浙江农业学报 ›› 2024, Vol. 36 ›› Issue (8): 1867-1877.DOI: 10.3969/j.issn.1004-1524.20230691
徐君言1,2(
), 裘高扬2,3, 刘俊丽2, 郭彬2, 李华2, 陈晓冬2, 王鸢2, 傅庆林2,*(
)
收稿日期:2023-05-29
出版日期:2024-08-25
发布日期:2024-09-06
作者简介:*傅庆林,E-mail: fuql161@aliyun.com通讯作者:
傅庆林
基金资助:
XU Junyan1,2(
), QIU Gaoyang2,3, LIU Junli2, GUO Bin2, LI Hua2, CHEN Xiaodong2, WANG Yuan2, FU Qinglin2,*(
)
Received:2023-05-29
Online:2024-08-25
Published:2024-09-06
Contact:
FU Qinglin
摘要:
为了明确玄武岩风化及其风化过程中形成的蒙脱石与高岭石类黏土矿物对土壤碳固存的影响,采用田间微区试验,研究了玄武岩、蒙脱石和高岭石施用下土壤颗粒结构、pH值,及速效养分、可溶性有机碳(DOC)、微生物生物量碳(MBC)、有机碳和无机碳含量的变化。结果表明,与单施山核桃壳有机肥的处理相比,在其基础上配施玄武岩、蒙脱石或高岭石显著(P<0.05)降低了土壤MBC含量,降幅分别为8.7%、10.3%和9.7%;配施玄武岩的处理土壤pH值显著提高0.80,土壤DOC、有机碳、无机碳含量分别显著增加9.4%、3.6%和939.2%;配施蒙脱石处理的土壤交换性钙、镁含量和阳离子交换量分别显著增加77.3%、471.7%、80.2%,土壤有机碳与无机碳含量分别显著增加2.5%和543.2%;配施高岭石处理的土壤水稳性大团聚体(粒径≥0.25 mm)占比显著提升了2.3百分点,土壤有机碳与无机碳含量分别显著增加2.8%和646.3%。此外,除配施玄武岩或蒙脱石的处理显著提升了土壤速效钾含量外,配施3种矿物对土壤其他速效养分(碱解氮、有效磷)含量无显著影响。综上,蒙脱石、高岭石与玄武岩对土壤有机碳有固定作用,玄武岩对土壤无机碳的固定作用最强。施用蒙脱石、高岭石和玄武岩可以实现对土壤有机碳-无机碳的协同固定。
中图分类号:
徐君言, 裘高扬, 刘俊丽, 郭彬, 李华, 陈晓冬, 王鸢, 傅庆林. 蒙脱石、高岭石与玄武岩对土壤碳固存的影响[J]. 浙江农业学报, 2024, 36(8): 1867-1877.
XU Junyan, QIU Gaoyang, LIU Junli, GUO Bin, LI Hua, CHEN Xiaodong, WANG Yuan, FU Qinglin. Effects of montmorillonite, kaolinite and basalt on soil carbon sequestration[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1867-1877.
图1 矿物结合土壤颗粒的扫描电子显微镜图 A~E图分别对应于CK、H、BH、MH和KH处理。
Fig.1 Scanning electron microscopy images of mineral-associated soil particles A-E show the result of CK, H, BH, MH, KH treatments, respectively.
图2 不同处理对土壤化学性质的影响 柱上无相同字母的表示处理间差异显著(P<0.05)。下同。
Fig.2 Effects of different treatments on soil chemical properties Bars marked without the same letters indicate significant (P<0.05) difference within treatments. The same as below.
图3 不同处理的土壤阳离子交换量(CEC)、交换性钙含量、交换性镁含量及其相关性
Fig.3 Soil cation exchange capacity (CEC), exchangeable calcium content, exchangeable magnesium content under treatments and their inter-correlations
| 处理 Treatment | 不同粒级占比Percentage of different size fractions/% | ||
|---|---|---|---|
| 0.25~2 mm | 0.053~<0.25 mm | <0.053 mm | |
| CK | 19.2±0.8 b | 12.8±0.4 b | 68.0±0.5 c |
| H | 18.6±0.1 b | 14.7±1.5 a | 66.7±1.6 c |
| BH | 13.1±0.1 c | 14.5±0.3 a | 72.4±0.3 a |
| MH | 18.2±1.2 b | 11.6±0.7 b | 70.1±0.9 b |
| KH | 20.9±0.6 a | 15.2±0.2 a | 63.9±0.8 d |
表1 不同处理的土壤各粒级团聚体占比
Table 1 Percentage of soil aggregates with different size fractions under treatments
| 处理 Treatment | 不同粒级占比Percentage of different size fractions/% | ||
|---|---|---|---|
| 0.25~2 mm | 0.053~<0.25 mm | <0.053 mm | |
| CK | 19.2±0.8 b | 12.8±0.4 b | 68.0±0.5 c |
| H | 18.6±0.1 b | 14.7±1.5 a | 66.7±1.6 c |
| BH | 13.1±0.1 c | 14.5±0.3 a | 72.4±0.3 a |
| MH | 18.2±1.2 b | 11.6±0.7 b | 70.1±0.9 b |
| KH | 20.9±0.6 a | 15.2±0.2 a | 63.9±0.8 d |
图4 不同处理对土壤微生物生物量碳(MBC)和可溶性有机碳(DOC)含量的影响
Fig.4 Effects of treatments on soil microbial biomass carbon (MBC) and dissolved organic carbon (DOC) contents
图6 土壤碳库组分与基本化学性质的相关性 pH,土壤pH值;ECa,土壤交换性钙含量;EMg,土壤交换性镁含量;CEC,土壤阳离子交换量;OC,土壤有机碳含量;IC,土壤无机碳含量;MBC,土壤微生物生物量碳含量;DOC,土壤有机碳含量。“*”和“**”分别表示在P<0.05和P<0.01水平上显著相关。
Fig.6 The correlation between soil carbon pool components and basic chemical properties pH, Soil pH; ECa, Soil exchange calcium content; EMg, Soil exchange magnesium content; CEC, Soil cation exchange capacity; OC, Soil organic carbon content; IC, Soil inorganic carbon content; MBC, Soil microbial biomass content; DOC, Soil dissolved organic carbon content. “*” and “**” indicate significant correlation at P<0.05 and P<0.01 level, respectively.
| [1] | 陈梦蝶, 崔晓阳. 土壤有机碳矿物固持机制及其影响因素[J]. 中国生态农业学报(中英文), 2022, 30(2): 175-183. |
| CHEN M D, CUI X Y. Mechanisms and influencing factors of soil organic carbon sequestration by minerals[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 175-183. (in Chinese with English abstract) | |
| [2] | 余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829-4838. |
| YU J, FANG L, BIAN Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4829-4838. (in Chinese with English abstract) | |
| [3] | WHITBREAD A M, LEFROY R D B, BLAIR G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales[J]. Soil Research, 1998, 36(4): 669. |
| [4] | 安玲玲, 吕晓男, 麻万诸, 等. 浙江省土壤有机碳密度与储量的初步研究[J]. 浙江农业学报, 2014, 26(1): 148-153. |
| AN L L, LYU X N, MA W Z, et al. The density and storage of soil organic carbon in Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2014, 26(1): 148-153. (in Chinese with English abstract) | |
| [5] | WU H B, GUO Z T, GAO Q, et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J]. Agriculture, Ecosystems & Environment, 2009, 129(4): 413-421. |
| [6] | BATJES N H. Soil carbon stocks of Jordan and projected changes upon improved management of croplands[J]. Geoderma, 2006, 132(3/4): 361-371. |
| [7] | TAMIR G, SHENKER M, HELLER H, et al. Can soil carbonate dissolution lead to overestimation of soil respiration?[J]. Soil Science Society of America Journal, 2011, 75(4): 1414-1422. |
| [8] | TORN M S, TRUMBORE S E, CHADWICK O A, et al. Mineral control of soil organic carbon storage and turnover[J]. Nature, 1997, 389(6647): 170-173. |
| [9] | BEERLING D J, KANTZAS E P, LOMAS M R, et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands[J]. Nature, 2020, 583(7815): 242-248. |
| [10] | LEWIS A L, SARKAR B, WADE P, et al. Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering[J]. Applied Geochemistry, 2021, 132: 105023. |
| [11] | AUGUSTO V L, LAÉRCIO A P, MARCELO A B, et al. Agronomic feasibility of using basalt powder as soil nutrient remineralizer[J]. African Journal of Agricultural Research, 2021, 17(3): 487-497. |
| [12] | CONCEIÇÃO L T, SILVA G N, HOLSBACK H M S, et al. Potential of basalt dust to improve soil fertility and crop nutrition[J]. Journal of Agriculture and Food Research, 2022, 10: 100443. |
| [13] | RASMUSSEN C, DAHLGREN R A, SOUTHARD R J. Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA[J]. Geoderma, 2010, 154: 473-485. |
| [14] | SAIDY A R, SMERNIK R J, BALDOCK J A, et al. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation[J]. Geoderma, 2012, 173: 104-110. |
| [15] | BRUUN T B, ELBERLING B, CHRISTENSEN B T. Lability of soil organic carbon in tropical soils with different clay minerals[J]. Soil Biology and Biochemistry, 2010, 42(6): 888-895. |
| [16] | 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6): 2642-2650. |
| LIU M Q, HU F, CHEN X Y. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica, 2007, 27(6): 2642-2650. (in Chinese with English abstract) | |
| [17] | KAISER K, EUSTERHUES K, RUMPEL C, et al. Stabilization of organic matter by soil minerals: investigations of density and particle-size fractions from two acid forest soils[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 451-459. |
| [18] | 田雨, 杨建军, HUSSAIN S. 红壤有机矿物复合体吸附Cu(Ⅱ)的分子机制[J]. 土壤学报, 2021, 58(3): 722-731. |
| TIAN Y, YANG J J, HUSSAIN S. Molecular mechanism of Cu (Ⅱ) adsorption by organo-mineral complexes of red soil[J]. Acta Pedologica Sinica, 2021, 58(3): 722-731. (in Chinese with English abstract) | |
| [19] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
| [20] | VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
| [21] | WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction: an automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. |
| [22] | 张泽洲, 王冬梅, 李梦寻. 干湿交替程度对土壤速效养分的影响[J]. 水土保持学报, 2021, 35(2): 265-270. |
| ZHANG Z Z, WANG D M, LI M X. Effect of drying-rewetting intensity on soil nutrient availability[J]. Journal of Soil and Water Conservation, 2021, 35(2): 265-270. (in Chinese with English abstract) | |
| [23] | KANTOLA I B, MASTERS M D, BEERLING D J, et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering[J]. Biology Letters, 2017, 13(4): 20160714. |
| [24] | 王梅, 蒋先军. 施用石灰与钙蒙脱石对酸性土壤硝化动力学过程的影响[J]. 农业资源与环境学报, 2017, 34(1): 47-53. |
| WANG M, JIANG X J. Effects of applying lime and calcium montmorillonite on nitrification dynamics in acidic soil[J]. Journal of Agricultural Resources and Environment, 2017, 34(1): 47-53. (in Chinese with English abstract) | |
| [25] | 吕波, 王宇函, 夏浩, 等. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异[J]. 中国农业科学, 2018, 51(22): 4306-4315. |
| LÜ B, WANG Y H, XIA H, et al. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil[J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315. (in Chinese with English abstract) | |
| [26] | 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244. |
| XU R K. Research progresses in soil acidification and its control[J]. Soils, 2015, 47(2): 238-244. (in Chinese with English abstract) | |
| [27] | 苏杨, 张俊涛, 李铤, 等. 4种改良材料对城市绿地酸性土壤的改良效果[J]. 林业与环境科学, 2021, 37(4): 62-68. |
| SU Y, ZHANG J T, LI T, et al. Effects of four amendments on acidic soils of urban green space[J]. Forestry and Environmental Science, 2021, 37(4): 62-68. (in Chinese with English abstract) | |
| [28] | ZHANG Y T, HE X H, LIANG H, et al. Long-term tobacco plantation induces soil acidification and soil base cation loss[J]. Environmental Science and Pollution Research International, 2016, 23(6): 5442-5450. |
| [29] | 干方群, 杭小帅, 刘云, 等. 苏南地区膨润土物理化学和矿物学特性研究[J]. 土壤学报, 2018, 55(4): 945-954. |
| GAN F Q, HANG X S, LIU Y, et al. Physicochemical and mineralogical properties of bentonites in South Jiangsu, China[J]. Acta Pedologica Sinica, 2018, 55(4): 945-954. (in Chinese with English abstract) | |
| [30] | HUANG L, HU H Q, LI X Y, et al. Influences of low molar mass organic acids on the adsorption of Cd2+ and Pb2+ by goethite and montmorillonite[J]. Applied Clay Science, 2010, 49(3): 281-287. |
| [31] | 王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005 (3): 415-421. |
| WANG Q K, WANG S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005(3): 415-421. (in Chinese with English abstract) | |
| [32] | DENEF K, SIX J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization[J]. European Journal of Soil Science, 2005, 56(4): 469-479. |
| [33] | FERNÁNDEZ-UGALDE O, BARRÉ P, HUBERT F, et al. Clay mineralogy differs qualitatively in aggregate-size classes: clay-mineral-based evidence for aggregate hierarchy in temperate soils[J]. European Journal of Soil Science, 2013, 64(4): 410-422. |
| [34] | 胡诚, 曹志平, 罗艳蕊, 等. 长期施用生物有机肥对土壤肥力及微生物生物量碳的影响[J]. 中国生态农业学报, 2007, 15(3): 48-51. |
| HU C, CAO Z P, LUO Y R, et al. Effect of long-term application of microorganismic compost or vermicompost on soil fertility and microbial biomass carbon[J]. Chinese Journal of Eco-Agriculture, 2007, 15(3): 48-51. (in Chinese with English abstract) | |
| [35] | 张小磊, 齐庆超, 李春发, 等. 小浪底库区不同水位高程下消落带落干期土壤微生物量碳分布特征[J]. 土壤通报, 2022, 53(6): 1395-1403. |
| ZHANG X L, QI Q C, LI C F, et al. Distribution characteristics of soil microbial biomass carbon in hydro-fluctuation belt at different altitudes during the drying period of the Xiaolangdi Reservoir[J]. Chinese Journal of Soil Science, 2022, 53(6): 1395-1403. (in Chinese with English abstract) | |
| [36] | LIU W G, WEI J, CHENG J M, et al. Profile distribution of soil inorganic carbon along a chronosequence of grassland restoration on a 22-year scale in the Chinese Loess Plateau[J]. CATENA, 2014, 121: 321-329. |
| [37] | EDWARDS D P, LIM F, JAMES R H, et al. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture[J]. Biology Letters, 2017, 13(4): 20160715. |
| [38] | SHI Y, BAUMANN F, MA Y, et al. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications[J]. Biogeosciences, 2012, 9(6): 2287-2299. |
| [39] | 孙盛凯, 刘新坤, 朱旭毅, 等. 土壤可溶性有机碳、氮的迁移淋溶规律研究进展[J]. 山西农业科学, 2022, 50(8): 1158-1167. |
| SUN S K, LIU X K, ZHU X Y, et al. Research progress on migration and leaching law of dissolved organic carbon and nitrogen in farmland[J]. Journal of Shanxi Agricultural Sciences, 2022, 50(8): 1158-1167. (in Chinese with English abstract) |
| [1] | 王云龙, 贾生强, 崔玲宇, 吕豪豪, 沈阿林, 苏瑶. 秸秆还田下土壤碳氮分布与固氮和反硝化细菌种群的相互影响[J]. 浙江农业学报, 2025, 37(10): 2150-2164. |
| [2] | 艾然, 何杰, 林海忠, 翁丽青, 陈照明, 马军伟, 王强. 不同种植年限茭白田土壤的有机碳含量与结构特征[J]. 浙江农业学报, 2024, 36(11): 2558-2565. |
| [3] | 简兴, 翟晓钰, 王喻, 蔡阳阳. 土地利用方式改变对湿地土壤总有机碳与可溶性有机碳的影响[J]. 浙江农业学报, 2020, 32(3): 475-482. |
| [4] | 陶利波, 王建军, 王国会, 于双, 李惠惠, 许冬梅. 封育对宁夏荒漠草原土壤有机碳矿化的影响[J]. 浙江农业学报, 2017, 29(9): 1549-1554. |
| [5] | 虞舟鲁, 邱乐丰, 林霖. 土地利用方式变化对农业土壤有机碳空间分布的影响[J]. 浙江农业学报, 2017, 29(5): 806-811. |
| [6] | 季波, 李娜, 马璠, 蔡进军, 董立国, 许浩, 韩新生. 宁南典型退耕模式对土壤有机碳固存的影响[J]. 浙江农业学报, 2017, 29(3): 483-488. |
| [7] | 蓝家程, 肖时珍, 林俊清, 沈艳. 土地利用方式对岩溶山地土壤轻组和重组有机碳的影响[J]. 浙江农业学报, 2017, 29(10): 1720-1725. |
| [8] | 王连晓1,史正涛1,*,刘新有2,3,杨帆1. 西双版纳橡胶林土壤有机碳分布特征研究[J]. 浙江农业学报, 2016, 28(7): 1200-. |
| [9] | 邵泱峰1,梅洪飞1,潘忠潮1,刘欢2,王超琦2. 玉米秸秆还田对土壤有机碳、微生物功能多样性及甘蓝产量的影响[J]. 浙江农业学报, 2016, 28(5): 838-. |
| [10] | 简兴1,2,王松3,王玉良3,汪建飞1,2. 城市湿地周边不同土地利用方式下土壤有机碳及其活性组分特征[J]. 浙江农业学报, 2016, 28(1): 119-. |
| [11] | 朱真令1,2,麻万诸2,龙文莉2,任周桥2,邓勋飞2,陈晓佳2,沈建国3,吕晓男1,2,*. 杭州余杭区农田耕层土壤有机碳空间分布特征及其影响因素[J]. 浙江农业学报, 2015, 27(11): 1990-. |
| [12] | 安玲玲;吕晓男;麻万诸;*;任周桥;邓勋飞;陈晓佳. 浙江省土壤有机碳密度与储量的初步研究[J]. , 2014, 26(1): 0-153. |
| [13] | 陈义;王胜佳;吴春艳;王钟祥;张连佳;张琳玲;赵秉强;张夫道 . 稻田土壤有机碳平衡及其数学模拟研究[J]. , 2004, 16(1): 0-6. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||