |
T3 | 0.438 | 0.447 | 0.505 | 3 |
T4 | 0.366 | 0.39 | 0.516 | 2 |
T5 | 0.358 | 0.409 | 0.533 | 1 |
T6 | 0.478 | 0.372 | 0.437 | 5 |
图5 经过60次迭代后产量、水分利用效率、氮肥利用率、综合品质以及整体模型最优解及性能跟踪
Fig.5 After 60 iterations, yield, water use efficiency, nitrogen use efficiency, comprehensive quality, optimal solution and performance tracking of the overall model
[1] | 祝鹏飞, 武燊, 束良佐, 等. 局部根区灌溉水氮耦合对设施黄瓜生长及土壤中硝态氮分布的影响[J]. 水土保持通报, 2013, 33(2): 6-10, 16. |
ZHU P F, WU S, SHU L Z, et al. Coupling effects of water and nitrogen application with partial root-zone irrigation on growth of cucumber and nitrate nitrogen distribution in soil[J]. Bulletin of Soil and Water Conservation, 2013, 33(2): 6-10, 16. (in Chinese with English abstract) | |
[2] | 方荣杰, 江斌伟, 房军. 日光温室地下滴灌条件下黄瓜水氮耦合效应研究[J]. 节水灌溉, 2015(12): 21-24, 27. |
FANG R J, JIANG B W, FANG J. Coupling effect of water and nitrogen on cucumber under subsurface drip irrgation in solar greenhouse[J]. Water Saving Irrigation, 2015(12): 21-24, 27. (in Chinese with English abstract) | |
[3] | 李银坤, 武雪萍, 武其甫, 等. 不同水氮处理对温室黄瓜产量、品质及水分利用效率的影响[J]. 中国土壤与肥料, 2010(3): 21-24, 30. |
LI Y K, WU X P, WU Q F, et al. Effects of different water and nitrogen treatment on the yield and quality and water use efficiency of cucumber in greenhouse[J]. Soil and Fertilizer Sciences in China, 2010(3): 21-24, 30. (in Chinese with English abstract) | |
[4] | 高丽, 李红岭, 王铁臣, 等. 水氮耦合对日光温室黄瓜根系生长的影响[J]. 农业工程学报, 2012, 28(8): 58-64. |
GAO L, LI H L, WANG T C, et al. Coupling effect of water and nitrogen on cucumber root growth in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 58-64. (in Chinese with English abstract) | |
[5] |
朱常安, 和志豪, 蔡泽林, 等. 融合镁元素的水肥多因子耦合对黄瓜综合营养品质的调控[J]. 中国农业科学, 2019, 52(18): 3258-3270.
DOI |
ZHU C G, HE Z H, CAI Z L, et al. Regulation of comprehensive nutritional quality of cucumber by water and fertilizer coupling with magnesium[J]. Scientia Agricultura Sinica, 2019, 52(18): 3258-3270. (in Chinese with English abstract)
DOI |
|
[6] | 张汉玲. 沙培黄瓜简介[J]. 河北农业科技, 1979(4): 22-23. |
ZHANG H L. Brief introduction of cucumber in sand culture[J]. Hebei Agricultural Science and Technology, 1979(4): 22-23. (in Chinese) | |
[7] | 张雪艳, 汪贵红, 李建设, 等. 宁夏设施砂培水果黄瓜品种筛选[J]. 北方园艺, 2013(9): 49-51. |
ZHANG X Y, WANG G H, LI J S, et al. Screening test on fruit cucumber varieties under sand culture in greenhouse in ningxia[J]. Northern Horticulture, 2013(9): 49-51. (in Chinese with English abstract) | |
[8] | 王泽, 李治勤, 晏清洪, 等. 不同滴灌形式对沙培黄瓜生长、品质及产量的影响[J]. 北方园艺, 2019(11): 66-71. |
WANG Z, LI Z Q, YAN Q H, et al. Effect of different drip irrigation methods on growth, quality and yield of cucumber in sand culture[J]. Northern Horticulture, 2019(11): 66-71. (in Chinese with English abstract) | |
[9] | 杜永臣, 张福墁, 刘步洲. 不同形态氮素对温室沙培黄瓜生长发育的影响[J]. 园艺学报, 1989, 16(1): 45-50. |
DU Y C, ZHANG F M, LIU B Z. Effects of nitrogen form on growth, development, yield and composition of cucumber in sand culture[J]. Acta Horticulturae Sinica, 1989, 16(1): 45-50. (in Chinese with English abstract) | |
[10] | 杜建军, 李永胜, 崔英德, 等. 不同保水剂及用量对砂培黄瓜幼苗生长和水分利用效率的影响[J]. 中国农学通报, 2006, 22(11): 472-476. |
DU J J, LI Y S, CUI Y D, et al. Effect of different water retaining agents and their application rates on the growth and WUE of cucumber seeding in sand substrate[J]. Chinese Agricultural Science Bulletin, 2006, 22(11): 472-476. (in Chinese with English abstract)
DOI |
|
[11] | 鲁如坤, 刘鸿翔, 闻大中, 等. 我国典型地区农业生态系统养分循环和平衡研究 Ⅳ.农田养分平衡的评价方法和原则[J]. 土壤通报, 1996, 27(5): 197-199. |
LU R K, LIU H X, WEN D Z, et al. Nutrient cycling and balance of agricultural ecosystem in typical areas of China ⅳ. Evaluation methods and principles of nutrient balance in farmland[J]. Chinese Journal of Soil Science, 1996, 27(5): 197-199. (in Chinese) | |
[12] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[13] | 高俊凤. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006. |
[14] | 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007. |
[15] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[16] | 何晓群. 多元统计分析[M]. 5版. 北京: 中国人民大学出版社, 2019. |
[17] | 雷英杰. MATLAB遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2005. |
[18] | 史峰, 王辉, 郁磊. MATLAB智能算法30个案例分析[M]. 北京: 北京航空航天大学出版社, 2011. |
[19] | 刘学娜, 刘彬彬, 崔青青, 等. 交替滴灌施氮对日光温室黄瓜生长、光合特性、产量及水氮利用效率的影响[J]. 植物生理学报, 2016, 52(6): 905-916. |
LIU X N, LIU B B, CUI Q Q, et al. Effects of alternative drip irrigation and nitrogen fertilization on growth, photosynthesis, yield, and water-nitrogen use effi ciency of cucumbers in solar greenhouse[J]. Plant Physiology Journal, 2016, 52(6): 905-916. (in Chinese with English abstract) | |
[20] |
李静, 张富仓, 方栋平, 等. 水氮供应对滴灌施肥条件下黄瓜生长及水分利用的影响[J]. 中国农业科学, 2014, 47(22): 4475-4487.
DOI |
LI J, ZHANG F C, FANG D P, et al. Effects of water and nitrogen supply on the growth and water use efficiency of cucumber(Cucumis sativus L.)under fertigation[J]. Scientia Agricultura Sinica, 2014, 47(22): 4475-4487. (in Chinese with English abstract) | |
[21] |
蒋静静, 屈锋, 苏春杰, 等. 不同肥水耦合对黄瓜产量品质及肥料偏生产力的影响[J]. 中国农业科学, 2019, 52(1): 86-97.
DOI |
JIANG J J, QU F, SU C J, et al. Effects of different water and fertilizer coupling on yield and quality of cucumber and partial factor productivity of fertilizer[J]. Scientia Agricultura Sinica, 2019, 52(1): 86-97. (in Chinese with English abstract)
DOI |
|
[22] | 李银坤, 武雪萍, 吴会军, 等. 水氮条件对温室黄瓜光合日变化及产量的影响[J]. 农业工程学报, 2010, 26(S1): 122-129. |
LI Y K, WU X P, WU H J, et al. Effects of water and nitrogen conditions on the diurnal variation of photosynthesis and yield of cucumber in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S1): 122-129. (in Chinese with English abstract) | |
[23] |
王颀, 吴春涛, 李丹丹, 等. 水肥一体化模式下日光温室黄瓜氮磷钾优化施肥方案的研究[J]. 园艺学报, 2018, 45(4): 764-774.
DOI |
WANG Q, WU C T, LI D D, et al. Studies on the optimized scheme of nitrogen, phosphorus and potassium fertilizations of cucumber in solar-greenhouse under integral control of water and fertilization[J]. Acta Horticulturae Sinica, 2018, 45(4): 764-774. (in Chinese with English abstract)
DOI |
|
[24] | 陈修斌, 蒋梦婷, 尹鑫, 等. 水氮配施对绿洲温室黄瓜氮素代谢及产量品质的影响[J]. 土壤与作物, 2021, 10(1): 79-90. |
CHEN X B, JIANG M T, YIN X, et al. Effects of water and nitrogen coupling on nitrogen metabolism and yield and quality of cucumber in oasis greenhouse of Gansu Province[J]. Soils and Crops, 2021, 10(1): 79-90. (in Chinese with English abstract) | |
[25] | 肖自添. 温室基质培番茄水氮耦合效应研究[D]. 北京: 中国农业科学院, 2008. |
XIAO Z T. Water and nitrogen interactions on tomato growing in eco-organic type soilless culture[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese with English abstract) | |
[26] |
张钧恒, 马乐乐, 李建明. 全有机营养肥水耦合对番茄品质、产量及水分利用效率的影响[J]. 中国农业科学, 2018, 51(14): 2788-2798.
DOI |
ZHANG J H, MA L L, LI J M. Effects of all-organic nutrient solution and water coupling on quality, yield and water use efficiency of tomato[J]. Scientia Agricultura Sinica, 2018, 51(14): 2788-2798. (in Chinese with English abstract)
DOI |
|
[27] | 隋娟, 王建东, 龚时宏, 等. 滴灌条件下水肥耦合对农田水氮分布及运移规律的影响[J]. 灌溉排水学报, 2014, 33(1): 1-6, 29. |
SUI J, WANG J D, GONG S H, et al. Coupling effects of water-fertilizer on soil water distribution and soil nitrogen under drip irrigation[J]. Journal of Irrigation and Drainage, 2014, 33(1): 1-6, 29. (in Chinese with English abstract) | |
[28] | 潘铜华. 温室番茄长季节基质袋培水肥耦合效应研究[D]. 杨凌: 西北农林科技大学, 2015. |
PAN T H. Study on the effect of water and fertilizer coupling on tomato long-season cultivated in bag with substrate in greenhouse[D]. Yangling: Northwest A & F University, 2015. (in Chinese with English abstract) | |
[29] | 胡晓辉, 高子星, 马永博, 等. 基于产量品质及水肥利用率的袋培辣椒水肥耦合方案[J]. 农业工程学报, 2020, 36(17): 81-89. |
HU X H, GAO Z X, MA Y B, et al. Coupling scheme of water and fertilizer based on yield, quality, use efficiency of water and fertilizer in bag pepper growing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 81-89. (in Chinese with English abstract) | |
[30] | 李建明, 于雪梅, 王雪威, 等. 基于产量品质和水肥利用效率西瓜滴灌水肥制度优化[J]. 农业工程学报, 2020, 36(9): 75-83. |
LI J M, YU X M, WANG X W, et al. Optimization of fertigation scheduling for drip-irrigated watermelon based on its yield, quality and fertilizer and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 75-83. (in Chinese with English abstract) | |
[31] | 李志军, 李静, 张富仓, 等. 水氮供应对温室滴灌施肥黄瓜产量及品质的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(12): 143-150. |
LI Z J, LI J, ZHANG F C, et al. Effects of water and nitrogen supply on yield and quality of greenhouse cucumber under fertigation[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(12): 143-150. (in Chinese with English abstract) | |
[32] | 张忠学, 张世伟, 郭丹丹, 等. 玉米不同水肥条件的耦合效应分析与水肥配施方案寻优[J]. 农业机械学报, 2017, 48(9): 206-214. |
ZHANG Z X, ZHANG S W, GUO D D, et al. Coupling effects of different water and fertilizer conditions and optimization of water and fertilizer schemes on maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 206-214. (in Chinese with English abstract) | |
[33] | 刘学娜. 水氮耦合对日光温室黄瓜生理特性及水氮利用效率的影响[D]. 泰安: 山东农业大学, 2016. |
LIU X N. Effects of water and nitrogen coupling on physiological characteristics and water-nitrogen use efficiency of cucumber in solar greenhouse[D]. Tai’an: Shandong Agricultural University, 2016. (in Chinese with English abstract) | |
[34] | 李静. 滴灌施肥条件下温室黄瓜水氮耦合效应研究[D]. 杨凌: 西北农林科技大学, 2015. |
LI J. Coupling effect of water and nitrogen on greenhouse cucumber with fertigation[D]. Yangling: Northwest A & F University, 2015. (in Chinese with English abstract) |
[1] | 柴冠群, 周玮, 梁红, 范菲菲, 朱大雁, 范成五. 叶面喷施锌肥和柠檬酸对辣椒产量、品质与Cd吸收转运的影响[J]. 浙江农业学报, 2023, 35(5): 1069-1079. |
[2] | 黄正, 张荣萍, 马鹏, 张琪, 周宁宁, 阿什日轨, 冯婷煜, 周林. 冬水田油菜秸秆还田和氮肥运筹对杂交稻干物质积累和产量的影响[J]. 浙江农业学报, 2023, 35(5): 983-991. |
[3] | 檀舒霞, 赵桃弟, 杨豪, 宁可君, 刘丽, 何庆元, 黄守程, 舒英杰. 遮阴对10个菜用大豆品种农艺性状、产量和硝态氮代谢的影响[J]. 浙江农业学报, 2023, 35(4): 729-735. |
[4] | 马义虎, 曾孝元, 何贤彪, 周奶弟, 陈剑. 浙东南地区优质稻产量与品质对不同播期气候因子的响应[J]. 浙江农业学报, 2023, 35(4): 736-751. |
[5] | 王金凤, 周琦, 吕玉龙, 陈卓梅. 间作景观树种对茶园生态系统与茶叶生产的影响[J]. 浙江农业学报, 2023, 35(3): 523-533. |
[6] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
[7] | 王犇, 李宇星, 李哲, 姜沣溢, 黄正来, 樊永惠, 张文静, 马尚宇. 海藻糖处理对花后高温胁迫弱筋小麦生选6号产量形成及品质的影响[J]. 浙江农业学报, 2023, 35(1): 1-9. |
[8] | 李永晖, 李捷, 冯丽丹, 何静, 张煦, 刘祥林. 不同植物免疫诱抗剂对枸杞鲜果产量、抗病性和贮藏能力的差异比较[J]. 浙江农业学报, 2023, 35(1): 164-174. |
[9] | 杨胜玲, 黄兴成, 李渝, 刘彦伶, 张雅蓉, 张艳, 张文安, 蒋太明. 长期有机无机肥配施对水稻生长、干物质积累及产量的影响[J]. 浙江农业学报, 2022, 34(9): 1815-1825. |
[10] | 李旺雄, 张洋, 唐中祺, 郁继华. 平衡施肥对设施基质栽培番茄生长、品质、矿质元素含量与产量的影响[J]. 浙江农业学报, 2022, 34(8): 1648-1660. |
[11] | 邹振浩, 孙业良, 赵玉宝, 李鑫, 张丽平, 张兰, 董春旺, 付建玉, 韩文炎, 颜鹏. 采摘花芽对春茶产量与品质的影响[J]. 浙江农业学报, 2022, 34(7): 1369-1376. |
[12] | 朱诗君, 金树权, 姚红燕, 徐志豪, 罗幼君, 陈若霞. 不同基肥及追肥配比对凤梨生长、产量和品质的影响[J]. 浙江农业学报, 2022, 34(6): 1217-1226. |
[13] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[14] | 叶迎, 赵考诚, 马军, 祝轲, 庄恒扬. 播期和施氮量组合对水稻南粳9108产量和氮素利用的影响[J]. 浙江农业学报, 2022, 34(5): 879-886. |
[15] | 胡开博, 杨清夏, 李扬, 吴开贤, 赵平, 龙光强. 化肥减氮配施氨基酸肥料对春玉米生产的影响[J]. 浙江农业学报, 2022, 34(4): 661-670. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 558
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||