[1] |
ZHOU W G, CHEN F, MENG Y J, et al. Plant waterlogging/flooding stress responses: from seed germination to maturation[J]. Plant Physiology and Biochemistry, 2020, 148: 228-236.
|
[2] |
白丹凤, 李志, 齐秀娟, 等. 4种基因型猕猴桃对淹水胁迫的生理响应及耐涝性评价[J]. 果树学报, 2019, 36(2): 163-173.
|
|
BAI D F, LI Z, QI X J, et al. Physiological responses and tolerance evaluation of four species of Actinidia to waterlogging stress[J]. Journal of Fruit Science, 2019, 36(2): 163-173. (in Chinese with English abstract)
|
[3] |
刘众杰, 郑婷, 赵方贵, 等. 葡萄砧木对渗透胁迫的抗性差异及生理响应机理[J]. 园艺学报, 2022, 49(5): 984-994.
|
|
LIU Z J, ZHENG T, ZHAO F G, et al. Resistance difference and physiological response mechanism of grape rootstocks to osmotic stress[J]. Acta Horticulturae Sinica, 2022, 49(5): 984-994. (in Chinese with English abstract)
|
[4] |
RUPERTI B, BOTTON A, POPULIN F, et al. Flooding responses on grapevine: a physiological, transcriptional, and metabolic perspective[J]. Frontiers in Plant Science, 2019, 10: 339.
|
[5] |
BOTTON A, GIRARDI F, RUPERTI B, et al. Grape berry responses to sequential flooding and heatwave events: a physiological, transcriptional, and metabolic overview[J]. Plants, 2022, 11(24): 3574.
|
[6] |
ZHU X D, LI X P, JIU S T, et al. Analysis of the regulation networks in grapevine reveals response to waterlogging stress and candidate gene-marker selection for damage severity[J]. Royal Society Open Science, 2018, 5(6): 172253.
|
[7] |
娄玉穗, 王世平, 苗玉彬, 等. 不同灌溉阈值对‘巨峰’葡萄树体生长与果实品质的影响[J]. 果树学报, 2018, 35(1): 46-55.
|
|
LOU Y S, WANG S P, MIAO Y B, et al. Effect of different irrigation thresholds on tree growth and fruit quality in ‘Kyoho’ grape[J]. Journal of Fruit Science, 2018, 35(1): 46-55. (in Chinese with English abstract)
|
[8] |
肖元松, 彭福田, 束怀瑞, 等. 过氧化尿素对桃幼树淹水胁迫的缓解效果研究[J]. 植物营养与肥料学报, 2016, 22(2): 502-510.
|
|
XIAO Y S, PENG F T, SHU H R, et al. Alleviation of urea peroxide to waterlogging damage in young peach trees[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 502-510. (in Chinese with English abstract)
|
[9] |
DONG Q Y, WALLRAD L, ALMUTAIRI B O, et al. Ca2+ signaling in plant responses to abiotic stresses[J]. Journal of Integrative Plant Biology, 2022, 64(2): 287-300.
|
[10] |
KHAN M I R, TRIVELLINI A, CHHILLAR H, et al. The significance and functions of ethylene in flooding stress tolerance in plants[J]. Environmental and Experimental Botany, 2020, 179: 104188.
|
[11] |
ZHAO Y C, ZHANG W Y, ABOU-ELWAFA S F, et al. Understanding a mechanistic basis of ABA involvement in plant adaptation to soil flooding: the current standing[J]. Plants, 2021, 10(10): 1982.
|
[12] |
李长根, 马江黎, 杨瑞平, 等. 生长调节剂对西瓜淹水胁迫的缓解效果[J]. 农学学报, 2022, 12(10): 30-34.
|
|
LI C G, MA J L, YANG R P, et al. Alleviating effect of growth regulators on waterlogging stress of watermelon[J]. Journal of Agriculture, 2022, 12(10): 30-34. (in Chinese with English abstract)
|
[13] |
GOMES T M, MAZON L F, PANCERI C P, et al. Changes in vineyard productive attributes and phytochemical composition of Sauvignon Blanc grape and wine induced by the application of silicon and calcium[J]. Journal of the Science of Food and Agriculture, 2020, 100(4): 1547-1557.
|
[14] |
MA T H, HUI Y R, ZHANG L, et al. Foliar application of chelated sugar alcohol calcium fertilizer for regulating the growth and quality of wine grapes[J]. International Journal of Agricultural and Biological Engineering, 2022, 15(3): 153-158.
|
[15] |
XU W P, PENG H, YANG T B, et al. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation[J]. Plant Physiology and Biochemistry, 2014, 82: 289-298.
|
[16] |
李中勇, 高东升, 王闯, 等. 土壤施钙对设施栽培油桃果实钙含量及品质的影响[J]. 植物营养与肥料学报, 2010, 16(1): 191-196.
|
|
LI Z Y, GAO D S, WANG C, et al. Effects of calcium application on calcium content and quality of nectarine under protected culture[J]. Plant Nutrition and Fertilizer Science, 2010, 16(1): 191-196. (in Chinese with English abstract)
|
[17] |
SHI H, ZHOU X Y, QIN M L, et al. Effect of CaCl2 sprays in different fruit development stages on grape berry cracking[J]. Frontiers in Plant Science, 2022, 13: 870959.
|
[18] |
张钥. 不同频次水分调亏对寒香蜜葡萄果实品质的影响[D]. 扬州: 扬州大学, 2021.
|
|
ZHANG Y. Effects of different frequency of water deficit regulation on fruit quality of Hanxiangmi grape[D]. Yangzhou: Yangzhou University, 2021. (in Chinese with English abstract)
|
[19] |
王宇航, 韩爱民, 张立梅, 等. 外源γ-氨基丁酸对蛇龙珠葡萄果实糖酸代谢的影响[J]. 果树学报, 2023, 40(4): 699-711.
|
|
WANG Y H, HAN A M, ZHANG L M, et al. Effects of exogenous γ-aminobutyric acid spray on sugar and acid metabolism in Cabernet Gernischet grape berries[J]. Journal of Fruit Science, 2023, 40(4): 699-711. (in Chinese with English abstract)
|
[20] |
ZUANAZZI C, MACCARI P A, BENINCA S C, et al. White grape juice increases high-density lipoprotein cholesterol levels and reduces body mass index and abdominal and waist circumference in women[J]. Nutrition, 2019, 57: 109-114.
|
[21] |
田晓成, 祝令成, 邹晖, 等. 果实可溶性糖的积累模式及其调控研究进展[J]. 园艺学报, 2023, 50(4): 885-895.
|
|
TIAN X C, ZHU L C, ZOU H, et al. Research progress on accumulation pattern and regulation of soluble sugar in fruit[J]. Acta Horticulturae Sinica, 2023, 50(4): 885-895. (in Chinese with English abstract)
|
[22] |
SHIRAISHI M, FUJISHIMA H, CHIJIWA H. Evaluation of table grape genetic resources for sugar, organic acid, and amino acid composition of berries[J]. Euphytica, 2010, 174(1): 1-13.
|
[23] |
ZHU M T, YU J, TANG W Y, et al. Role of calcium in regulating anthocyanin accumulation in ‘Manicure Finger’ grape berries[J]. Scientia Horticulturae, 2019, 256: 108585.
|
[24] |
朱磊, 陈芸华, 胡禧熙, 等. 葡萄有机酸的研究进展[J]. 中外葡萄与葡萄酒, 2022(6): 88-95.
|
|
ZHU L, CHEN Y H, HU X X, et al. Research progress of organic acids in grape[J]. Sino-Overseas Grapevine & Wine, 2022(6): 88-95. (in Chinese with English abstract)
|
[25] |
LAMA K, PEER R, SHLIZERMAN L, et al. Tissue-specific organic acid metabolism in reproductive and non-reproductive parts of the fig fruit is partially induced by pollination[J]. Physiologia Plantarum, 2020, 168(1): 133-147.
|
[26] |
颜孙安, 姚清华, 林香信, 等. 成熟度对‘红地球’葡萄氨基酸营养价值的影响[J]. 果树学报, 2021, 38(1): 64-72.
|
|
YAN S A, YAO Q H, LIN X X, et al. Effects of maturity on amino acid nutrition in ‘Red Globe’ grape(Vitis vinifera L.)[J]. Journal of Fruit Science, 2021, 38(1): 64-72. (in Chinese with English abstract)
|
[27] |
COLOMBO R C, ROBERTO S R, DA CRUZ M A, et al. Characterization of the phenolic ripening development of ‘BRS Vitoria’ seedless table grapes using HPLC-DAD-ESI-MS/MS[J]. Journal of Food Composition and Analysis, 2021, 95: 103693.
|
[28] |
SUN L P, HUO J T, LIU J Y, et al. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits[J]. Food Chemistry, 2023, 411: 135540.
|
[29] |
FANG F, TANG K, HUANG W D. Changes of flavonol synthase and flavonol contents during grape berry development[J]. European Food Research and Technology, 2013, 237(4): 529-540.
|