[1] |
陈梦蝶, 崔晓阳. 土壤有机碳矿物固持机制及其影响因素[J]. 中国生态农业学报(中英文), 2022, 30(2): 175-183.
|
|
CHEN M D, CUI X Y. Mechanisms and influencing factors of soil organic carbon sequestration by minerals[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 175-183. (in Chinese with English abstract)
|
[2] |
余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829-4838.
|
|
YU J, FANG L, BIAN Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4829-4838. (in Chinese with English abstract)
|
[3] |
WHITBREAD A M, LEFROY R D B, BLAIR G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales[J]. Soil Research, 1998, 36(4): 669.
|
[4] |
安玲玲, 吕晓男, 麻万诸, 等. 浙江省土壤有机碳密度与储量的初步研究[J]. 浙江农业学报, 2014, 26(1): 148-153.
|
|
AN L L, LYU X N, MA W Z, et al. The density and storage of soil organic carbon in Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2014, 26(1): 148-153. (in Chinese with English abstract)
|
[5] |
WU H B, GUO Z T, GAO Q, et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J]. Agriculture, Ecosystems & Environment, 2009, 129(4): 413-421.
|
[6] |
BATJES N H. Soil carbon stocks of Jordan and projected changes upon improved management of croplands[J]. Geoderma, 2006, 132(3/4): 361-371.
|
[7] |
TAMIR G, SHENKER M, HELLER H, et al. Can soil carbonate dissolution lead to overestimation of soil respiration?[J]. Soil Science Society of America Journal, 2011, 75(4): 1414-1422.
|
[8] |
TORN M S, TRUMBORE S E, CHADWICK O A, et al. Mineral control of soil organic carbon storage and turnover[J]. Nature, 1997, 389(6647): 170-173.
|
[9] |
BEERLING D J, KANTZAS E P, LOMAS M R, et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands[J]. Nature, 2020, 583(7815): 242-248.
|
[10] |
LEWIS A L, SARKAR B, WADE P, et al. Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering[J]. Applied Geochemistry, 2021, 132: 105023.
|
[11] |
AUGUSTO V L, LAÉRCIO A P, MARCELO A B, et al. Agronomic feasibility of using basalt powder as soil nutrient remineralizer[J]. African Journal of Agricultural Research, 2021, 17(3): 487-497.
|
[12] |
CONCEIÇÃO L T, SILVA G N, HOLSBACK H M S, et al. Potential of basalt dust to improve soil fertility and crop nutrition[J]. Journal of Agriculture and Food Research, 2022, 10: 100443.
|
[13] |
RASMUSSEN C, DAHLGREN R A, SOUTHARD R J. Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA[J]. Geoderma, 2010, 154: 473-485.
|
[14] |
SAIDY A R, SMERNIK R J, BALDOCK J A, et al. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation[J]. Geoderma, 2012, 173: 104-110.
|
[15] |
BRUUN T B, ELBERLING B, CHRISTENSEN B T. Lability of soil organic carbon in tropical soils with different clay minerals[J]. Soil Biology and Biochemistry, 2010, 42(6): 888-895.
|
[16] |
刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6): 2642-2650.
|
|
LIU M Q, HU F, CHEN X Y. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica, 2007, 27(6): 2642-2650. (in Chinese with English abstract)
|
[17] |
KAISER K, EUSTERHUES K, RUMPEL C, et al. Stabilization of organic matter by soil minerals: investigations of density and particle-size fractions from two acid forest soils[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 451-459.
|
[18] |
田雨, 杨建军, HUSSAIN S. 红壤有机矿物复合体吸附Cu(Ⅱ)的分子机制[J]. 土壤学报, 2021, 58(3): 722-731.
|
|
TIAN Y, YANG J J, HUSSAIN S. Molecular mechanism of Cu (Ⅱ) adsorption by organo-mineral complexes of red soil[J]. Acta Pedologica Sinica, 2021, 58(3): 722-731. (in Chinese with English abstract)
|
[19] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[20] |
VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707.
|
[21] |
WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction: an automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169.
|
[22] |
张泽洲, 王冬梅, 李梦寻. 干湿交替程度对土壤速效养分的影响[J]. 水土保持学报, 2021, 35(2): 265-270.
|
|
ZHANG Z Z, WANG D M, LI M X. Effect of drying-rewetting intensity on soil nutrient availability[J]. Journal of Soil and Water Conservation, 2021, 35(2): 265-270. (in Chinese with English abstract)
|
[23] |
KANTOLA I B, MASTERS M D, BEERLING D J, et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering[J]. Biology Letters, 2017, 13(4): 20160714.
|
[24] |
王梅, 蒋先军. 施用石灰与钙蒙脱石对酸性土壤硝化动力学过程的影响[J]. 农业资源与环境学报, 2017, 34(1): 47-53.
|
|
WANG M, JIANG X J. Effects of applying lime and calcium montmorillonite on nitrification dynamics in acidic soil[J]. Journal of Agricultural Resources and Environment, 2017, 34(1): 47-53. (in Chinese with English abstract)
|
[25] |
吕波, 王宇函, 夏浩, 等. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异[J]. 中国农业科学, 2018, 51(22): 4306-4315.
|
|
LÜ B, WANG Y H, XIA H, et al. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil[J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315. (in Chinese with English abstract)
|
[26] |
徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244.
|
|
XU R K. Research progresses in soil acidification and its control[J]. Soils, 2015, 47(2): 238-244. (in Chinese with English abstract)
|
[27] |
苏杨, 张俊涛, 李铤, 等. 4种改良材料对城市绿地酸性土壤的改良效果[J]. 林业与环境科学, 2021, 37(4): 62-68.
|
|
SU Y, ZHANG J T, LI T, et al. Effects of four amendments on acidic soils of urban green space[J]. Forestry and Environmental Science, 2021, 37(4): 62-68. (in Chinese with English abstract)
|
[28] |
ZHANG Y T, HE X H, LIANG H, et al. Long-term tobacco plantation induces soil acidification and soil base cation loss[J]. Environmental Science and Pollution Research International, 2016, 23(6): 5442-5450.
|
[29] |
干方群, 杭小帅, 刘云, 等. 苏南地区膨润土物理化学和矿物学特性研究[J]. 土壤学报, 2018, 55(4): 945-954.
|
|
GAN F Q, HANG X S, LIU Y, et al. Physicochemical and mineralogical properties of bentonites in South Jiangsu, China[J]. Acta Pedologica Sinica, 2018, 55(4): 945-954. (in Chinese with English abstract)
|
[30] |
HUANG L, HU H Q, LI X Y, et al. Influences of low molar mass organic acids on the adsorption of Cd2+ and Pb2+ by goethite and montmorillonite[J]. Applied Clay Science, 2010, 49(3): 281-287.
|
[31] |
王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005 (3): 415-421.
|
|
WANG Q K, WANG S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005(3): 415-421. (in Chinese with English abstract)
|
[32] |
DENEF K, SIX J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization[J]. European Journal of Soil Science, 2005, 56(4): 469-479.
|
[33] |
FERNÁNDEZ-UGALDE O, BARRÉ P, HUBERT F, et al. Clay mineralogy differs qualitatively in aggregate-size classes: clay-mineral-based evidence for aggregate hierarchy in temperate soils[J]. European Journal of Soil Science, 2013, 64(4): 410-422.
|
[34] |
胡诚, 曹志平, 罗艳蕊, 等. 长期施用生物有机肥对土壤肥力及微生物生物量碳的影响[J]. 中国生态农业学报, 2007, 15(3): 48-51.
|
|
HU C, CAO Z P, LUO Y R, et al. Effect of long-term application of microorganismic compost or vermicompost on soil fertility and microbial biomass carbon[J]. Chinese Journal of Eco-Agriculture, 2007, 15(3): 48-51. (in Chinese with English abstract)
|
[35] |
张小磊, 齐庆超, 李春发, 等. 小浪底库区不同水位高程下消落带落干期土壤微生物量碳分布特征[J]. 土壤通报, 2022, 53(6): 1395-1403.
|
|
ZHANG X L, QI Q C, LI C F, et al. Distribution characteristics of soil microbial biomass carbon in hydro-fluctuation belt at different altitudes during the drying period of the Xiaolangdi Reservoir[J]. Chinese Journal of Soil Science, 2022, 53(6): 1395-1403. (in Chinese with English abstract)
|
[36] |
LIU W G, WEI J, CHENG J M, et al. Profile distribution of soil inorganic carbon along a chronosequence of grassland restoration on a 22-year scale in the Chinese Loess Plateau[J]. CATENA, 2014, 121: 321-329.
|
[37] |
EDWARDS D P, LIM F, JAMES R H, et al. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture[J]. Biology Letters, 2017, 13(4): 20160715.
|
[38] |
SHI Y, BAUMANN F, MA Y, et al. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications[J]. Biogeosciences, 2012, 9(6): 2287-2299.
|
[39] |
孙盛凯, 刘新坤, 朱旭毅, 等. 土壤可溶性有机碳、氮的迁移淋溶规律研究进展[J]. 山西农业科学, 2022, 50(8): 1158-1167.
|
|
SUN S K, LIU X K, ZHU X Y, et al. Research progress on migration and leaching law of dissolved organic carbon and nitrogen in farmland[J]. Journal of Shanxi Agricultural Sciences, 2022, 50(8): 1158-1167. (in Chinese with English abstract)
|