浙江农业学报 ›› 2023, Vol. 35 ›› Issue (5): 1069-1079.DOI: 10.3969/j.issn.1004-1524.2023.05.10
柴冠群1(), 周玮1, 梁红2, 范菲菲1, 朱大雁1, 范成五1,*(
)
收稿日期:
2022-05-31
出版日期:
2023-05-25
发布日期:
2023-06-01
作者简介:
柴冠群(1990—),男,山西临汾人,硕士,助理研究员,主要从事农产品产地重金属污染防控工作。E-mail:chaiguanqun@163.com
通讯作者:
*范成五,E-mail:18985581415@189.cn
基金资助:
CHAI Guanqun1(), ZHOU Wei1, LIANG Hong2, FAN Feifei1, ZHU Dayan1, FAN Chengwu1,*(
)
Received:
2022-05-31
Online:
2023-05-25
Published:
2023-06-01
摘要:
为明确ZnSO4与柠檬酸对辣椒的作用效果,以期为辣椒Cd安全生产提供理论依据,采用盆栽试验,研究叶面喷施200 μmol·L-1 ZnSO4、40 μmol·L-1 柠檬酸和二者复配对辣椒(Capsicum annuum L.)吸收转运Cd、产量与品质的影响,结果表明:与叶面喷施纯水相比,协同喷施200 μmol·L-1 ZnSO4与40 μmol·L-1 柠檬酸(Zn200+CA40)处理显著降低了辣椒果实产量、可溶性糖与氨基酸含量,可溶性蛋白含量显著增加,辣椒碱含量变化不显著。供试辣椒品种青红元帅对土壤Cd具有较强的富集能力,不同部位Cd含量为主茎上叶>根>果实>叉茎上叶>叉茎≈主茎;不同处理辣椒果实Cd含量介于0.58~0.79 mg·kg-1;与叶面喷施纯水相比,Zn200+CA40处理辣椒果实Cd含量显著(P<0.05)降低了26.58%,该处理显著降低了根净吸Cd量及其主茎上叶与叉茎上叶向果实转运Cd的效率,显著增加了根向主茎、叉茎、主茎上叶与叉茎上叶转运Cd的效率,并显著增加了辣椒地上部营养器官Cd的分配比例,尤其是主茎上叶Cd的分配比例。综上,Zn200+CA40处理果实Cd含量降低主要是由于辣椒根净吸Cd量及其主茎上叶向果实转运Cd的效率降低。
中图分类号:
柴冠群, 周玮, 梁红, 范菲菲, 朱大雁, 范成五. 叶面喷施锌肥和柠檬酸对辣椒产量、品质与Cd吸收转运的影响[J]. 浙江农业学报, 2023, 35(5): 1069-1079.
CHAI Guanqun, ZHOU Wei, LIANG Hong, FAN Feifei, ZHU Dayan, FAN Chengwu. Effect of foliar spraying of zinc fertilizer and citric acid on yield, quality and Cd absorption and transport ation of pepper[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1069-1079.
处理 Treatment | 果实干重 Dry weight of fruits/g | 果实数量 Number of fruits | 单果干重 Dry weight per fruit/g | 整株干重 Dry weight of whole plant/g | 果实干重占比 Percentage of dry weight of fruit/% |
---|---|---|---|---|---|
CK | 33.01±0.18 a | 54.67±0.47 ab | 0.60±0.01 a | 75.50±0.41 a | 43.73±0.48 a |
Zn200 | 33.12±2.07 a | 50.00±2.45 b | 0.66±0.01 a | 76.11±2.22 a | 43.48±1.58 a |
CA40 | 31.52±1.5 ab | 60.00±3.27 a | 0.51±0.05 b | 77.91±2.62 a | 39.15±0.61 b |
Zn200+CA40 | 29.31±0.99 b | 49.67±4.50 b | 0.59±0.05 ab | 74.17±0.06 a | 39.52±1.30 b |
表1 不同处理的辣椒生物量(干基)
Table 1 Biomass of peppers under different treatments (Dry weight)
处理 Treatment | 果实干重 Dry weight of fruits/g | 果实数量 Number of fruits | 单果干重 Dry weight per fruit/g | 整株干重 Dry weight of whole plant/g | 果实干重占比 Percentage of dry weight of fruit/% |
---|---|---|---|---|---|
CK | 33.01±0.18 a | 54.67±0.47 ab | 0.60±0.01 a | 75.50±0.41 a | 43.73±0.48 a |
Zn200 | 33.12±2.07 a | 50.00±2.45 b | 0.66±0.01 a | 76.11±2.22 a | 43.48±1.58 a |
CA40 | 31.52±1.5 ab | 60.00±3.27 a | 0.51±0.05 b | 77.91±2.62 a | 39.15±0.61 b |
Zn200+CA40 | 29.31±0.99 b | 49.67±4.50 b | 0.59±0.05 ab | 74.17±0.06 a | 39.52±1.30 b |
处理 Treatment | 可溶性糖含量 Soluble sugars content/ (g·kg-1) | 可溶性蛋白含量 Soluble proteins content/ (g·kg-1) | 氨基酸含量 Amino acids content/ (mg·kg-1) | 辣椒碱含量 Capsaicin content/ (g·kg-1) | VC含量 VC content/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 80.36±1.81 a | 23.12±0.26 c | 1 572.21±100.41 a | 1.91±0.14 a | 422.49±18.32 b |
Zn200 | 68.23±1.34 b | 21.49±0.67 d | 1 645.83±13.50 a | 1.62±0.21 a | 607.69±29.02 a |
CA40 | 81.23±3.47 a | 29.92±0.42 b | 1 396.94±70.43 b | 1.60±0.26 a | 403.17±16.99 b |
Zn200+CA40 | 44.85±0.96 c | 31.66±1.06 a | 1 264.23±45.26 b | 2.15±0.51 a | 414.85±23.99 b |
表2 不同处理辣椒果实品质差异
Table 2 Differences in fruit quality of peppers under different treatments
处理 Treatment | 可溶性糖含量 Soluble sugars content/ (g·kg-1) | 可溶性蛋白含量 Soluble proteins content/ (g·kg-1) | 氨基酸含量 Amino acids content/ (mg·kg-1) | 辣椒碱含量 Capsaicin content/ (g·kg-1) | VC含量 VC content/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 80.36±1.81 a | 23.12±0.26 c | 1 572.21±100.41 a | 1.91±0.14 a | 422.49±18.32 b |
Zn200 | 68.23±1.34 b | 21.49±0.67 d | 1 645.83±13.50 a | 1.62±0.21 a | 607.69±29.02 a |
CA40 | 81.23±3.47 a | 29.92±0.42 b | 1 396.94±70.43 b | 1.60±0.26 a | 403.17±16.99 b |
Zn200+CA40 | 44.85±0.96 c | 31.66±1.06 a | 1 264.23±45.26 b | 2.15±0.51 a | 414.85±23.99 b |
处理 Treament | 果实 Fruit | 叉茎 Fork stem | 主茎 Main stem | 叉茎上叶 Leaf on fork stem | 主茎上叶 Leaf on main stem | 根 Root | 地上部 Above-ground parts | 地上部营养器官 Above-ground vegetative organs | 整株 Whole plant |
---|---|---|---|---|---|---|---|---|---|
CK | 0.79±0.04 a | 0.35±0.01 a | 0.31±0.04 a | 0.56±0.02b | 2.14±0.10 a | 1.98±0.06 a | 0.62±0.02 a | 0.52±0.01 a | 0.75±0.03 a |
Zn200 | 0.64±0.03 b | 0.36±0.03 a | 0.28±0.02 a | 0.61±0.02 a | 1.61±0.21 b | 1.61±0.10 b | 0.55±0.02 b | 0.48±0.02 b | 0.64±0.03b |
CA40 | 0.73±0.01 a | 0.39±0.03 a | 0.32±0.03 a | 0.60±0.01 a | 2.29±0.09 a | 1.43±0.10 b | 0.63±0.01 a | 0.52±0.02 a | 0.70±0.01 a |
Zn200+CA40 | 0.58±0.06 b | 0.28±0.02 b | 0.31±0.01 a | 0.53±0.01 b | 2.37±0.02 a | 1.14±0.11 c | 0.55±0.02 b | 0.52±0.03 a | 0.61±0.03 b |
表3 不同处理辣椒不同部位Cd含量特征(干基)
Table 3 Characteristics of Cd content in different parts of peppers under different treatments (Dry weight) mg·kg-1
处理 Treament | 果实 Fruit | 叉茎 Fork stem | 主茎 Main stem | 叉茎上叶 Leaf on fork stem | 主茎上叶 Leaf on main stem | 根 Root | 地上部 Above-ground parts | 地上部营养器官 Above-ground vegetative organs | 整株 Whole plant |
---|---|---|---|---|---|---|---|---|---|
CK | 0.79±0.04 a | 0.35±0.01 a | 0.31±0.04 a | 0.56±0.02b | 2.14±0.10 a | 1.98±0.06 a | 0.62±0.02 a | 0.52±0.01 a | 0.75±0.03 a |
Zn200 | 0.64±0.03 b | 0.36±0.03 a | 0.28±0.02 a | 0.61±0.02 a | 1.61±0.21 b | 1.61±0.10 b | 0.55±0.02 b | 0.48±0.02 b | 0.64±0.03b |
CA40 | 0.73±0.01 a | 0.39±0.03 a | 0.32±0.03 a | 0.60±0.01 a | 2.29±0.09 a | 1.43±0.10 b | 0.63±0.01 a | 0.52±0.02 a | 0.70±0.01 a |
Zn200+CA40 | 0.58±0.06 b | 0.28±0.02 b | 0.31±0.01 a | 0.53±0.01 b | 2.37±0.02 a | 1.14±0.11 c | 0.55±0.02 b | 0.52±0.03 a | 0.61±0.03 b |
图1 不同处理辣椒各部位Cd分配比例 CK,叶面喷施纯水;Zn200,叶面喷施200 μmol·L-1 ZnSO4;CA40,叶面喷施40 μmol·L-1柠檬酸;Zn200+CA40,叶面喷施200 μmol·L-1 ZnSO4与40 μmol·L-1柠檬酸。不同处理下辣椒相同部位间不同小写字母表示差异达显著水平(P<0.05)。下同。
Fig.1 Proportion of Cd accumulation in each part of pepper under different treatments CK, Spraying pure water on leaves; Zn200, Spraying 200 μmol·L-1 ZnSO4 on leaves; CA40, Spraying 40 μmol·L-1 citric acid on leaves; Zn200+CA40, Spraying 200 μmol·L-1 ZnSO4 and 40 μmol·L-1 citric acid on leaves. The different lowercase letters indicated significant differences (P<0.05) among the same part under the different treatment. The same as below.
图2 各处理辣椒对Cd富集能力与根向地上部或茎叶转运Cd的效率
Fig.2 Cd enrichment capacity and efficiency of Cd translocation from root to above-ground part, stem and leaf by pepper in each treatment
变异来源 Source of variation | 平方和 Sum of square | 自由度 Degree of freedom | 均方 Mean square | F值 F value |
---|---|---|---|---|
修正模型Modified model | 10.421# | 3 | 3.474 | 16.472** |
截距Intercept | 687.629 | 1 | 687.629 | 3 260.564** |
Zn | 3.291 | 1 | 3.291 | 15.604** |
CA | 3.867 | 1 | 3.867 | 18.336** |
Zn×CA | 3.264 | 1 | 3.264 | 15.475** |
误差Error | 1.687 | 8 | 0.211 | |
总计Sum | 699.737 | 12 | ||
校正的总计Modified sum | 12.108 | 11 |
表4 辣椒根Cd净吸收量双因素方差分析
Table 4 Two-factor ANOVA for net Cd uptake by pepper roots
变异来源 Source of variation | 平方和 Sum of square | 自由度 Degree of freedom | 均方 Mean square | F值 F value |
---|---|---|---|---|
修正模型Modified model | 10.421# | 3 | 3.474 | 16.472** |
截距Intercept | 687.629 | 1 | 687.629 | 3 260.564** |
Zn | 3.291 | 1 | 3.291 | 15.604** |
CA | 3.867 | 1 | 3.867 | 18.336** |
Zn×CA | 3.264 | 1 | 3.264 | 15.475** |
误差Error | 1.687 | 8 | 0.211 | |
总计Sum | 699.737 | 12 | ||
校正的总计Modified sum | 12.108 | 11 |
图4 不同处理辣椒根Cd净吸收量 图A中不同小写字母表示同一柠檬酸用量条件下不同ZnSO4用量间的差异达到极显著水平(P<0.01);图B中不同小写字母表示同一ZnSO4用量条件下不同柠檬酸用量间的差异达到极显著水平(P<0.01)。
Fig.4 Net Cd uptake by pepper root in different treatments The different lowercase letters indicate extremely significant different (P<0.01) between different ZnSO4 application rates under the same citric acid application rates in figure A; The different lowercase letters indicate extremely significant different (P<0.01) between different citric acid application rates under the same ZnSO4 application rates in figure B.
[1] | 黄道梅, 魏江霖, 吴世焕, 等. 贵州省辣椒加工业发展现状解析[J]. 中国调味品, 2019, 44(10): 187-189. |
HUANG D M, WEI J L, WU S H, et al. Analysis on the development status of chili processing industry in Guizhou Province[J]. China Condiment, 2019, 44(10): 187-189. (in Chinese with English abstract) | |
[2] |
张建, 杨瑞东, 陈蓉, 等. 贵州喀斯特地区土壤-辣椒体系重金属元素的生物迁移积累特征[J]. 食品科学, 2017, 38(21): 175-181.
DOI |
ZHANG J, YANG R D, CHEN R, et al. Bioconcentration of heavy metals in soil-Capsicum annuum L. system in Karst areas of Guizhou Province[J]. Food Science, 2017, 38(21): 175-181. (in Chinese with English abstract)
DOI |
|
[3] |
WANG S Y, WU W Y, LIU F, et al. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn[J]. Environmental Science and Pollution Research, 2017, 24(18): 15209-15225.
DOI URL |
[4] |
LUO K, LIU H Y, LIU Q D, et al. Cadmium accumulation and migration of 3 peppers varieties in yellow and limestone soils under geochemical anomaly[J]. Environmental Technology, 2022, 43(1): 10-20.
DOI URL |
[5] | 胡立志, 刘鸿雁, 刘青栋, 等. 贵州喀斯特地区辣椒镉的累积特性及土壤风险阈值研究[J]. 生态科学, 2021, 40(3): 193-200. |
HU L Z, LIU H Y, LIU Q D, et al. Cadmium accumulation properties of pepper and risk threshold of soils in Karst Area of Guizhou Province[J]. Ecological Science, 2021, 40(3): 193-200. (in Chinese with English abstract) | |
[6] | 陈贵青, 张晓璟, 徐卫红, 等. 不同Zn水平下辣椒体内Cd的积累、化学形态及生理特性[J]. 环境科学, 2010, 31(7): 1657-1662. |
CHEN G Q, ZHANG X J, XU W H, et al. Effect of different zinc levels on accumulation and chemical forms of cadmium, and physiological characterization in Capsicum annuum L[J]. Environmental Science, 2010, 31(7): 1657-1662. (in Chinese with English abstract) | |
[7] | 李洋, 张乃明, 魏复盛. 滇东镉高背景区菜地土壤健康风险评价与基准[J]. 中国环境科学, 2020, 40(10): 4522-4530. |
LI Y, ZHANG N M, WEI F S. A benchmark study on soil health risks of vegetable fields in a high-cadmium background area in eastern Yunnan[J]. China Environmental Science, 2020, 40(10): 4522-4530. (in Chinese with English abstract) | |
[8] | 中华人民共和国农业农村部. 轻中度污染耕地安全利用与治理修复推荐技术名录(2019年版)[EB/OL]. (2015-03-25)[2022-05-29]. http://nynct.guizhou.gov.cn/zwgk/xxgkml/zdlyxx/nzccqk/201907/t20190710_25814041.html. |
[9] |
XIN J L, HUANG B F, LIU A Q, et al. Identification of hot pepper cultivars containing low Cd levels after growing on contaminated soil: uptake and redistribution to the edible plant parts[J]. Plant and Soil, 2013, 373(1): 415-425.
DOI URL |
[10] | 赵首萍, 叶雪珠, 张棋, 等. 不同辣椒品种镉吸收积累能力及关键期研究[J]. 植物营养与肥料学报, 2021, 27(4): 695-705. |
ZHAO S P, YE X Z, ZHANG Q, et al. The capacity and critical stage of Cd absorption and accumulation of different pepper cultivars[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 695-705. (in Chinese with English abstract) | |
[11] | 邵晓庆, 贺章咪, 徐卫红. 辣椒果实高中低镉积型对镉的富集、转运特性及在亚细胞分布特点比较[J]. 环境科学, 2021, 42(2): 952-959. |
SHAO X Q, HE Z M, XU W H. Comparison of enrichment and transport of cadmium in the fruit of high and low enrichment pepper varieties and its distribution in subcells[J]. Environmental Science, 2021, 42(2): 952-959. (in Chinese with English abstract) | |
[12] | 巩雪峰, 李红, 宋占锋, 等. 外施γ-聚谷氨酸对辣椒生长及其镉胁迫下生理特性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(2): 97-104. |
GONG X F, LI H, SONG Z F, et al. Effects of γ-poly glutamic acid on growth and physiological characteristics of pepper under cadmium stress[J]. Journal of Northwest A & F University(Natural Science Edition), 2021, 49(2): 97-104. (in Chinese with English abstract) | |
[13] | 李磊, 尹显慧, 龙友华, 等. 叶面喷施硒对辣椒果实品质及微量元素的影响[J]. 北方园艺, 2019(16): 1-6. |
LI L, YIN X H, LONG Y H, et al. Effects of foliar spraying of selenium fertilizer on fruit quality and trace elements in pepper[J]. Northern Horticulture, 2019(16): 1-6. (in Chinese with English abstract) | |
[14] | 董如茵, 徐应明, 王林, 等. 土施和喷施锌肥对镉低积累油菜吸收镉的影响[J]. 环境科学学报, 2015, 35(8): 2589-2596. |
DONG R Y, XU Y M, WANG L, et al. Effects of soil application and foliar spray of zinc fertilizer on cadmium uptake in a pakchoi cultivar with low cadmium accumulation[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2589-2596. (in Chinese with English abstract) | |
[15] | 吕光辉, 许超, 王辉, 等. 叶面喷施不同浓度锌对水稻锌镉积累的影响[J]. 农业环境科学学报, 2018, 37(7): 1521-1528. |
LÜ G H, XU C, WANG H, et al. Effect of foliar spraying zinc on the accumulation of zinc and cadmium in rice[J]. Journal of Agro-Environment Science, 2018, 37(7): 1521-1528. (in Chinese with English abstract) | |
[16] | 徐卫红, 王宏信, 刘怀, 等. Zn、d单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响[J]. 环境科学, 2007, 28(9): 2089-2095. |
XU W H, WANG H X, LIU H, et al. Effects of individual and combined pollution of Cd and Zn on root exudates and rhizosphere Zn and Cd fractions in ryegrass(Loliurn perenne L.)[J]. Environmental Science, 2007, 28(9): 2089-2095. (in Chinese with English abstract) | |
[17] | 王亚, 冯发运, 葛静, 等. 植物根系分泌物对土壤污染修复的作用及影响机理[J]. 生态学报, 2022, 42(3): 829-842. |
WANG Y, FENG F Y, GE J, et al. Effects and mechanisms of plant root exudates on soil remediation[J]. Acta Ecologica Sinica, 2022, 42(3): 829-842. (in Chinese with English abstract) | |
[18] | 侯晓龙. 铅超富集植物金丝草对Pb胁迫的响应机制研究[D]. 福州: 福建农林大学, 2013. |
HOU X L. Response mechnism of Pb hypcraccumulator Pogonatherum crinitum to Pb stress[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese with English abstract) | |
[19] | 傅晓萍, 豆长明, 胡少平, 等. 有机酸在植物对重金属耐性和解毒机制中的作用[J]. 植物生态学报, 2010, 34(11): 1354-1358. |
FU X P, DOU C M, HU S P, et al. A review of progress in roles of organic acids on heavy metal resistance and detoxification in plants[J]. Chinese Journal of Plant Ecology, 2010, 34(11): 1354-1358. (in Chinese with English abstract) | |
[20] | 薛卫杰. 柠檬酸抑制水稻镉离子吸收转运机理研究[D]. 北京: 中国农业科学院, 2020. |
XUE W J. The mechanism of citric acid inhibiting cadmium absorption and transport in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract) | |
[21] | 林琦, 陈英旭, 陈怀满, 等. 有机酸对Pb、Cd的土壤化学行为和植株效应的影响[J]. 应用生态学报, 2001, 12(4): 619-622. |
LIN Q, CHEN Y X, CHEN H M, et al. Effect of organic acids on soil chemical behavior of lead and cadmium and their toxicity to plants[J]. Chinese Journal of Applied Ecology, 2001, 12(4): 619-622. (in Chinese with English abstract) | |
[22] | 李子双, 王薇, 张世文, 等. 氮磷与硅钙肥配施对辣椒产量和品质的影响[J]. 植物营养与肥料学报, 2015, 21(2): 458-466. |
LI Z S, WANG W, ZHANG S W, et al. Effect of nitrogen, phosphorus and silicon calcium fertilizer on yield and quality of pepper[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 458-466. (in Chinese with English abstract) | |
[23] | 柴冠群, 范成五, 刘桂华, 等. 适宜贵州中度镉污染烟田安全生产的烤烟品种筛选[J]. 西南农业学报, 2022, 35(6):1415-1421. |
CHAI G Q, FAN C W, LIU G H, et al. Screening of tobacco varieties for safe production in tobacco fields with medium risk of Cd pollution in Guizhou[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(6):1415-1421. | |
[24] | 索炎炎, 张翔, 司贤宗, 等. 磷锌配施对花生生理特性、产量及品质的影响[J]. 中国土壤与肥料, 2018(2): 96-102. |
SUO Y Y, ZHANG X, SI X Z, et al. The combined effects of phosphorus and zinc on physiological characteristics, yield and quality of peanut plants[J]. Soil and Fertilizer Sciences in China, 2018(2): 96-102. (in Chinese with English abstract) | |
[25] | 李美玲, 皇飞, 郭振升, 等. 不同锌肥对朝天椒产量和品质的影响[J]. 陕西农业科学, 2018, 64(5): 30-33. |
LI M L, HUANG F, GUO Z S, et al. Effects of different Zn fertilizers on pod pepper yield and quality[J]. Shaanxi Journal of Agricultural Sciences, 2018, 64(5): 30-33. (in Chinese) | |
[26] | 施娴, 李洪有, 卢丙越, 等. 3个苦荞品种对盐胁迫的生理响应及耐受性评价[J]. 作物杂志, 2022(3): 149-154. |
SHI X, LI H Y, LU B Y, et al. Physiological responses of three Tartary buckwheat varieties to salt stress and evaluation of salt tolerance[J]. Crops, 2022(3): 149-154. (in Chinese with English abstract) | |
[27] | 刘燕, 姚媛媛, 杨越超, 等. 小分子有机酸钾对水稻种子萌发和幼苗生长的影响[J]. 植物营养与肥料学报, 2019, 25(12): 2142-2151. |
LIU Y, YAO Y Y, YANG Y C, et al. Effects of small molecule organic sylvites on seed germination and seedling growth of rice (Oryza sativa L.)[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2142-2151. (in Chinese with English abstract) | |
[28] | 于丹, 徐福利, 王渭玲, 等. 低分子有机酸喷施对辣椒生长、养分吸收、产量及果实品质的影响[J]. 西北农业学报, 2013, 22(6): 118-125. |
YU D, XU F L, WANG W L, et al. Effects of low-molecular organic acids spray on growth, nutrient uptake, yield and fruit quality of hot pepper[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(6): 118-125. (in Chinese with English abstract) | |
[29] |
WANG Y F, SU Y, LU S G. Cd accumulation and transfer in pepper (Capsicum annuum L.) grown in typical soils of China: pot experiments[J]. Environmental Science and Pollution Research, 2019, 26(36): 36558-36567.
DOI |
[1] | 王宇, 汪泓, 肖玖军, 李可相, 邢丹, 张永亮, 陈阳, 张蓝月. 基于优化植被指数组合的多品种辣椒叶片叶绿素数值估测[J]. 浙江农业学报, 2023, 35(9): 2109-2120. |
[2] | 岳宗伟, 李嘉骁, 孙向阳, 刘国梁, 李素艳, 王晨晨, 查贵超, 魏宁娴. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
[3] | 张博, 刘泽慈, 汪洁, 李兆壮, 李录山, 胡琳莉, 郁继华. 不同农业废弃物肥料化配方对露地甘蓝生长、产量及品质的影响[J]. 浙江农业学报, 2023, 35(8): 1782-1792. |
[4] | 张宁, 陶荣浩, 刘佩诗, 胡含秀, 高琳琳, 郭龙, 祝尊友, 马友华. 不同种类有机肥配施化肥对茶叶生长、品质和土壤肥力的影响[J]. 浙江农业学报, 2023, 35(8): 1844-1852. |
[5] | 王迪, 杨汉梅, 李阳倩, 贾梦婷, 邹亮, 杨帆. 苦荞麦“品、质、效、用”的多维评价及其活性成分高值化利用的研究进展[J]. 浙江农业学报, 2023, 35(8): 1960-1974. |
[6] | 田玉刚, 万素梅, 林皎, 陈国栋, 李浩, 胡宇凯, 李燕芳, 胡守林, 毛廷勇, 赵书珍. 不同地膜类型与灌溉量对棉花光合参数和产量、品质的影响[J]. 浙江农业学报, 2023, 35(7): 1523-1531. |
[7] | 雷联. 膜下滴灌调亏对制种玉米植株生长、产量和水分利用的影响[J]. 浙江农业学报, 2023, 35(7): 1542-1549. |
[8] | 卜远鹏, 刘娜, 张古文, 冯志娟, 王斌, 龚亚明, 许林英. 菜用大豆种质资源的农艺性状多样性评价及核心种质与食味品质评价体系的构建[J]. 浙江农业学报, 2023, 35(6): 1307-1314. |
[9] | 罗海林, 袁雷, 闫佳会, 郭青云. 侵染青海辣椒的辣椒隐症病毒2基因组克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1368-1374. |
[10] | 叶雷, 张波, 杨学圳, 李小林, 张小平, 谭伟. 竹屑替代木屑栽培毛木耳的可行性及其品质综合评价[J]. 浙江农业学报, 2023, 35(6): 1416-1426. |
[11] | 铁建中, 刘亚昱, 高雪琴, 徐之奇, 胡琳莉, 郁继华. 种养废弃物堆肥对日光温室西葫芦养分利用和土壤性质的影响[J]. 浙江农业学报, 2023, 35(6): 1427-1439. |
[12] | 肖立涵, 辛美果, 卢文静, 叶沁, 张岑, 肖朝耿, 谌迪. 不同贮藏条件对3种花粉源蜂王浆品质的影响[J]. 浙江农业学报, 2023, 35(5): 1161-1167. |
[13] | 黄正, 张荣萍, 马鹏, 张琪, 周宁宁, 阿什日轨, 冯婷煜, 周林. 冬水田油菜秸秆还田和氮肥运筹对杂交稻干物质积累和产量的影响[J]. 浙江农业学报, 2023, 35(5): 983-991. |
[14] | 檀舒霞, 赵桃弟, 杨豪, 宁可君, 刘丽, 何庆元, 黄守程, 舒英杰. 遮阴对10个菜用大豆品种农艺性状、产量和硝态氮代谢的影响[J]. 浙江农业学报, 2023, 35(4): 729-735. |
[15] | 马义虎, 曾孝元, 何贤彪, 周奶弟, 陈剑. 浙东南地区优质稻产量与品质对不同播期气候因子的响应[J]. 浙江农业学报, 2023, 35(4): 736-751. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 656
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 490
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||