浙江农业学报 ›› 2024, Vol. 36 ›› Issue (8): 1856-1866.DOI: 10.3969/j.issn.1004-1524.20231165
邵亚旭1,2(), 刘涛1,2, 王事成1,2, 晏磊1,2,*(
)
收稿日期:
2023-10-07
出版日期:
2024-08-25
发布日期:
2024-09-06
作者简介:
*晏磊,E-mail: hekouyanlei@gmail.com通讯作者:
晏磊
基金资助:
SHAO Yaxu1,2(), LIU Tao1,2, WANG Shicheng1,2, YAN Lei1,2,*(
)
Received:
2023-10-07
Online:
2024-08-25
Published:
2024-09-06
Contact:
YAN Lei
摘要:
基质化是实现农业废弃物资源化利用的有效途径之一,为提升基质的水稻育秧效果,以玉米秸秆和有机肥为主要原料进行混料设计试验,通过考察不同处理水稻秧苗的壮苗指数,获得最佳水稻育秧基质配方;通过响应面实验优化基质成型工艺,以期获得优质育秧基质产品。结果表明,粉碎秸秆可显著(P<0.05)改善基质的总孔隙度和容重,提升秧苗的壮苗指数,有机肥显著(P<0.001)提高秧苗的干重累积。优化后的育秧基质包含24.84%(体积分数)的田园土,65.78%(体积分数)的秸秆和9.38%(体积分数)的有机肥。基质成型工艺优化结果显示,含水率大于40%的基质成型难度较高,压力对基质块品质影响显著。水稻基质成型最优工艺参数为含水率15.099%,压力18.401 kN,保压时间4.719 min。利用上述最佳基质配方获得的水稻基质壮苗指数较常规田园土提高49.02%,利用最优成型工艺获得的基质块跌碎率小于0.3%。
中图分类号:
邵亚旭, 刘涛, 王事成, 晏磊. 秸秆-有机肥育秧基质的配比筛选与成型工艺[J]. 浙江农业学报, 2024, 36(8): 1856-1866.
SHAO Yaxu, LIU Tao, WANG Shicheng, YAN Lei. Screening of proportions and molding conditions of seeding substrate with straw and organic fertilizer[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1856-1866.
处理 Treatment | 体积分数Volume fraction/% | ||
---|---|---|---|
土 Soil | 秸秆 Straw | 有机肥 Organic fertilizer | |
T1 | 30.0 | 70.0 | 0 |
T2 | 22.5 | 70.0 | 7.5 |
T3 | 27.5 | 60.0 | 12.5 |
T4 | 30.0 | 55.0 | 15.0 |
T5 | 30.0 | 60.0 | 10.0 |
T6 | 22.5 | 62.5 | 15.0 |
T7 | 15.0 | 70.0 | 15.0 |
T8 | 30.0 | 62.5 | 7.5 |
T9 | 30.0 | 55.0 | 15.0 |
T10 | 20.0 | 67.5 | 12.5 |
T11 | 25.0 | 65.0 | 10.0 |
T12 | 22.5 | 70.0 | 7.5 |
T13 | 15.0 | 70.0 | 15.0 |
T14 | 30.0 | 65.0 | 5.0 |
T15 | 22.5 | 62.5 | 15.0 |
T16 | 30.0 | 70.0 | 0 |
对照 CK | 100 | 0 | 0 |
表1 不同育秧基质配方混料试验设计
Table 1 Experimental design of mixtures of different seedling substrate formulations
处理 Treatment | 体积分数Volume fraction/% | ||
---|---|---|---|
土 Soil | 秸秆 Straw | 有机肥 Organic fertilizer | |
T1 | 30.0 | 70.0 | 0 |
T2 | 22.5 | 70.0 | 7.5 |
T3 | 27.5 | 60.0 | 12.5 |
T4 | 30.0 | 55.0 | 15.0 |
T5 | 30.0 | 60.0 | 10.0 |
T6 | 22.5 | 62.5 | 15.0 |
T7 | 15.0 | 70.0 | 15.0 |
T8 | 30.0 | 62.5 | 7.5 |
T9 | 30.0 | 55.0 | 15.0 |
T10 | 20.0 | 67.5 | 12.5 |
T11 | 25.0 | 65.0 | 10.0 |
T12 | 22.5 | 70.0 | 7.5 |
T13 | 15.0 | 70.0 | 15.0 |
T14 | 30.0 | 65.0 | 5.0 |
T15 | 22.5 | 62.5 | 15.0 |
T16 | 30.0 | 70.0 | 0 |
对照 CK | 100 | 0 | 0 |
处理 Treatment | 含水率 Moisture content/% | 压力 Pressure/kN | 保压时间 Pressing time/min |
---|---|---|---|
1 | 10 | 15 | 5.0 |
2 | 20 | 5 | 5.0 |
3 | 20 | 25 | 5.0 |
4 | 15 | 5 | 3.0 |
5 | 20 | 15 | 4.0 |
6 | 10 | 25 | 4.0 |
7 | 5 | 5 | 5.0 |
8 | 0 | 20 | 3.0 |
9 | 10 | 15 | 3.0 |
10 | 15 | 20 | 3.5 |
11 | 0 | 5 | 4.0 |
12 | 10 | 15 | 5.0 |
13 | 5 | 10 | 3.5 |
14 | 15 | 10 | 4.5 |
15 | 10 | 25 | 4.0 |
16 | 10 | 25 | 4.0 |
表2 基质压块成型工艺设计
Table 2 Design of substrate briquette molding process
处理 Treatment | 含水率 Moisture content/% | 压力 Pressure/kN | 保压时间 Pressing time/min |
---|---|---|---|
1 | 10 | 15 | 5.0 |
2 | 20 | 5 | 5.0 |
3 | 20 | 25 | 5.0 |
4 | 15 | 5 | 3.0 |
5 | 20 | 15 | 4.0 |
6 | 10 | 25 | 4.0 |
7 | 5 | 5 | 5.0 |
8 | 0 | 20 | 3.0 |
9 | 10 | 15 | 3.0 |
10 | 15 | 20 | 3.5 |
11 | 0 | 5 | 4.0 |
12 | 10 | 15 | 5.0 |
13 | 5 | 10 | 3.5 |
14 | 15 | 10 | 4.5 |
15 | 10 | 25 | 4.0 |
16 | 10 | 25 | 4.0 |
处理 Treatment | 容重 Bulk density/(g·cm-3) | 总孔隙度 Total porosity/% | 通气孔隙度 Ventilation porosity/% | 持水孔隙度 Water-holding porosity/% | 通气/持水 Ventilation/water holding |
---|---|---|---|---|---|
T1 | 0.36±0.03 ef | 69.68±2.15 c | 24.47±0.57 b | 45.21±1.76 e | 0.54 |
T2 | 0.32±0.03 f | 71.94±1.69 b | 22.12±0.57 cd | 49.82±1.49 d | 0.44 |
T3 | 0.24±0.02 gh | 62.44±1.32 fg | 18.47±0.89 gh | 43.97±1.15 ef | 0.42 |
T4 | 0.45±0.05 c | 56.27±2.46 i | 26.31±1.06 a | 29.96±2.00 h | 0.88 |
T5 | 0.39±0.04 de | 63.85±1.11 f | 20.71±0.94 e | 43.14±0.73 f | 0.48 |
T6 | 0.26±0.02 g | 64.17±1.20 f | 11.88±0.99 k | 52.29±0.54 bc | 0.23 |
T7 | 0.21±0.02 h | 75.28±1.60 a | 19.29±1.52 fg | 55.99±1.04 a | 0.34 |
T8 | 0.35±0.04 ef | 69.25±1.31 cd | 17.53±1.35 hi | 51.72±0.69 c | 0.34 |
T9 | 0.41±0.03 cd | 52.28±1.87 j | 22.71±0.70 c | 29.57±1.43 h | 0.77 |
T10 | 0.26±0.03 g | 67.70±1.44 de | 11.52±1.03 k | 56.18±1.12 a | 0.21 |
T11 | 0.28±0.04 g | 66.64±1.93 e | 13.18±1.42 j | 53.46±1.03 b | 0.25 |
T12 | 0.25±0.03 gh | 73.49±1.56 ab | 17.77±1.24 fg | 55.72±1.02 a | 0.32 |
T13 | 0.26±0.04 g | 74.32±0.95 a | 23.18±0.97 c | 51.14±0.75 cd | 0.45 |
T14 | 0.32±0.03 f | 61.79±1.67 g | 21.06±0.99 de | 40.73±1.28 g | 0.52 |
T15 | 0.32±0.04 f | 59.63±1.82 h | 17.08±1.25 i | 42.55±0.98 f | 0.40 |
T16 | 0.59±0.05 b | 72.13±1.05 b | 20.32±0.90 ef | 51.81±0.43 c | 0.39 |
对照 CK | 0.82±0.05 a | 45.85±1.55 k | 4.94±0.43 l | 40.91±1.64 g | 0.12 |
表3 不同配比育秧基质的容重与孔隙度
Table 3 Bulk density and porosity of seedling substrates with different ratios
处理 Treatment | 容重 Bulk density/(g·cm-3) | 总孔隙度 Total porosity/% | 通气孔隙度 Ventilation porosity/% | 持水孔隙度 Water-holding porosity/% | 通气/持水 Ventilation/water holding |
---|---|---|---|---|---|
T1 | 0.36±0.03 ef | 69.68±2.15 c | 24.47±0.57 b | 45.21±1.76 e | 0.54 |
T2 | 0.32±0.03 f | 71.94±1.69 b | 22.12±0.57 cd | 49.82±1.49 d | 0.44 |
T3 | 0.24±0.02 gh | 62.44±1.32 fg | 18.47±0.89 gh | 43.97±1.15 ef | 0.42 |
T4 | 0.45±0.05 c | 56.27±2.46 i | 26.31±1.06 a | 29.96±2.00 h | 0.88 |
T5 | 0.39±0.04 de | 63.85±1.11 f | 20.71±0.94 e | 43.14±0.73 f | 0.48 |
T6 | 0.26±0.02 g | 64.17±1.20 f | 11.88±0.99 k | 52.29±0.54 bc | 0.23 |
T7 | 0.21±0.02 h | 75.28±1.60 a | 19.29±1.52 fg | 55.99±1.04 a | 0.34 |
T8 | 0.35±0.04 ef | 69.25±1.31 cd | 17.53±1.35 hi | 51.72±0.69 c | 0.34 |
T9 | 0.41±0.03 cd | 52.28±1.87 j | 22.71±0.70 c | 29.57±1.43 h | 0.77 |
T10 | 0.26±0.03 g | 67.70±1.44 de | 11.52±1.03 k | 56.18±1.12 a | 0.21 |
T11 | 0.28±0.04 g | 66.64±1.93 e | 13.18±1.42 j | 53.46±1.03 b | 0.25 |
T12 | 0.25±0.03 gh | 73.49±1.56 ab | 17.77±1.24 fg | 55.72±1.02 a | 0.32 |
T13 | 0.26±0.04 g | 74.32±0.95 a | 23.18±0.97 c | 51.14±0.75 cd | 0.45 |
T14 | 0.32±0.03 f | 61.79±1.67 g | 21.06±0.99 de | 40.73±1.28 g | 0.52 |
T15 | 0.32±0.04 f | 59.63±1.82 h | 17.08±1.25 i | 42.55±0.98 f | 0.40 |
T16 | 0.59±0.05 b | 72.13±1.05 b | 20.32±0.90 ef | 51.81±0.43 c | 0.39 |
对照 CK | 0.82±0.05 a | 45.85±1.55 k | 4.94±0.43 l | 40.91±1.64 g | 0.12 |
处理组 Treatment | 叶龄 Leaf age | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 百株地上干重 Aboveground dry weight of 100 plants/g |
---|---|---|---|---|
T1 | 3.5 | 18.56±1.98 ab | 1.94±0.13 bc | 1.81±0.06 d |
T2 | 4.0 | 20.11±1.39 a | 2.03±0.11 abc | 2.06±0.10 c |
T3 | 4.0 | 19.35±1.86 ab | 2.02±0.13 abc | 2.50±0.10 a |
T4 | 3.5 | 19.83±1.33 a | 2.01±0.12 abc | 2.07±0.07 c |
T5 | 4.0 | 19.78±1.82 a | 1.95±0.11 abc | 1.59±0.06 e |
T6 | 3.0 | 18.83±1.38 ab | 2.08±0.15 ab | 1.50±0.10 ef |
T7 | 3.5 | 19.07±1.59 ab | 2.02±0.12 abc | 1.60±0.06 e |
T8 | 4.0 | 19.62±1.47 a | 1.93±0.14 c | 1.43±0.07 f |
T9 | 3.0 | 19.34±1.61 ab | 2.01±0.14 abc | 2.45±0.08 a |
T10 | 3.5 | 20.26±1.20 a | 1.96±0.13 abc | 2.32±0.08 b |
T11 | 3.5 | 19.11±1.90 ab | 2.06±0.12 abc | 2.48±0.07 a |
T12 | 3.5 | 19.22±1.69 ab | 2.00±0.14 abc | 2.45±0.11 a |
T13 | 4.0 | 19.54±1.64 a | 2.06±0.11 abc | 2.04±0.06 c |
T14 | 3.5 | 19.37±1.92 ab | 2.05±0.15 abc | 2.03±0.06 c |
T15 | 3.0 | 19.21±1.71 ab | 1.98±0.12 abc | 2.30±0.08 b |
T16 | 4.0 | 19.35±1.55 ab | 2.09±0.14 a | 2.28±0.13 b |
对照 CK | 3.0 | 17.58±0.53 b | 1.94±0.08 abc | 2.24±0.15 b |
表4 不同基质配比对水稻秧苗地上性状的影响
Table 4 Effects of different substrate ratios on the aboveground traits of rice seedlings
处理组 Treatment | 叶龄 Leaf age | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 百株地上干重 Aboveground dry weight of 100 plants/g |
---|---|---|---|---|
T1 | 3.5 | 18.56±1.98 ab | 1.94±0.13 bc | 1.81±0.06 d |
T2 | 4.0 | 20.11±1.39 a | 2.03±0.11 abc | 2.06±0.10 c |
T3 | 4.0 | 19.35±1.86 ab | 2.02±0.13 abc | 2.50±0.10 a |
T4 | 3.5 | 19.83±1.33 a | 2.01±0.12 abc | 2.07±0.07 c |
T5 | 4.0 | 19.78±1.82 a | 1.95±0.11 abc | 1.59±0.06 e |
T6 | 3.0 | 18.83±1.38 ab | 2.08±0.15 ab | 1.50±0.10 ef |
T7 | 3.5 | 19.07±1.59 ab | 2.02±0.12 abc | 1.60±0.06 e |
T8 | 4.0 | 19.62±1.47 a | 1.93±0.14 c | 1.43±0.07 f |
T9 | 3.0 | 19.34±1.61 ab | 2.01±0.14 abc | 2.45±0.08 a |
T10 | 3.5 | 20.26±1.20 a | 1.96±0.13 abc | 2.32±0.08 b |
T11 | 3.5 | 19.11±1.90 ab | 2.06±0.12 abc | 2.48±0.07 a |
T12 | 3.5 | 19.22±1.69 ab | 2.00±0.14 abc | 2.45±0.11 a |
T13 | 4.0 | 19.54±1.64 a | 2.06±0.11 abc | 2.04±0.06 c |
T14 | 3.5 | 19.37±1.92 ab | 2.05±0.15 abc | 2.03±0.06 c |
T15 | 3.0 | 19.21±1.71 ab | 1.98±0.12 abc | 2.30±0.08 b |
T16 | 4.0 | 19.35±1.55 ab | 2.09±0.14 a | 2.28±0.13 b |
对照 CK | 3.0 | 17.58±0.53 b | 1.94±0.08 abc | 2.24±0.15 b |
处理 Treatment | 根长 Root length/cm | 根数 Number of roots/piece | 百株地下干重 Underground dry weight of 100 plants/g |
---|---|---|---|
T1 | 9.54±1.44 a | 8.4±1.4 a | 1.61±0.14 cdef |
T2 | 9.54±0.96 a | 9.1±1.3 a | 1.55±0.17 def |
T3 | 9.30±0.91 a | 9.0±1.5 a | 1.55±0.11 def |
T4 | 9.77±0.80 a | 9.1±1.0 a | 1.67±0.06 bcd |
T5 | 9.14±1.04 a | 8.9±1.5 a | 1.49±0.15 f |
T6 | 9.31±1.20 a | 9.3±1.1 a | 1.51±0.12 f |
T7 | 9.62±1.17 a | 9.4±1.6 a | 1.82±0.17 ab |
T8 | 9.42±0.89 a | 8.3±1.3 a | 1.82±0.13 a |
T9 | 9.15±1.07 a | 9.2±1.5 a | 1.48±0.17 f |
T10 | 9.74±1.02 a | 8.6±1.4 a | 1.53±0.13 def |
T11 | 9.48±1.24 a | 8.5±1.4 a | 1.86±0.09 a |
T12 | 9.44±1.22 a | 8.8±1.6 a | 1.52±0.12 ef |
T13 | 9.27±0.76 a | 8.3±1.1 a | 1.71±0.08 abc |
T14 | 9.24±1.05 a | 9.5±1.2 a | 1.66±0.06 cde |
T15 | 9.36±0.96 a | 9.0±1.6 a | 1.61±0.11 cdef |
T16 | 9.44±0.93 a | 9.3±1.3 a | 1.73±0.09 abc |
对照 CK | 9.29±0.13 a | 8.3±1.3 a | 1.51±0.15 ef |
表5 不同基质配比对水稻秧苗根系的影响
Table 5 Effects of different substrate ratios on the root of rice seedlings
处理 Treatment | 根长 Root length/cm | 根数 Number of roots/piece | 百株地下干重 Underground dry weight of 100 plants/g |
---|---|---|---|
T1 | 9.54±1.44 a | 8.4±1.4 a | 1.61±0.14 cdef |
T2 | 9.54±0.96 a | 9.1±1.3 a | 1.55±0.17 def |
T3 | 9.30±0.91 a | 9.0±1.5 a | 1.55±0.11 def |
T4 | 9.77±0.80 a | 9.1±1.0 a | 1.67±0.06 bcd |
T5 | 9.14±1.04 a | 8.9±1.5 a | 1.49±0.15 f |
T6 | 9.31±1.20 a | 9.3±1.1 a | 1.51±0.12 f |
T7 | 9.62±1.17 a | 9.4±1.6 a | 1.82±0.17 ab |
T8 | 9.42±0.89 a | 8.3±1.3 a | 1.82±0.13 a |
T9 | 9.15±1.07 a | 9.2±1.5 a | 1.48±0.17 f |
T10 | 9.74±1.02 a | 8.6±1.4 a | 1.53±0.13 def |
T11 | 9.48±1.24 a | 8.5±1.4 a | 1.86±0.09 a |
T12 | 9.44±1.22 a | 8.8±1.6 a | 1.52±0.12 ef |
T13 | 9.27±0.76 a | 8.3±1.1 a | 1.71±0.08 abc |
T14 | 9.24±1.05 a | 9.5±1.2 a | 1.66±0.06 cde |
T15 | 9.36±0.96 a | 9.0±1.6 a | 1.61±0.11 cdef |
T16 | 9.44±0.93 a | 9.3±1.3 a | 1.73±0.09 abc |
对照 CK | 9.29±0.13 a | 8.3±1.3 a | 1.51±0.15 ef |
图3 不同成型工艺参数制成的基质块形貌 A,基质块正视图;B,基质块俯视图。1~16分别为处理组。
Fig.3 The morphology of substrate blocks manufactured with different forming process parameters A, Front view of the substrate block; B, Top view of the substrate block. 1 to 16 were treatments, respectively.
差异源 Source of difference | 平方和 Sum of squares | 自由度 Degrees of freedom | 方差 Variance | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 2.380 0 | 9 | 0.264 1 | 75.68 | <0.000 1 |
A含水率Water retention | 0.143 9 | 1 | 0.140 0 | 41.24 | <0.000 1 |
B压力Pressure | 1.660 0 | 1 | 1.660 0 | 474.36 | <0.000 1 |
C保压时间Pressing time | 0.004 9 | 1 | 0.004 9 | 1.40 | 0.264 1 |
AB | 0.071 8 | 1 | 0.071 8 | 20.57 | 0.001 1 |
AC | 0.015 4 | 1 | 0.015 4 | 4.40 | 0.062 3 |
BC | 0.020 1 | 1 | 0.020 1 | 5.75 | 0.037 5 |
A2 | 0.000 1 | 1 | 0.000 1 | 0.04 | 0.856 3 |
B2 | 0.325 6 | 1 | 0.325 6 | 93.32 | <0.000 1 |
C2 | 0.003 5 | 1 | 0.003 5 | 1.01 | 0.339 7 |
残差Residuals | 0.034 9 | 10 | 0.003 5 | ||
失拟项Missing items | 0.018 0 | 5 | 0.003 6 | 1.06 | 0.473 4 |
误差Error | 0.016 9 | 5 | 0.003 4 | ||
总和Sum | 2.410 0 | 19 |
表6 基质成型工艺方差分析
Table 6 Variance analysis for substrate molding technique
差异源 Source of difference | 平方和 Sum of squares | 自由度 Degrees of freedom | 方差 Variance | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 2.380 0 | 9 | 0.264 1 | 75.68 | <0.000 1 |
A含水率Water retention | 0.143 9 | 1 | 0.140 0 | 41.24 | <0.000 1 |
B压力Pressure | 1.660 0 | 1 | 1.660 0 | 474.36 | <0.000 1 |
C保压时间Pressing time | 0.004 9 | 1 | 0.004 9 | 1.40 | 0.264 1 |
AB | 0.071 8 | 1 | 0.071 8 | 20.57 | 0.001 1 |
AC | 0.015 4 | 1 | 0.015 4 | 4.40 | 0.062 3 |
BC | 0.020 1 | 1 | 0.020 1 | 5.75 | 0.037 5 |
A2 | 0.000 1 | 1 | 0.000 1 | 0.04 | 0.856 3 |
B2 | 0.325 6 | 1 | 0.325 6 | 93.32 | <0.000 1 |
C2 | 0.003 5 | 1 | 0.003 5 | 1.01 | 0.339 7 |
残差Residuals | 0.034 9 | 10 | 0.003 5 | ||
失拟项Missing items | 0.018 0 | 5 | 0.003 6 | 1.06 | 0.473 4 |
误差Error | 0.016 9 | 5 | 0.003 4 | ||
总和Sum | 2.410 0 | 19 |
图4 压力与保压时间交互作用分析 A,压力与保压时间的等高线图;B,压力与保压时间的3D图。
Fig.4 Analysis of the interaction between pressure and pressing time A, Contour plot of pressure and pressing time; B, 3D plot of pressure and pressing time.
[1] | DENG N Y, GRASSINI P, YANG H S, et al. Closing yield gaps for rice self-sufficiency in China[J]. Nature Communications, 2019, 10(1): 1725. |
[2] | 徐春春, 纪龙, 陈中督, 等. 2020年我国水稻产业形势分析及2021年展望[J]. 中国稻米, 2021, 27(2): 1-4. |
XU C C, JI L, CHEN Z D, et al. Analysis of China’s rice industry in 2020 and the outlook for 2021[J]. China Rice, 2021, 27(2): 1-4. (in Chinese with English abstract) | |
[3] | 霍丽丽, 赵立欣, 孟海波, 等. 中国农作物秸秆综合利用潜力研究[J]. 农业工程学报, 2019, 35(13): 218-224. |
HUO L L, ZHAO L X, MENG H B, et al. Study on straw multi-use potential in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 218-224. (in Chinese with English abstract) | |
[4] | 陈雪丽, 迟凤琴, 张久明, 等. 玉米秸秆腐熟物在蔬菜育苗基质中的应用研究[J]. 黑龙江农业科学, 2021(1): 43-46. |
CHEN X L, CHI F Q, ZHANG J M, et al. Application of compost maize straw as vegetable grow seeding matrix[J]. Heilongjiang Agricultural Sciences, 2021(1): 43-46. (in Chinese with English abstract) | |
[5] | REN A T, ABBOTT L K, CHEN Y L, et al. Nutrient recovery from anaerobic digestion of food waste: impacts of digestate on plant growth and rhizosphere bacterial community composition and potential function in ryegrass[J]. Biology and Fertility of Soils, 2020, 56(7): 973-989. |
[6] | 崔志超, 管春松, 徐陶, 等. 基质块育苗移栽技术与装备发展现状[J]. 中国农机化学报, 2022, 43(5): 29-34. |
CUI Z C, GUAN C S, XU T, et al. Development status of technology and equipment of substrate block seedling cultivation and transplanting[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 29-34. (in Chinese with English abstract) | |
[7] | 胡敏娟, 张文毅, 纪要, 等. 穴盘苗带可降解钵移栽对辣椒生长性状的影响[J]. 中国农机化学报, 2020, 41(9): 57-62. |
HU M J, ZHANG W Y, JI Y, et al. Effects of pepper transplanting with degradable bowls on seedling growth and development traits[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(9): 57-62. (in Chinese with English abstract) | |
[8] | 曹红亮, 杨龙元, 袁巧霞, 等. 稻草、玉米芯调理牛粪堆肥成型育苗基质试验[J]. 农业机械学报, 2015, 46(3): 197-202. |
CAO H L, YANG L Y, YUAN Q X, et al. Experimental research of seedling substrate compressed of cattle manures[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 197-202. (in Chinese with English abstract) | |
[9] | 辛明金, 陈天佑, 张强, 等. 含稻秸蔬菜育苗基质块成型工艺参数优化[J]. 农业工程学报, 2017, 33(16): 219-225. |
XIN M J, CHEN T Y, ZHANG Q, et al. Parameters optimization for molding of vegetable seedling substrate nursery block with rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 219-225. (in Chinese with English abstract) | |
[10] | LI R L, WANG H Y, DUAN E Z, et al. Rabbit manure compost for seedling nursery blocks: suitability and optimization of the manufacturing production process[J]. Agriculture, 2022, 12(12): 2156. |
[11] | 吴文革, 周永进, 陈刚, 等. 不同育秧基质和水分管理对机插稻秧苗素质与产量的影响[J]. 中国生态农业学报, 2014, 22(9): 1057-1063. |
WU W G, ZHOU Y J, CHEN G, et al. Effects of different seedling nursery substrates and water management modes on seedling quality and yield of mechanically transplanted rice[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1057-1063. (in Chinese with English abstract) | |
[12] | 张洪程, 胡雅杰, 杨建昌, 等. 中国特色水稻栽培学发展与展望[J]. 中国农业科学, 2021, 54(7): 1301-1321. |
ZHANG H C, HU Y J, YANG J C, et al. Development and prospect of rice cultivation in China[J]. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321. (in Chinese with English abstract) | |
[13] | 陈永华, 胡婷婷, 章银珊, 等. 不同基质对水稻秧苗素质的影响[J]. 现代农业科技, 2020(24): 1-3. |
CHEN Y H, HU T T, ZHANG Y S, et al. Effect of different substrates on quality of rice seedlings[J]. Modern Agricultural Science and Technology, 2020(24): 1-3. (in Chinese with English abstract) | |
[14] | 黄洪明, 吴美娟, 汪暖, 等. 不同基质育秧对水稻机插秧苗素质和产量的影响[J]. 中国农学通报, 2014, 30(15): 163-167. |
HUANG H M, WU M J, WANG N, et al. Influence of different seedling raising substrates on mechanical transplanting seedling quality and yield in rice[J]. Chinese Agricultural Science Bulletin, 2014, 30(15): 163-167. (in Chinese with English abstract) | |
[15] | 张金花, 任金平, 李启云, 等. 玉米秸秆营养土育秧对水稻秧苗素质的影响[J]. 安徽农业科学, 2015, 43(30): 92. |
ZHANG J H, REN J P, LI Q Y, et al. Effects of raising rice seedling with maize straw nutrient soil on quality of rice seedling[J]. Journal of Anhui Agricultural Sciences, 2015, 43(30): 92. (in Chinese with English abstract) | |
[16] | CHEN S, SONG S, ZHAO C, et al. Effects of mixed corn stalk substrates on growth and photosynthesis of tomato seedlings[J]. Acta Horticulturae, 2018(1227): 463-470. |
[17] | 门洪文, 陆广梅, 卢旭鹏, 等. 水稻育秧基质筛选及育秧技术研究[J]. 农业科技通讯, 2022(4): 143-146. |
MEN H W, LU G M, LU X P, et al. Screening of substrate for rice seedling raising and study on seedling raising technology[J]. Bulletin of Agricultural Science and Technology, 2022(4): 143-146. (in Chinese) | |
[18] | 林阿典, 徐强辉, 杨锦标, 等. 泥炭、蛭石与稻田土混配基质对机插秧苗素质及栽插质量的影响[J]. 中国稻米, 2022, 28(4): 90-94. |
LIN A D, XU Q H, YANG J B, et al. Effects of mixed matrix of peat, vermiculite and paddy soil on the quality of machine-transplanted seedlings and transplanting quality[J]. China Rice, 2022, 28(4): 90-94. (in Chinese with English abstract) | |
[19] | 朱宁, 谭雪明, 李木英, 等. 稻草基质育秧不同有机肥处理对水稻秧苗生长的影响[J]. 江西农业大学学报, 2018, 40(2): 286-294. |
ZHU N, TAN X M, LI M Y, et al. Effects of different organic fertilizers on growth of rice seedlings raised in straw substrates[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(2): 286-294. (in Chinese with English abstract) | |
[20] | 周丽瑶, 吴军, 龚克成, 等. 水稻机插及基质育秧技术研究进展[J]. 中国稻米, 2018, 24(1): 20-23. |
ZHOU L Y, WU J, GONG K C, et al. Research progress of machine-transplanted rice and substrate seedling raising techniques[J]. China Rice, 2018, 24(1): 20-23. (in Chinese with English abstract) | |
[21] | 于洪喜, 吴干, 卞春雷, 等. 不同基质育秧对水稻不同秧龄秧苗素质和最终产量的影响[J]. 大麦与谷类科学, 2017, 34(5): 38-41. |
YU H X, WU G, BIAN C L, et al. Effects of different nursery substrates on seedling quality and grain yield of rice[J]. Barley and Cereal Sciences, 2017, 34(5): 38-41. (in Chinese with English abstract) | |
[22] | 杨龙元. 牛粪堆肥制备成型基质及其育苗试验研究[D]. 武汉: 华中农业大学, 2017. |
YANG L Y. Research of dairy manure compost compressing into sunstrate and its effects on seedling[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[23] | 仲海洲. 利用废弃生物质开发水稻育秧基质及其应用效果研究[D]. 杭州: 浙江大学, 2013. |
ZHONG H Z. Study on utilization of biomass waste to develop rice seedling substrate[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract) | |
[24] | 郭世荣. 固体栽培基质研究、开发现状及发展趋势[J]. 农业工程学报, 2005, 21(S2): 1-4. |
GUO S R. Research, development status and development trend of solid cultivation substrate[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(S2): 1-4. (in Chinese) | |
[25] | 赵立军, 陈海涛, 蔡晓华, 等. 密闭式立体育秧系统水稻育苗基质配方研究[J]. 农业工程学报, 2017, 33(9): 204-210. |
ZHAO L J, CHEN H T, CAI X H, et al. Research on matrix formula of substrate for seedling in rice closed stereo seedling system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 204-210. (in Chinese with English abstract) | |
[26] | ZHANG H, XUE Y G, WANG Z Q, et al. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice[J]. Field Crops Research, 2009, 113(1): 31-40. |
[27] | 陈达刚, 周新桥, 李丽君, 等. 华南主栽高产籼稻根系形态特征及其与产量构成的关系[J]. 作物学报, 2013, 39(10): 1899-1908. |
CHEN D G, ZHOU X Q, LI L J, et al. Relationship between root morphological characteristics and yield components of major commercial indica rice in South China[J]. Acta Agronomica Sinica, 2013, 39(10): 1899-1908. (in Chinese with English abstract) | |
[28] | 林育炯, 张均华, 胡继杰, 等. 不同类型基质对机插水稻秧苗生理特征及产量的影响[J]. 农业工程学报, 2016, 32(8): 18-26. |
LIN Y J, ZHANG J H, HU J J, et al. Effects of different seedling substrates on physiological characters and grain yield of mechanized-transplanted rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 18-26. (in Chinese with English abstract) | |
[29] | 梁玉刚, 李静怡, 周晶, 等. 中国水稻栽培技术的演变与展望[J]. 作物研究, 2022, 36(2): 180-188. |
LIANG Y G, LI J Y, ZHOU J, et al. Evolution and prospect of rice cultivation technology in China[J]. Crop Research, 2022, 36(2): 180-188. (in Chinese with English abstract) | |
[30] | 白晓虎, 李芳, 张祖立, 等. 农作物秸秆挤压成型育苗容器的研究进展[J]. 农机化研究, 2007, 29(5): 225-227. |
BAI X H, LI F, ZHANG Z L, et al. Review of research on the corp straw-extruded seedling container[J]. Journal of Agricultural Mechanization Research, 2007, 29(5): 225-227. (in Chinese with English abstract) | |
[31] | 杨龙元, 袁巧霞, 刘志刚, 等. 牛粪好氧和蚯蚓堆肥腐熟料成型基质块制备及育苗试验[J]. 农业工程学报, 2016, 32(24): 226-233. |
YANG L Y, YUAN Q X, LIU Z G, et al. Experiment on seedling of compressed substrates with cow dung aerobic composting and earthworm cow dung composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 226-233. (in Chinese with English abstract) | |
[32] | MA Y C, QIU S T, LI J, et al. Parameter optimization of a potted seedling tray prepared from a mixture of rice straw and fermented cow manure using the response surface methodology[J]. ACS Omega, 2021, 6(39): 25235-25245. |
[33] | 魏臣, 代洋, 张宇. 蔬菜育苗营养块成型工艺参数及抗压强度研究[J]. 农业科技与装备, 2012(4): 23-25. |
WEI C, DAI Y, ZHANG Y. Study on technological parameters of vegetable seedling block formation and its compressive strength[J]. Agricultural Science&Technology and Equipment, 2012(4): 23-25. (in Chinese with English abstract) | |
[34] | 万鹏举, 马永财, 张博, 等. 动物粪便与秸秆成型坯块制备工艺参数试验研究[J]. 可再生能源, 2020, 38(4): 427-433. |
WAN P J, MA Y C, ZHANG B, et al. Experimental research on process parameters for animal manure and straw perpared briquet[J]. Renewable Energy Resources, 2020, 38(4): 427-433. (in Chinese with English abstract) |
[1] | 曹乃馨, 罗阳兰, 阎勇, 解修超, 张雯龙. 桑树桑黄JM-1胞外多糖液态培养基优化及其抗氧化性研究[J]. 浙江农业学报, 2024, 36(6): 1245-1255. |
[2] | 张晋, 吴晓丽, 田雨薇, 赵珂, 李欢欢, 达色, 次仁达杰, 陈黎洪, 唐宏刚. 超声波辅助酶解牦牛血粉提取氯化血红素的响应面工艺优化及品质表征[J]. 浙江农业学报, 2024, 36(6): 1357-1367. |
[3] | 王海基, 王敏, 卢勇涛, 营雨琨, 王吉亮, 薛理, 秦朝民, 何玉泽. 弹齿链耙式残膜回收机链耙装置的设计与试验[J]. 浙江农业学报, 2023, 35(10): 2465-2476. |
[4] | 张一帆, 何瑞银, 段庆飞, 徐勇. 基于CFD-DEM的排肥用波纹管结构优化设计与试验[J]. 浙江农业学报, 2023, 35(1): 191-201. |
[5] | 吕敬, 吴治勇, 郭晓农, 冯玉兰, 卢建雄, 柴薇薇. 基于响应面法的乳酸菌发酵藜麦秸秆工艺条件优化[J]. 浙江农业学报, 2022, 34(9): 1866-1876. |
[6] | 杨叶爽, 张映萍, 陈伊凡, 张晋, 李欢欢, 陈黎洪, 唐宏刚, 高斌. 响应面法优化复配蛋液配方[J]. 浙江农业学报, 2022, 34(1): 153-162. |
[7] | 贾洋洋, 聂枞宁, 罗兴禹, 杨凯辉, 何春雷. 外源酶辅助发酵加工藏茶的工艺研究[J]. 浙江农业学报, 2021, 33(9): 1720-1729. |
[8] | 姜兴粲, 李冰, 杨敏, 张继瑜. 响应面法优化沙拉沙星/β-环糊精包合物制备工艺与稳定性评价[J]. 浙江农业学报, 2021, 33(3): 404-412. |
[9] | 杨颖, 施迎春, 邢建荣, 刘哲, 郑美瑜, 陆胜民. 葡萄柚精油“除萜赋香”工艺的优化研究[J]. 浙江农业学报, 2021, 33(11): 2128-2136. |
[10] | 李启思, 王雅玲, 邓玉华, 廖建萌, 叶林, 吴莉莉, 郑佳纯, 罗杏燕, 邓旗, 孙力军. 五味子木脂素超声提取工艺优化及其抗氧化和抗真菌的潜力[J]. 浙江农业学报, 2021, 33(11): 2145-2154. |
[11] | 柯义强, 郭鹏辉, 马洪鑫, 杨许花, 高丹丹, 刘湘君, 马忠仁, 丁功涛. 兰州百合组培快繁体系的构建[J]. 浙江农业学报, 2020, 32(6): 1000-1008. |
[12] | 杨志, 李文义, 高云涛, 熊华斌, 陈毅坚, 杨慧娟. 响应面法优化针叶樱桃总黄酮的提取工艺及其抗氧化活性研究[J]. 浙江农业学报, 2020, 32(10): 1866-1872. |
[13] | 高丹丹, 程浩, 马忠仁, 田晓静, 李明生, 陈士恩, 常坤朋, 刘根娣, 娜扎瑞尔·亚哈亚. 泥鳅蛋白抗氧化肽的Plastein反应修饰研究[J]. 浙江农业学报, 2018, 30(8): 1312-1320. |
[14] | 江林娟, 邹雪, 黄雪丽, 倪苏, 李立芹, 杨世民. 响应面法优化马铃薯茎段高效再生体系[J]. 浙江农业学报, 2018, 30(6): 918-925. |
[15] | 温慧萍, 肖建中, 雷伟敏, 纪佳娜. HPLC结合响应面法优化柳叶蜡梅总黄酮提取工艺及其抑菌活性研究[J]. 浙江农业学报, 2018, 30(2): 298-306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||