浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1782-1792.DOI: 10.3969/j.issn.1004-1524.20221098
张博1(
), 刘泽慈1,*(
), 汪洁1, 李兆壮1, 李录山1, 胡琳莉1, 郁继华1,2,*(
)
收稿日期:2022-07-25
出版日期:2023-08-25
发布日期:2023-08-29
作者简介:张博(1995—),男,甘肃定西人,硕士,主要从事蔬菜栽培与生理生态研究。E-mail:2395864925@qq.com
通讯作者:
*郁继华,E-mail:yujihuagg@163.com;刘泽慈,E-mail: liuzc@gsau.edu.cn
基金资助:
ZHANG Bo1(
), LIU Zeci1,*(
), WANG Jie1, LI Zhaozhuang1, LI Lushan1, HU Linli1, YU Jihua1,2,*(
)
Received:2022-07-25
Online:2023-08-25
Published:2023-08-29
摘要:
为探讨不同农业废弃物肥料化配方对露地甘蓝生长、产量及品质的影响,将羊粪、甘蓝尾菜(以下简称尾菜)、牛粪、平菇菇渣(以下简称菇渣)、玉米秸秆(以下简称秸秆)按不同质量比配置9种不同有机肥配方:T1(羊粪∶尾菜的体积比为5.5∶4.5)、T2(羊粪∶尾菜∶牛粪的体积比为6∶3∶1)、T3(羊粪∶尾菜∶菇渣的体积比为6∶3∶1)、T4(羊粪∶尾菜∶秸秆的体积比为6∶3∶1)、T5(羊粪∶尾菜∶牛粪∶菇渣的体积比为6∶2∶1∶1)、T6(羊粪∶尾菜∶牛粪∶秸秆的体积比为6∶2∶1∶1)、T7(羊粪∶甘蓝尾菜∶菇渣∶秸秆的体积比为6∶2∶1∶1)、T8(羊粪∶尾菜∶牛粪∶菇渣∶秸秆的体积比为5∶2∶1∶1∶1),以CK1(不施有机肥)、当地商品有机肥配方CK2(羊粪∶甘蓝尾菜的体积比为6.5∶3.5)为对照,探究了不同配方有机肥栽培条件下露地甘蓝生长、产量和品质的差异,旨在为农业废弃物肥料化利用提供依据。试验结果表明,T6(羊粪∶牛粪∶尾菜∶秸秆=6∶1∶2∶1)配方有机肥处理下的露地甘蓝株幅在结球期和采收期均高于其他处理,株高在结球期高于其他处理,最大叶面积在结球期和采收期均高于其他处理;T6处理下甘蓝莲座期根系活力显著高于其他生长时期;T6处理下甘蓝生物产量与干物质积累与商品有机肥CK2处理比较,分别增加7.18%和55.99%;同时T6处理下甘蓝可溶性糖、维生素C含量均高于其他配方有机肥处理;硝酸盐含量低于其他配方有机肥处理。各处理矿质元素含量较CK1有不同程度的提高。对17项指标进行隶属函数分析,综合评价以T6处理配方有机肥效果最佳,其次为T4>T3>T8>T7>T1>CK2>T2>T5>CK1。
中图分类号:
张博, 刘泽慈, 汪洁, 李兆壮, 李录山, 胡琳莉, 郁继华. 不同农业废弃物肥料化配方对露地甘蓝生长、产量及品质的影响[J]. 浙江农业学报, 2023, 35(8): 1782-1792.
ZHANG Bo, LIU Zeci, WANG Jie, LI Zhaozhuang, LI Lushan, HU Linli, YU Jihua. Effects of different fertilizer formulations of agricultural wastes on growth, yield and quality of cabbage[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1782-1792.
| 原料 Raw material | 全氮含量 Total N content/ (g·kg-1) | 全磷含量 Total P content/ (g·kg-1) | 全钾含量 Total K content/ (g·kg-1) | 碱解氮含量 Alkali-hydrolyzable N content/ (mg·kg-1) | 速效磷含量 Available P content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) | 有机质含量 Organic matter content/ (g·kg-1) |
|---|---|---|---|---|---|---|---|
| 平菇菇渣Mushroom residue | 9.10 | 6.65 | 11.40 | 630.58 | 284.33 | 9 253.33 | 470.31 |
| 牛粪Cow manure | 9.00 | 5.71 | 13.30 | 686.58 | 383.29 | 6 786.67 | 510.76 |
| 羊粪Sheep manure | 8.99 | 6.61 | 11.80 | 658.58 | 304.87 | 9 320.00 | 945.67 |
| 玉米秸秆Corn straw | 10.04 | 7.79 | 15.09 | 546.58 | 385.61 | 8 246.67 | 998.77 |
| 甘蓝尾菜 Cabbage vegetable residue | 11.09 | 5.41 | 139.60 | 971.25 | 391.25 | 13 886.67 | 614.43 |
表1 农业废弃物原料基本理化性质
Table 1 Basic physical and chemical properties of agricultural waste materials
| 原料 Raw material | 全氮含量 Total N content/ (g·kg-1) | 全磷含量 Total P content/ (g·kg-1) | 全钾含量 Total K content/ (g·kg-1) | 碱解氮含量 Alkali-hydrolyzable N content/ (mg·kg-1) | 速效磷含量 Available P content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) | 有机质含量 Organic matter content/ (g·kg-1) |
|---|---|---|---|---|---|---|---|
| 平菇菇渣Mushroom residue | 9.10 | 6.65 | 11.40 | 630.58 | 284.33 | 9 253.33 | 470.31 |
| 牛粪Cow manure | 9.00 | 5.71 | 13.30 | 686.58 | 383.29 | 6 786.67 | 510.76 |
| 羊粪Sheep manure | 8.99 | 6.61 | 11.80 | 658.58 | 304.87 | 9 320.00 | 945.67 |
| 玉米秸秆Corn straw | 10.04 | 7.79 | 15.09 | 546.58 | 385.61 | 8 246.67 | 998.77 |
| 甘蓝尾菜 Cabbage vegetable residue | 11.09 | 5.41 | 139.60 | 971.25 | 391.25 | 13 886.67 | 614.43 |
图1 农业废弃物肥料化配方对甘蓝株幅的影响 同一时期不同处理间没有相同小写字母表示在 0.05 水平差异显著。下同。
Fig.1 Effect of fertilizer formula of agricultural waste on the plant breadth of cabbage The bars with different lowercase letters in the same period indicate significant difference at 0.05 level. The same as below.
| 处理 Treatments | 生物产量 The biological yield/(kg·667m-2) | 经济产量 The economic yield/(kg·667m-2) | 经济系数 Harvest index | 产量增幅 Output growth/% |
|---|---|---|---|---|
| CK1 | 3 633.03±351.10 b | 2 523.88±285.34 b | 0.69±0.01 cd | — |
| CK2 | 6 099.17±236.11 a | 4 501.77±271.38 a | 0.74±0.01 ab | 0.00 |
| T1 | 5 675.91±725.68 a | 4 165.29±504.39 a | 0.73±0.01 ab | -6.93 |
| T2 | 5 225.50±753.23 a | 3 807.55±546.95 a | 0.73±0.01 abc | -14.32 |
| T3 | 5 566.46±487.63 a | 4 072.01±346.04 a | 0.73±0.01 ab | -8.73 |
| T4 | 6 427.38±345.93 a | 4 649.35±272.89 a | 0.72±0.01 abc | 5.38 |
| T5 | 5 590.96±221.02 a | 3 813.67±74.84 a | 0.68±0.03 d | -8.33 |
| T6 | 6 537.18±393.84 a | 4 750.88±284.33 a | 0.73±0.01 abc | 7.18 |
| T7 | 5 203.39±634.88 a | 3 703.85±514.95 a | 0.71±0.01 bcd | -14.69 |
| T8 | 6 032.56±533.60 a | 4 522.70±410.66 a | 0.75±0.01 a | -1.09 |
表2 农业废弃物肥料化配方对甘蓝产量的影响
Table 2 Effects of fertilizer formula of agricultural waste on the yield of cabbage
| 处理 Treatments | 生物产量 The biological yield/(kg·667m-2) | 经济产量 The economic yield/(kg·667m-2) | 经济系数 Harvest index | 产量增幅 Output growth/% |
|---|---|---|---|---|
| CK1 | 3 633.03±351.10 b | 2 523.88±285.34 b | 0.69±0.01 cd | — |
| CK2 | 6 099.17±236.11 a | 4 501.77±271.38 a | 0.74±0.01 ab | 0.00 |
| T1 | 5 675.91±725.68 a | 4 165.29±504.39 a | 0.73±0.01 ab | -6.93 |
| T2 | 5 225.50±753.23 a | 3 807.55±546.95 a | 0.73±0.01 abc | -14.32 |
| T3 | 5 566.46±487.63 a | 4 072.01±346.04 a | 0.73±0.01 ab | -8.73 |
| T4 | 6 427.38±345.93 a | 4 649.35±272.89 a | 0.72±0.01 abc | 5.38 |
| T5 | 5 590.96±221.02 a | 3 813.67±74.84 a | 0.68±0.03 d | -8.33 |
| T6 | 6 537.18±393.84 a | 4 750.88±284.33 a | 0.73±0.01 abc | 7.18 |
| T7 | 5 203.39±634.88 a | 3 703.85±514.95 a | 0.71±0.01 bcd | -14.69 |
| T8 | 6 032.56±533.60 a | 4 522.70±410.66 a | 0.75±0.01 a | -1.09 |
图6 农业废弃物肥料化配方对甘蓝可溶性糖含量、可溶性蛋白含量、维生素C含量、硝酸盐含量的影响
Fig.6 Effects of fertilizer formula of agricultural waste on soluble sugar content, soluble protein content, vitamin C content, nitrate content in cabbage
| 处理 Treatments | Ca含量 Ca content/ (g·kg-1) | Mg含量 Mg content/ (g·kg-1) | Cu含量 Cu content/ (mg·kg-1) | Fe含量 Fe content/ (mg·kg-1) | Mn含量 Mn content/ (mg·kg-1) | Zn含量 Zn content/ (mg·kg-1) |
|---|---|---|---|---|---|---|
| T1 | 10.47±0.08 ab | 2.20±0.04 d | 0.15±0.02 cd | 4.15±0.29 abc | 0.43±0.01 abc | 0.54±0.01 a |
| T2 | 9.91±0.25 b | 2.78±0.06 b | 0.14±0.01 de | 4.84±0.05 a | 0.39±0.03 cde | 0.53±0.01 a |
| T3 | 10.02±0.48 b | 2.98±0.05 a | 0.17±0.01 cd | 3.92±0.20 bcd | 0.48±0.02 ab | 0.51±0.01 ab |
| T4 | 8.90±0.12 c | 2.28±0.07 cd | 0.19±0.01 abc | 3.26±0.04 d | 0.37±0.03 cde | 0.47±0.01 b |
| T5 | 10.22±0.54 b | 2.72±0.05 b | 0.13±0.01 de | 1.76±0.06 e | 0.35±0.03 de | 0.47±0.01 b |
| T6 | 11.28±0.25 a | 2.44±0.07 c | 0.21±0.02 ab | 4.51±0.24 ab | 0.49±0.01 a | 0.54±0.02 a |
| T7 | 10.41±0.11 ab | 2.71±0.10 b | 0.18±0.01 bc | 3.57±0.08 cd | 0.48±0.01 ab | 0.42±0.02 c |
| T8 | 10.22±0.20 b | 2.35±0.05 cd | 0.23±0.01 a | 3.60±0.40 cd | 0.41±0.03 bcd | 0.43±0.01 c |
| CK1 | 8.35±0.28 c | 1.76±0.03 e | 0.11±0.01 e | 1.60±0.21 e | 0.39±0.01 cde | 0.40±0.02 c |
| CK2 | 9.87±0.31 b | 2.17±0.09 d | 0.16±0.01 cd | 3.76±0.38 cd | 0.32±0.03 e | 0.41±0.01 c |
表3 农业废弃物肥料化配方对甘蓝矿质元素含量的影响
Table 3 Effect of fertilizer formula of agricultural waste on content of mineral elements in cabbage
| 处理 Treatments | Ca含量 Ca content/ (g·kg-1) | Mg含量 Mg content/ (g·kg-1) | Cu含量 Cu content/ (mg·kg-1) | Fe含量 Fe content/ (mg·kg-1) | Mn含量 Mn content/ (mg·kg-1) | Zn含量 Zn content/ (mg·kg-1) |
|---|---|---|---|---|---|---|
| T1 | 10.47±0.08 ab | 2.20±0.04 d | 0.15±0.02 cd | 4.15±0.29 abc | 0.43±0.01 abc | 0.54±0.01 a |
| T2 | 9.91±0.25 b | 2.78±0.06 b | 0.14±0.01 de | 4.84±0.05 a | 0.39±0.03 cde | 0.53±0.01 a |
| T3 | 10.02±0.48 b | 2.98±0.05 a | 0.17±0.01 cd | 3.92±0.20 bcd | 0.48±0.02 ab | 0.51±0.01 ab |
| T4 | 8.90±0.12 c | 2.28±0.07 cd | 0.19±0.01 abc | 3.26±0.04 d | 0.37±0.03 cde | 0.47±0.01 b |
| T5 | 10.22±0.54 b | 2.72±0.05 b | 0.13±0.01 de | 1.76±0.06 e | 0.35±0.03 de | 0.47±0.01 b |
| T6 | 11.28±0.25 a | 2.44±0.07 c | 0.21±0.02 ab | 4.51±0.24 ab | 0.49±0.01 a | 0.54±0.02 a |
| T7 | 10.41±0.11 ab | 2.71±0.10 b | 0.18±0.01 bc | 3.57±0.08 cd | 0.48±0.01 ab | 0.42±0.02 c |
| T8 | 10.22±0.20 b | 2.35±0.05 cd | 0.23±0.01 a | 3.60±0.40 cd | 0.41±0.03 bcd | 0.43±0.01 c |
| CK1 | 8.35±0.28 c | 1.76±0.03 e | 0.11±0.01 e | 1.60±0.21 e | 0.39±0.01 cde | 0.40±0.02 c |
| CK2 | 9.87±0.31 b | 2.17±0.09 d | 0.16±0.01 cd | 3.76±0.38 cd | 0.32±0.03 e | 0.41±0.01 c |
| 指标Index | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | CK1 | CK2 |
|---|---|---|---|---|---|---|---|---|---|---|
| 投影Projection | 0.38 | 0.26 | 0.05 | 0.62 | 0.40 | 1.00 | 0.78 | 0.78 | 0 | 0.75 |
| 最大叶面积Maximum leaf area | 0.56 | 0 | 0.16 | 0.60 | 0.38 | 1.00 | 0.32 | 0.32 | 0.13 | 0.66 |
| 株高Plant height | 0.92 | 0.21 | 0.49 | 0.74 | 0.79 | 0.92 | 1.00 | 1.00 | 0 | 0.65 |
| 根系活力Root vitality | 0.30 | 0.19 | 1.00 | 0.56 | 0.43 | 0.35 | 0.20 | 0.09 | 0.03 | 0 |
| 生物产量Economic yield | 0.70 | 0.55 | 0.67 | 0.96 | 0.67 | 1.00 | 0.54 | 0.83 | 0 | 0.85 |
| 经济产量Biological yield | 0.74 | 0.58 | 0.70 | 0.95 | 0.58 | 1.00 | 0.53 | 0.90 | 0 | 0.89 |
| 干物质积累量Dry matter accumulation | 0.10 | 0.35 | 0.45 | 0.75 | 0.47 | 1.00 | 0.39 | 0.41 | 0 | 0.59 |
| 可溶性糖含量Soluble sugar content | 0.97 | 0.57 | 0.20 | 0.48 | 0.43 | 1.00 | 0.11 | 0.64 | 0 | 0.11 |
| 可溶性蛋白含量Soluble protein content | 0.37 | 0.87 | 0.88 | 1.00 | 0.22 | 0 | 0.86 | 0.04 | 0.42 | 0.90 |
| 维生素C含量VC content | 0.04 | 0.30 | 0.35 | 0.87 | 0.61 | 1.00 | 0.82 | 0.71 | 0 | 0.36 |
| 硝酸盐含量Nitrate content | 0.32 | 0.79 | 0.54 | 0 | 0.56 | 1.00 | 0.68 | 0.69 | 0.29 | 0.91 |
| 钙含量Ca content | 0.72 | 0.53 | 0.57 | 0.19 | 0.64 | 1.00 | 0.70 | 0.64 | 0 | 0.52 |
| 镁含量Mg content | 0.36 | 0.84 | 1.00 | 0.42 | 0.79 | 0.56 | 0.78 | 0.48 | 0 | 0.34 |
| 铜含量Cu content | 0.43 | 0.30 | 0.60 | 0.81 | 0.24 | 1.00 | 0.72 | 1.13 | 0 | 0.46 |
| 铁含量Fe content | 0.73 | 0.94 | 0.63 | 0.21 | 0.42 | 1.00 | 0.40 | 0.42 | 0 | 0.53 |
| 锰含量Mn content | 0.71 | 0.52 | 0.94 | 0.41 | 0.31 | 1.00 | 0.93 | 0.62 | 0 | 0.33 |
| 锌含量Zn content | 1.00 | 0.91 | 0.79 | 0.50 | 0.50 | 0.96 | 0.10 | 0.16 | 0 | 0.07 |
| 平均隶属度Average membership | 0.55 | 0.51 | 0.59 | 0.59 | 0.50 | 0.87 | 0.58 | 0.58 | 0.05 | 0.52 |
| 位次Rank | 6 | 8 | 3 | 2 | 9 | 1 | 5 | 4 | 10 | 7 |
表4 农业废弃物肥料化配方对甘蓝生长及品质指标影响综合性评价
Table 4 Comprehensive evaluation of effects of agricultural waste fertilizer formula on growth and quality indexes of cabbage
| 指标Index | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | CK1 | CK2 |
|---|---|---|---|---|---|---|---|---|---|---|
| 投影Projection | 0.38 | 0.26 | 0.05 | 0.62 | 0.40 | 1.00 | 0.78 | 0.78 | 0 | 0.75 |
| 最大叶面积Maximum leaf area | 0.56 | 0 | 0.16 | 0.60 | 0.38 | 1.00 | 0.32 | 0.32 | 0.13 | 0.66 |
| 株高Plant height | 0.92 | 0.21 | 0.49 | 0.74 | 0.79 | 0.92 | 1.00 | 1.00 | 0 | 0.65 |
| 根系活力Root vitality | 0.30 | 0.19 | 1.00 | 0.56 | 0.43 | 0.35 | 0.20 | 0.09 | 0.03 | 0 |
| 生物产量Economic yield | 0.70 | 0.55 | 0.67 | 0.96 | 0.67 | 1.00 | 0.54 | 0.83 | 0 | 0.85 |
| 经济产量Biological yield | 0.74 | 0.58 | 0.70 | 0.95 | 0.58 | 1.00 | 0.53 | 0.90 | 0 | 0.89 |
| 干物质积累量Dry matter accumulation | 0.10 | 0.35 | 0.45 | 0.75 | 0.47 | 1.00 | 0.39 | 0.41 | 0 | 0.59 |
| 可溶性糖含量Soluble sugar content | 0.97 | 0.57 | 0.20 | 0.48 | 0.43 | 1.00 | 0.11 | 0.64 | 0 | 0.11 |
| 可溶性蛋白含量Soluble protein content | 0.37 | 0.87 | 0.88 | 1.00 | 0.22 | 0 | 0.86 | 0.04 | 0.42 | 0.90 |
| 维生素C含量VC content | 0.04 | 0.30 | 0.35 | 0.87 | 0.61 | 1.00 | 0.82 | 0.71 | 0 | 0.36 |
| 硝酸盐含量Nitrate content | 0.32 | 0.79 | 0.54 | 0 | 0.56 | 1.00 | 0.68 | 0.69 | 0.29 | 0.91 |
| 钙含量Ca content | 0.72 | 0.53 | 0.57 | 0.19 | 0.64 | 1.00 | 0.70 | 0.64 | 0 | 0.52 |
| 镁含量Mg content | 0.36 | 0.84 | 1.00 | 0.42 | 0.79 | 0.56 | 0.78 | 0.48 | 0 | 0.34 |
| 铜含量Cu content | 0.43 | 0.30 | 0.60 | 0.81 | 0.24 | 1.00 | 0.72 | 1.13 | 0 | 0.46 |
| 铁含量Fe content | 0.73 | 0.94 | 0.63 | 0.21 | 0.42 | 1.00 | 0.40 | 0.42 | 0 | 0.53 |
| 锰含量Mn content | 0.71 | 0.52 | 0.94 | 0.41 | 0.31 | 1.00 | 0.93 | 0.62 | 0 | 0.33 |
| 锌含量Zn content | 1.00 | 0.91 | 0.79 | 0.50 | 0.50 | 0.96 | 0.10 | 0.16 | 0 | 0.07 |
| 平均隶属度Average membership | 0.55 | 0.51 | 0.59 | 0.59 | 0.50 | 0.87 | 0.58 | 0.58 | 0.05 | 0.52 |
| 位次Rank | 6 | 8 | 3 | 2 | 9 | 1 | 5 | 4 | 10 | 7 |
| [1] | 陶秀萍, 董红敏. 畜禽废弃物无害化处理与资源化利用技术研究进展[J]. 中国农业科技导报, 2017, 19(1): 37-42. |
| TAO X P, DONG H M. Research progress on animal waste treatment and recycling technology[J]. Journal of Agricultural Science and Technology, 2017, 19(1): 37-42. (in Chinese with English abstract) | |
| [2] | 宋志伟, 王晶, 朱旭丽, 等. 秸秆资源综合利用现状及展望[J]. 安徽农业科学, 2017, 45(7): 64-66, 162. |
| SONG Z W, WANG J, ZHU X L, et al. Present research status and prospects of the comprehensive utilization of straw resources[J]. Journal of Anhui Agricultural Sciences, 2017, 45(7): 64-66, 162. (in Chinese with English abstract) | |
| [3] | 武淑霞, 刘宏斌, 刘申, 等. 农业面源污染现状及防控技术[J]. 中国工程科学, 2018, 20(5): 23-30. |
| WU S X, LIU H B, LIU S, et al. Review of current situation of agricultural non-point source pollution and its prevention and control technologies[J]. Strategic Study of CAE, 2018, 20(5): 23-30. (in Chinese with English abstract) | |
| [4] | 李鹏, 王文杰. 我国农业废弃物资源的利用现状及开发前景[J]. 天津农业科学, 2009, 15(3): 46-49. |
| LI P, WANG W J. Utilization status and prospect of agricultural wastes in China[J]. Tianjin Agricultural Sciences, 2009, 15(3): 46-49. (in Chinese with English abstract) | |
| [5] | 董雪云, 张金流, 郭鹏飞. 农业固体废弃物资源化利用技术研究进展及展望[J]. 安徽农学通报, 2014, 20(18): 86-89. |
| DONG X Y, ZHANG J L, GUO P F. Research progress and prospect in resource utilization technology of agricultural solid waste[J]. Anhui Agricultural Science Bulletin, 2014, 20(18): 86-89. (in Chinese with English abstract) | |
| [6] | 刘长莉, 魏利, 黄剑. 农业有机废弃物资源化利用[M]. 哈尔滨: 东北林业大学出版社, 2010. |
| [7] | 王长波, 平英华, 刘先才, 等. 我国秸秆资源“五化”利用研究进展[J]. 安徽农业科学, 2018, 46(7): 22-26, 29. |
| WANG C B, PING Y H, LIU X C, et al. Research progress of the five ways of straw utilization in China[J]. Journal of Anhui Agricultural Sciences, 2018, 46(7): 22-26, 29. (in Chinese with English abstract) | |
| [8] | 李龙涛, 李万明, 孙继民, 等. 城乡有机废弃物资源化利用现状及展望[J]. 农业资源与环境学报, 2019, 36(3): 264-271. |
| LI L T, LI W M, SUN J M, et al. Research status and prospects of the resource utilization of organic waste in urban and rural areas[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 264-271. (in Chinese with English abstract) | |
| [9] | 李国学, 李玉春, 李彦富. 固体废物堆肥化及堆肥添加剂研究进展[J]. 农业环境科学学报, 2003, 22(2): 252-256. |
| LI G X, LI Y C, LI Y F. Advance on composting of solid waste and utilization of additives[J]. Journal of Agro-Environmental Science, 2003, 22(2): 252-256. (in Chinese with English abstract) | |
| [10] | 李剑. 蔬菜废弃物堆肥技术参数的优化研究[D]. 上海: 上海交通大学, 2011. |
| LI J. Study on optimizational technique of vegetable waste compost[D]. Shanghai: Shanghai Jiao Tong University, 2011. (in Chinese with English abstract) | |
| [11] | 张修顺. 蔬菜废弃物肥料化处理研究[D]. 杨凌: 西北农林科技大学, 2019. |
| ZHANG X S. Study on fertilization treatment of vegetable waste[D]. Yangling: Northwest A & F University, 2019. (in Chinese with English abstract) | |
| [12] | 方智远, 张扬勇, 刘玉梅, 等. 高山(高原)夏菜中的甘蓝[J]. 中国蔬菜, 2010(19): 12-13. |
| FANG Z Y, ZHANG Y Y, LIU Y M, et al. Cabbage in summer vegetable in alpine (plateau)[J]. China Vegetables, 2010(19): 12-13. (in Chinese) | |
| [13] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
| [14] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
| [15] | 刘玉英, 罗云米, 李戎, 等. 有机无机肥施用对结球甘蓝形态、产量及品质的影响[J]. 中国农学通报, 2016, 32(4): 44-47. |
| LIU Y Y, LUO Y M, LI R, et al. Effects of organic and inorganic fertilizer on cabbage morphology, yield and quality[J]. Chinese Agricultural Science Bulletin, 2016, 32(4): 44-47. (in Chinese with English abstract) | |
| [16] | 汪新胜, 陆玲, 李拥军, 等. 有机肥与化肥配施对结球甘蓝生长特性、产量及品质的影响[J]. 湖北农业科学, 2018, 57(7): 22-24. |
| WANG X S, LU L, LI Y J, et al. Effects of combined application of organic manure and chemical fertilizer on growth, yield and quality of the cabbage[J]. Hubei Agricultural Sciences, 2018, 57(7): 22-24. (in Chinese with English abstract) | |
| [17] | 崔正勇, 李新华, 裴艳婷, 等. 氮磷配施对冬小麦干物质积累、分配及产量的影响[J]. 西北农业学报, 2018, 27(3): 339-346. |
| CUI Z Y, LI X H, PEI Y T, et al. Effects of nitrogen-phosphorus-combined application on characteristics of dry matter accumulation, distribution and yield of winter wheat[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(3): 339-346. (in Chinese with English abstract) | |
| [18] | 柳燕兰, 郭贤仕, 张绪成, 等. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331. |
| LIU Y L, GUO X S, ZHANG X C, et al. Effects of planting density and fertilization on dry matter accumulation, yield and water-fertilizer utilization of dryland potato[J]. Acta Agronomica Sinica, 2021, 47(2): 320-331. (in Chinese with English abstract) | |
| [19] | 朱明霞, 白婷, 靳玉龙, 等. 施肥对春青稞干物质积累、分配及产量的影响[J]. 中国农学通报, 2020, 36(25): 7-13. |
| ZHU M X, BAI T, JIN Y L, et al. Fertilization: effects on dry matter accumulation, distribution and yield of spring hulless barley[J]. Chinese Agricultural Science Bulletin, 2020, 36(25): 7-13. (in Chinese with English abstract) | |
| [20] | 包奇军, 潘永东, 张华瑜, 等. 减量施肥对啤酒大麦干物质积累、产量及肥料利用率的影响[J]. 中国农业科技导报, 2020, 22(8): 149-158. |
| BAO Q J, PAN Y D, ZHANG H Y, et al. Effect of reducing fertilizer application on dry matter accumulation, yield and fertilizer utilization efficiency of beer barely[J]. Journal of Agricultural Science and Technology, 2020, 22(8): 149-158. (in Chinese with English abstract) | |
| [21] | 王晓玲. 不同培肥措施对复垦土壤肥力及玉米生长的影响[D]. 太谷: 山西农业大学, 2014. |
| WANG X L. Effects of different fertilization on fertility of reclaimed soil and corn growth[D]. Taigu: Shanxi Agricultural University, 2014. (in Chinese with English abstract) | |
| [22] | 朱秀云, 梁梦, 马玉. 根系活力的测定(TTC法)实验综述报告[J]. 广东化工, 2020, 47(6): 211-212. |
| ZHU X Y, LIANG M, MA Y. A review report on the experiments for the determination of root activity by TTC method[J]. Guangdong Chemical Industry, 2020, 47(6): 211-212. (in Chinese with English abstract) | |
| [23] | 郭士伟, 夏士健, 朱虹霞, 等. 水稻根系活力测定方法及超级稻两优培九生育后期根系活力研究[J]. 土壤, 2012, 44(2): 308-311. |
| GUO S W, XIA S J, ZHU H X, et al. Factors influencing collecting amount of rice roots bleeding and investigation on roots vigor after heading[J]. Soils, 2012, 44(2): 308-311. (in Chinese with English abstract) | |
| [24] | 赵欣宇. 不同农业有机废弃物对黑土理化性质及腐殖化特征的影响[D]. 长春: 吉林农业大学, 2016. |
| ZHAO X Y. Effects of different agriculture organic wastes on physicochemical property and humification of black soil[D]. Changchun: Jilin Agricultural University, 2016. (in Chinese with English abstract) | |
| [25] | 王保平, 周静, 史向远, 等. 不同农业废弃物复合基质对西瓜光合特性、产量和品质的影响[J]. 河南农业科学, 2021, 50(6): 116-124. |
| WANG B P, ZHOU J, SHI X Y, et al. Effects of different agricultural waste compound substrates on photosynthetic characteristics, yield and quality of watermelon[J]. Journal of Henan Agricultural Sciences, 2021, 50(6): 116-124. (in Chinese with English abstract) | |
| [26] | 韩丽娜, 丁哲利, 曾会才, 等. 功能性有机肥对大白菜生长的影响[J]. 浙江农业学报, 2016, 28(10): 1718-1723. |
| HAN L N, DING Z L, ZENG H C, et al. Effect of functional organic fertilizer on growth of Chinese cabbage[J]. Acta Agriculturae Zhejiangensis, 2016, 28(10): 1718-1723. (in Chinese with English abstract) | |
| [27] | LI S X, SHEN Q R, ZHENG X Q, et al. Effect of organic microbe fertilizer application on watermelon growth and soil microorganisms under continuous mono-cropping[J]. Chinese Journal of Eco-Agriculture, 2012, 20(2): 169-174. |
| [28] | TENG G X, QIU H Z, ZHANG C H, et al. Effect of microbial organic fertilizer on seedling growth, yield and quality of flue-cured tobacco[J]. Chinese Journal of Eco-Agriculture, 2012, 19(6): 1255-1260. |
| [29] | 杜莹, 黄兴学, 周国林, 等. 轮作和有机肥对连作小白菜生长及土壤微生物特性的影响[J]. 湖北农业科学, 2016, 55(24): 6498-6503. |
| DU Y, HUANG X X, ZHOU G L, et al. Effects of rotation and organic fertilizer on the growth of Brassica campestris ssp. chinensis var. communis and soil microbial characteristics of continuous cropping soil[J]. Hubei Agricultural Sciences, 2016, 55(24): 6498-6503. (in Chinese with English abstract) | |
| [30] | 史晓君. 农业废弃物制备生物有机肥及其在小白菜上的应用[J]. 河南农业, 2020(2): 16-17. |
| SHI X J. Preparation of bio-organic fertilizer from agricultural waste and its application in Chinese cabbage[J]. Henan Nongye, 2020(2):16-17. (in Chinese) | |
| [31] | 陆景陵. 植物营养学(上册)[M]. 北京: 中国农业大学出版社,1994. |
| [32] | 王凡. 长期秸秆还田及施用粪肥对小麦产量和矿质营养品质及重金属的影响[D]. 杨凌: 西北农林科技大学, 2016. |
| WANG F. Responses of wheat yield, quality and heavy metals to longterm straw returning and manure compost application[D]. Yangling: Northwest A & F University, 2016. (in Chinese with English abstract) | |
| [33] | LI B Y, ZHOU D M, CANG L, et al. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications[J]. Soil and Tillage Research, 2007, 96(1/2): 166-173. |
| [34] | RUTKOWSKA B, SZULC W, SOSULSKI T, et al. Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications[J]. Plant, Soil and Environment, 2014, 60(5): 198-203. |
| [35] | STEVENSON F J. Nature of divalent transition metal complexes of humic acids as revealed by a modified potentiometric titration method[J]. Soil Science, 1977, 123(1): 10-17. |
| [36] | RENGEL Z, BATTEN G D, CROWLEY D E. Agronomic approaches for improving the micronutrient density in edible portions of field crops[J]. Field Crops Research, 1999, 60(1/2): 27-40. |
| [1] | 许卫猛, 徐妍, 陈国立. 基于多种分析方法的糯玉米品质综合评价[J]. 浙江农业学报, 2025, 37(9): 1840-1848. |
| [2] | 吴菊, 杨飞, 吴国泉, 傅贤, 徐晨光. 砂培和土壤栽培对黄瓜生长、产量与品质的影响[J]. 浙江农业学报, 2025, 37(9): 1905-1913. |
| [3] | 朱为静, 吴佳, 洪春来, 朱凤香, 洪磊东, 张涛, 张硕, 诸惠芬. 秸秆覆盖对土壤水热肥及蟠桃产量和品质的影响[J]. 浙江农业学报, 2025, 37(9): 1924-1932. |
| [4] | 贺世雄, 杨蕾, 齐安民, 程籍, 王敏, 李英奎, 洪林. 中间砧对3种杂柑叶片光合特性、理化指标和果实品质的影响[J]. 浙江农业学报, 2025, 37(8): 1680-1693. |
| [5] | 张顺昌, 徐继根, 符成悦, 蒲占湑, 胡丽鹏, 吴昊, 李俊兵, 辛亮, 雷元军. 喷施氨基酸钙对红美人杂柑果皮龟裂与品质的影响[J]. 浙江农业学报, 2025, 37(8): 1706-1715. |
| [6] | 张智颖, 邱琴, 侯立娟, 徐平, 蒋宁, 林金盛, 李辉平, 曲绍轩, 马林, 王伟霞, 李福后. 杀虫剂施用对秀珍菇和毛木耳的安全性评价[J]. 浙江农业学报, 2025, 37(8): 1733-1742. |
| [7] | 严福林, 郎云虎, 简应权, 陈雄飞, 魏巍, 王志威, 安江勇, 任得强, 丁宁, 魏升华. 八爪金龙药材产量与品质对土壤理化性状的响应[J]. 浙江农业学报, 2025, 37(8): 1766-1775. |
| [8] | 王呈阳, 刘洁雅, 吴敏怡, 谢博伊, 洪德成, 冷锋, 吴国泉. 钙处理对涝害下寒香蜜葡萄果实品质的影响[J]. 浙江农业学报, 2025, 37(7): 1451-1458. |
| [9] | 张若楠, 门小明, 秦凯鹏, 王彬彬, 吴杰, 丁向彬, 徐子伟, 齐珂珂. 绿嘉黑猪的不同杂交组合生长性能、胴体品质、产肉性能和收益比较研究[J]. 浙江农业学报, 2025, 37(6): 1203-1211. |
| [10] | 项缨, 丛建民, 潘丹红, 陶永刚. 春大棚有机种植不同品种番茄的生育进程分析和综合评价研究[J]. 浙江农业学报, 2025, 37(6): 1252-1261. |
| [11] | 刘文琦, 胡齐赞, 岳智臣, 陶鹏, 雷娟利, 李必元, 赵彦婷, 王华森. 夏季高温对叶用芥菜外观与营养品质的影响[J]. 浙江农业学报, 2025, 37(6): 1262-1271. |
| [12] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [13] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [14] | 张程程, 范涛, 章检明, 赵风亮, 忻晓庭, 牛海月, 刘大群. 缙云梅干菜腌制过程中细菌群落与品质的变化[J]. 浙江农业学报, 2025, 37(6): 1336-1343. |
| [15] | 岳丽, 庄红梅, 祖力皮牙·买买提, 王佳敏, 毛红艳, 张英仙, 尼格尔热依·亚迪卡尔, 于明. 基于主成分分析与聚类分析的芜菁肉质根质地品质综合评价[J]. 浙江农业学报, 2025, 37(5): 1057-1071. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||