浙江农业学报 ›› 2024, Vol. 36 ›› Issue (8): 1878-1886.DOI: 10.3969/j.issn.1004-1524.20231078
孙鹂1(), 张淑文1, 俞浙萍1, 郑锡良1, 梁森苗1, 任海英1, 戚行江1,2,*(
)
收稿日期:
2023-09-08
出版日期:
2024-08-25
发布日期:
2024-09-06
作者简介:
*戚行江,E-mail: qixj@zaas.ac.cn通讯作者:
戚行江
基金资助:
SUN Li1(), ZHANG Shuwen1, YU Zheping1, ZHENG Xiliang1, LIANG Senmiao1, REN Haiying1, QI Xingjiang1,2,*(
)
Received:
2023-09-08
Online:
2024-08-25
Published:
2024-09-06
Contact:
QI Xingjiang
摘要:
针对杨梅种植区土壤环境恶化导致杨梅树体衰弱、果实品质下降的问题,开展腐殖酸钾调理杨梅根系土壤的研究,施用不同剂量的腐殖酸钾,测定土壤理化性质,微生物生物量碳、氮,土壤酶活性,以及杨梅茎、叶的营养元素含量,果实品质与产量的变化。结果表明,施用腐殖酸钾可显著(P<0.05)提高土壤pH值、阳离子交换量、电导率和最大持水量,显著增加土壤速效氮、速效钾含量和土壤交换性钙含量,显著提高土壤脲酶、蔗糖酶、过氧化氢酶活性,显著增加杨梅茎、叶的钾、钙含量,显著提高杨梅果实的总糖和可溶性糖含量,显著促进花色素苷的积累,显著提升杨梅的商品果率和优质果率。综上,腐殖酸钾可作为适宜的土壤调理剂,改善杨梅根系的土壤健康状况,提高杨梅果实品质。
中图分类号:
孙鹂, 张淑文, 俞浙萍, 郑锡良, 梁森苗, 任海英, 戚行江. 腐殖酸钾对杨梅土壤改良和生长结实的影响[J]. 浙江农业学报, 2024, 36(8): 1878-1886.
SUN Li, ZHANG Shuwen, YU Zheping, ZHENG Xiliang, LIANG Senmiao, REN Haiying, QI Xingjiang. Effects of potassium humate on soil improvement, tree growth and fruiting of Chinese bayberry (Myrica rubra)[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1878-1886.
处理Treatment | pH | EC/(μS·cm-1) | CEC/(cmol·kg-1) | BD/(g·cm-3) | SOC/(g·kg-1) | MWHC/(g·kg-1) |
---|---|---|---|---|---|---|
CK | 4.84±0.02 c | 32.3±0.9 c | 6.87±0.12 b | 1.01±0.06 a | 28.38±1.48 b | 168.60±11.57 c |
T1 | 6.58±0.03 a | 82.1±2.9 a | 9.33±0.72 a | 1.15±0.04 a | 48.47±0.96 a | 211.05±3.75 b |
T2 | 6.03±0.02 b | 68.6±5.5 b | 9.82±0.27 a | 1.04±0.07 a | 48.16±3.34 a | 378.96±13.02 a |
表1 不同处理的土壤理化性质
Table 1 Soil physical and chemical properties under different treatments
处理Treatment | pH | EC/(μS·cm-1) | CEC/(cmol·kg-1) | BD/(g·cm-3) | SOC/(g·kg-1) | MWHC/(g·kg-1) |
---|---|---|---|---|---|---|
CK | 4.84±0.02 c | 32.3±0.9 c | 6.87±0.12 b | 1.01±0.06 a | 28.38±1.48 b | 168.60±11.57 c |
T1 | 6.58±0.03 a | 82.1±2.9 a | 9.33±0.72 a | 1.15±0.04 a | 48.47±0.96 a | 211.05±3.75 b |
T2 | 6.03±0.02 b | 68.6±5.5 b | 9.82±0.27 a | 1.04±0.07 a | 48.16±3.34 a | 378.96±13.02 a |
处理Treatment | SAN/(mg·kg-1) | SAP/(mg·kg-1) | SAK/(mg·kg-1) | SECa/(cmol·kg-1) | SEMg/(cmol·kg-1) |
---|---|---|---|---|---|
CK | 127.63±1.76 b | 208.67±2.52 a | 103.02±1.97 c | 1.64±0.09 b | 2.34±0.14 b |
T1 | 152.57±3.13 a | 206.84±1.81 a | 424.97±15.14 b | 3.43±0.07 a | 2.59±0.10 b |
T2 | 157.95±3.86 a | 212.25±4.81 a | 506.48±8.67 a | 3.38±0.05 a | 3.42±0.18 a |
表2 不同处理的土壤有效养分
Table 2 Soil available nutrients under different treatments
处理Treatment | SAN/(mg·kg-1) | SAP/(mg·kg-1) | SAK/(mg·kg-1) | SECa/(cmol·kg-1) | SEMg/(cmol·kg-1) |
---|---|---|---|---|---|
CK | 127.63±1.76 b | 208.67±2.52 a | 103.02±1.97 c | 1.64±0.09 b | 2.34±0.14 b |
T1 | 152.57±3.13 a | 206.84±1.81 a | 424.97±15.14 b | 3.43±0.07 a | 2.59±0.10 b |
T2 | 157.95±3.86 a | 212.25±4.81 a | 506.48±8.67 a | 3.38±0.05 a | 3.42±0.18 a |
处理 Treatment | SMBC/ (mg·kg-1) | SMBN/ (mg·kg-1) | SMBC/ SMBN | S-UA/ (μg·g-1·d-1) | S-CA/ (mg·g-1·h-1) | S-APA/ (mg·g-1·d-1) | S-SA/ (mg·g-1·d-1) |
---|---|---|---|---|---|---|---|
CK | 1 808.6±64.8 b | 29.96±5.79 b | 6.25±1.13 a | 27.18±0.53 c | 3.48±0.15 c | 1.32±0.07 a | 12.90±0.14 c |
T1 | 2 964.3±205.0 a | 65.15±6.36 a | 4.58±0.46 a | 34.77±0.22 b | 3.96±0.06 b | 0.88±0.02 b | 24.08±0.13 b |
T2 | 2 932.4±69.3 a | 65.90±9.51 a | 4.55±0.70 a | 51.03±0.89 a | 4.14±0.06 a | 1.21±0.05 a | 25.39±0.80 a |
表3 不同处理的土壤微生物生物量碳、氮含量和酶活性
Table 3 Soil microbial biomass carbon, nitrogen content and enzymes activities under different treatments
处理 Treatment | SMBC/ (mg·kg-1) | SMBN/ (mg·kg-1) | SMBC/ SMBN | S-UA/ (μg·g-1·d-1) | S-CA/ (mg·g-1·h-1) | S-APA/ (mg·g-1·d-1) | S-SA/ (mg·g-1·d-1) |
---|---|---|---|---|---|---|---|
CK | 1 808.6±64.8 b | 29.96±5.79 b | 6.25±1.13 a | 27.18±0.53 c | 3.48±0.15 c | 1.32±0.07 a | 12.90±0.14 c |
T1 | 2 964.3±205.0 a | 65.15±6.36 a | 4.58±0.46 a | 34.77±0.22 b | 3.96±0.06 b | 0.88±0.02 b | 24.08±0.13 b |
T2 | 2 932.4±69.3 a | 65.90±9.51 a | 4.55±0.70 a | 51.03±0.89 a | 4.14±0.06 a | 1.21±0.05 a | 25.39±0.80 a |
处理 Treatment | 氮含量 N content | 磷含量 P content | 钾含量 K content | 钙含量 Ca content | 镁含量 Mg content |
---|---|---|---|---|---|
CK | 13.85±0.05 b | 2.14±0.03 a | 4.80±0.22 b | 6.09±0.20 b | 1.00±0.01 b |
T1 | 15.40±0.14 a | 1.87±0.20 a | 6.26±0.43 a | 6.56±0.15 a | 1.17±0.04 ab |
T2 | 13.97±0.06 b | 1.97±0.05 a | 6.91±0.22 a | 6.73±0.02 a | 1.25±0.10 a |
表4 不同处理杨梅茎中的元素含量
Table 4 Elements contents in Chinese bayberry stems under different treatments mg·g-1
处理 Treatment | 氮含量 N content | 磷含量 P content | 钾含量 K content | 钙含量 Ca content | 镁含量 Mg content |
---|---|---|---|---|---|
CK | 13.85±0.05 b | 2.14±0.03 a | 4.80±0.22 b | 6.09±0.20 b | 1.00±0.01 b |
T1 | 15.40±0.14 a | 1.87±0.20 a | 6.26±0.43 a | 6.56±0.15 a | 1.17±0.04 ab |
T2 | 13.97±0.06 b | 1.97±0.05 a | 6.91±0.22 a | 6.73±0.02 a | 1.25±0.10 a |
处理 Treatment | 氮含量 N content | 磷含量 P content | 钾含量 K content | 钙含量 Ca content | 镁含量 Mg content |
---|---|---|---|---|---|
CK | 7.74±0.09 a | 2.43±0.08 a | 3.38±0.28 b | 8.27±0.19 b | 0.718±0.012 b |
T1 | 7.75±0.02 a | 1.67±0.03 b | 4.27±0.30 a | 9.80±0.27 a | 0.989±0.061 a |
T2 | 7.55±0.17 a | 1.91±0.13 b | 4.40±0.36 a | 10.45±0.46 a | 1.032±0.028 a |
表5 不同处理杨梅叶片中的元素含量
Table 5 Elements contents in Chinese bayberry leaves under different treatments mg·g-1
处理 Treatment | 氮含量 N content | 磷含量 P content | 钾含量 K content | 钙含量 Ca content | 镁含量 Mg content |
---|---|---|---|---|---|
CK | 7.74±0.09 a | 2.43±0.08 a | 3.38±0.28 b | 8.27±0.19 b | 0.718±0.012 b |
T1 | 7.75±0.02 a | 1.67±0.03 b | 4.27±0.30 a | 9.80±0.27 a | 0.989±0.061 a |
T2 | 7.55±0.17 a | 1.91±0.13 b | 4.40±0.36 a | 10.45±0.46 a | 1.032±0.028 a |
处理 Treatment | 单株产量 Yield per plant/kg | 单株商品果产量 Yield of commercial fruit per plant/kg | 单株优质果产量 Yield of high quality fruit per plant/kg | 商品果率 Proportion of commercial fruit per plant/% | 优质果率 Proportion of high quality fruit per plant/% |
---|---|---|---|---|---|
CK | 45.97±1.30 a | 31.23±2.89 b | 22.73±1.88 b | 67.96±6.17 b | 49.40±3.00 b |
T1 | 49.47±0.91 a | 41.13±2.00 a | 34.03±0.99 a | 83.17±4.01 a | 68.86±3.30 a |
T2 | 50.37±2.02 a | 42.86±1.60 a | 36.30±0.98 a | 85.12±0.30 a | 72.27±4.89 a |
表6 不同处理的杨梅产量
Table 6 Yield of Chinese bayberry under different treatments
处理 Treatment | 单株产量 Yield per plant/kg | 单株商品果产量 Yield of commercial fruit per plant/kg | 单株优质果产量 Yield of high quality fruit per plant/kg | 商品果率 Proportion of commercial fruit per plant/% | 优质果率 Proportion of high quality fruit per plant/% |
---|---|---|---|---|---|
CK | 45.97±1.30 a | 31.23±2.89 b | 22.73±1.88 b | 67.96±6.17 b | 49.40±3.00 b |
T1 | 49.47±0.91 a | 41.13±2.00 a | 34.03±0.99 a | 83.17±4.01 a | 68.86±3.30 a |
T2 | 50.37±2.02 a | 42.86±1.60 a | 36.30±0.98 a | 85.12±0.30 a | 72.27±4.89 a |
处理Treatment | TSS/% | Fir/N | TS/(mg·g-1) | TA/(mg·g-1) | SS/(mg·g-1) | Ant/(μg·g-1) |
---|---|---|---|---|---|---|
CK | 10.33±0.45 b | 1.46±0.07 b | 68.78±1.02 c | 4.68±0.18 b | 63.27±1.68 c | 129.65±2.10 c |
T1 | 13.17±0.37 a | 1.63±0.09 ab | 97.58±2.27 b | 6.07±0.16 a | 74.89±3.36 b | 240.05±2.47 a |
T2 | 14.63±1.20 a | 1.91±0.21 a | 115.78±1.59 a | 6.11±0.09 a | 103.06±3.17 a | 219.65±3.62 b |
表7 不同处理的杨梅品质
Table 7 Fruit quality of Chinese bayberry under different treatments
处理Treatment | TSS/% | Fir/N | TS/(mg·g-1) | TA/(mg·g-1) | SS/(mg·g-1) | Ant/(μg·g-1) |
---|---|---|---|---|---|---|
CK | 10.33±0.45 b | 1.46±0.07 b | 68.78±1.02 c | 4.68±0.18 b | 63.27±1.68 c | 129.65±2.10 c |
T1 | 13.17±0.37 a | 1.63±0.09 ab | 97.58±2.27 b | 6.07±0.16 a | 74.89±3.36 b | 240.05±2.47 a |
T2 | 14.63±1.20 a | 1.91±0.21 a | 115.78±1.59 a | 6.11±0.09 a | 103.06±3.17 a | 219.65±3.62 b |
[1] | ZHANG S W, YU Z P, SUN L, et al. An overview of the nutritional value, health properties, and future challenges of Chinese bayberry[J]. PeerJ, 2022, 10: e13070. |
[2] | 任海英, 郑锡良, 张淑文, 等. 杨梅衰弱病病症及病树矿质营养分析[J]. 浙江农业科学, 2020, 61(10): 2043-2048. |
REN H Y, ZHENG X L, ZHANG S W, et al. Symptom and mineral nutrition of weak diseased Chinese bayberry[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(10): 2043-2048. (in Chinese with English abstract) | |
[3] | 李晓阳, 任丽华, 计保全, 等. 生草覆盖对山地果园土壤物理性状的影响[J]. 水土保持应用技术, 2019(4): 7-9. |
LI X Y, REN L H, JI B Q, et al. Effects of grass mulching on soil physical properties in mountainous orchards[J]. Technology of Soil and Water Conservation, 2019(4): 7-9. (in Chinese) | |
[4] | 童根平, 姜霓雯, 傅伟军, 等. 清凉峰自然保护区土壤阳离子交换量的剖面分布特征及其影响因素[J]. 东北林业大学学报, 2023, 51(2): 111-115. |
TONG G P, JIANG N W, FU W J, et al. Profile distribution characteristics and influencing factors of soil cation exchange capacity in low mountain natural forest land in South China[J]. Journal of Northeast Forestry University, 2023, 51(2): 111-115. (in Chinese with English abstract) | |
[5] | 黄龙, 包维楷, 李芳兰, 等. 土壤结构和植被对土壤微生物群落的影响[J]. 应用与环境生物学报, 2021, 27(6): 1725-1731. |
HUANG L, BAO W K, LI F L, et al. Effects of soil structure and vegetation on microbial communities[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(6): 1725-1731. (in Chinese with English abstract) | |
[6] | 张志丹, 赵兰坡. 土壤酶在土壤有机培肥研究中的意义[J]. 土壤通报, 2006, 37(2): 2362-2368. |
ZHANG Z D, ZHAO L P. The significance of soil enzyme in studying soil fertility management[J]. Chinese Journal of Soil Science, 2006, 37(2): 2362-2368. (in Chinese with English abstract) | |
[7] | 王宏宝, 毛佳, 曹凯歌, 等. 设施黄瓜根结线虫病发生危害与土壤酶活相关性研究[J]. 山东农业大学学报(自然科学版), 2020, 51(4): 621-625. |
WANG H B, MAO J, CAO K G, et al. Study on the correlation between the damage of cucumber root-knot nematode disease and soil enzyme activity[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2020, 51(4): 621-625. (in Chinese with English abstract) | |
[8] | 牛世全, 杨建文, 胡磊, 等. 河西走廊春季不同盐碱土壤中微生物数量、酶活性与理化因子的关系[J]. 微生物学通报, 2012, 39(3): 416-427. |
NIU S Q, YANG J W, HU L, et al. Relationship with soil microbial quantity, soil enzyme activity and physicochemical factor between different saline-alkali soil in Hexi Corridor in spring[J]. Microbiology China, 2012, 39(3): 416-427. (in Chinese with English abstract) | |
[9] | 林琛茗, 韦家少, 吴敏, 等. 土壤调理剂配施配方肥对土壤有机质及交换性能的影响[J]. 热带作物学报, 2022, 43(10): 2160-2166. |
LIN C M, WEI J S, WU M, et al. Effects of soil conditioner combined with formula fertilizer on soil organic matter and exchange performance[J]. Chinese Journal of Tropical Crops, 2022, 43(10): 2160-2166. (in Chinese with English abstract) | |
[10] | 孟赐福, 曹志洪, 姜培坤, 等. 杨梅的需钾特性及施钾对杨梅的增产效应[J]. 中国土壤与肥料, 2006(5): 46-48. |
MENG C F, CAO Z H, JIANG P K, et al. Characteristics of potassium requirement of red bayberry and the yield increase effect of potassium application[J]. Soil and Fertilizer Sciences in China, 2006(5): 46-48. (in Chinese with English abstract) | |
[11] | 赵文瑞, 高双, 赵宽, 等. 腐殖酸钾对酸性土壤铝毒害的缓解作用与机制[J]. 环境科学与技术, 2023, 46(5): 185-191. |
ZHAO W R, GAO S, ZHAO K, et al. Alleviating effect and mechanism of potassium humate fertilizer on aluminum toxicity in acid soil[J]. Environmental Science & Technology, 2023, 46(5): 185-191. (in Chinese with English abstract) | |
[12] | 梁太波, 王振林, 刘兰兰, 等. 腐殖酸钾对生姜生长、钾素吸收及钾肥利用率的影响[J]. 水土保持学报, 2008, 22(1): 87-90. |
LIANG T B, WANG Z L, LIU L L, et al. Effects of potassium humate on growth, potassium uptake and utilization efficiency of ginger[J]. Journal of Soil and Water Conservation, 2008, 22(1): 87-90. (in Chinese with English abstract) | |
[13] | 吴昌旺, 程慧斌, 林明明, 等. 浙南山区杨梅大棚促早栽培技术研究[J]. 中国南方果树, 2021, 50(3): 100-103. |
WU C W, CHENG H B, LIN M M, et al. Study on early bearing cultivation techniques of Chinese bayberry in greenhouse in mountain areas of southern Zhejiang[J]. South China Fruits, 2021, 50(3): 100-103. (in Chinese with English abstract) | |
[14] | 张江伟, 李慧, 柴晓甜, 等. 玉米深松分层施肥和小麦限水灌溉对土壤微生物量碳、氮及酶活性的影响[J]. 水土保持学报, 2022, 36(6): 346-355. |
ZHANG J W, LI H, CHAI X T, et al. Effects of fertilization with subsoiling of maize and limited irrigation of wheat on soil microbial biomass carbon, nitrogen and enzymes activities[J]. Journal of Soil and Water Conservation, 2022, 36(6): 346-355. (in Chinese with English abstract) | |
[15] | 彭健健, 徐坚, 王晓晓, 等. 杨梅主产区土壤肥力空间异质性及其影响因素: 以浙江仙居和临海为例[J]. 果树学报, 2023, 40(7): 1421-1433. |
PENG J J, XU J, WANG X X, et al. Spatial variation of soil fertility and its influencing factors in Myrica rubra region: a case study in Xianju County and Linhai City[J]. Journal of Fruit Science, 2023, 40(7): 1421-1433. (in Chinese with English abstract) | |
[16] | 田祥珅, 郑重谊, 刘勇军, 等. 稻作烟区土壤电导率和阳离子交换量的垂直分布特征与养分有效性的关系[J]. 西南农业学报, 2021, 34(12): 2700-2706. |
TIAN X S, ZHENG Z Y, LIU Y J, et al. Vertical distribution of electrical conductivity and cation exchange capacity in soil and their relationship with nutrient availability in rice-growing tobacco areas[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(12): 2700-2706. (in Chinese with English abstract) | |
[17] | 白岗栓, 何登峰, 耿伟, 等. 不同保水剂对土壤特性及烤烟生长的影响[J]. 中国农业大学学报, 2020, 25(10): 31-43. |
BAI G S, HE D F, GENG W, et al. Effects of different super absorbent polymer on soil characteristics and flue-cured tobacco growth[J]. Journal of China Agricultural University, 2020, 25(10): 31-43. (in Chinese with English abstract) | |
[18] | 孙焕顷, 苏长青. 腐植酸钾对黄冠梨土壤肥力的影响[J]. 北方园艺, 2009(7): 100-101. |
SUN H Q, SU C Q. Effects of potassium humate on soil fertilizers in Huangguan pears[J]. Northern Horticulture, 2009(7): 100-101. (in Chinese with English abstract) | |
[19] | 王锋, 王汝娟, 陈晓光, 等. 不同类型钾肥对甘薯钾素积累和利用率的影响[J]. 山东农业科学, 2009, 41(10): 77-80. |
WANG F, WANG R J, CHEN X G, et al. Effects of different kinds of potassium fertilizers on potassium accumulation and use efficiency in sweet potato[J]. Shandong Agricultural Sciences, 2009, 41(10): 77-80. (in Chinese with English abstract) | |
[20] | POWLSON D S, PROOKES P C, CHRISTENSEN B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biology and Biochemistry, 1987, 19(2): 159-164. |
[21] | 吴晓玲, 张世熔, 蒲玉琳, 等. 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析[J]. 中国生态农业学报(中英文), 2019, 27(10): 1607-1616. |
WU X L, ZHANG S R, PU Y L, et al. Distribution characteristics and impact factors of soil microbial biomass carbon, nitrogen and phosphorus in western Sichuan Plain[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1607-1616. (in Chinese with English abstract) | |
[22] | 景宇鹏, 高日平, 陈玉海, 等. 河套平原盐碱化土壤有机碳及微生物量碳剖面分布特征[J]. 中国土壤与肥料, 2022(10): 11-19. |
JING Y P, GAO R P, CHEN Y H, et al. Distribution characteristics of organic carbon and microbial carbon in saline-alkali soil in the Hetao Plain[J]. Soil and Fertilizer Sciences in China, 2022(10): 11-19. (in Chinese with English abstract) | |
[23] | 李俊杰, 邹洪琴, 许发辉, 等. 土壤微生物量氮对小麦各生育期氮素形态的调控[J]. 植物营养与肥料学报, 2021, 27(8): 1321-1329. |
LI J J, ZOU H Q, XU F H, et al. Regulation of soil microbial biomass nitrogen on nitrogen forms in different growth stages of wheat[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1321-1329. (in Chinese with English abstract) | |
[24] | 朱海云, 马瑜, 柯杨, 等. 不同年龄时期石榴园土壤养分、微生物量及酶活性[J]. 土壤通报, 2022, 53(3): 588-595. |
ZHU H Y, MA Y, KE Y, et al. Soil nutrients, microbial quantities and enzyme activities in the pomegranate orchards with different age stages[J]. Chinese Journal of Soil Science, 2022, 53(3): 588-595. (in Chinese with English abstract) | |
[25] | 高佳, 王姣, 王松, 等. 生物炭基肥对马铃薯田土壤脲酶活性和产量的影响[J]. 作物杂志, 2021(6): 134-138. |
GAO J, WANG J, WANG S, et al. Effects of biochar-based fertilizer on soil urease activity and yield of potato[J]. Crops, 2021(6): 134-138. (in Chinese with English abstract) | |
[26] | 孙慧, 张建锋, 胡颖, 等. 土壤过氧化氢酶对不同林分覆盖的响应[J]. 土壤通报, 2016, 47(3): 605-610. |
SUN H, ZHANG J F, HU Y, et al. Research on the response of soil catalase to different forest stand covers[J]. Chinese Journal of Soil Science, 2016, 47(3): 605-610. (in Chinese with English abstract) | |
[27] | 孙建波, 畅文军, 李文彬, 等. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 2022, 31(6): 1169-1174. |
SUN J B, CHANG W J, LI W B, et al. Dynamics of soil microbial biomass and enzyme activities in rhizosphere soil at different growing stages of banana[J]. Ecology and Environmental Sciences, 2022, 31(6): 1169-1174. (in Chinese with English abstract) | |
[28] | 吕丽霞, 王秀荣, 王维, 等. 自然生草对冀西北杏园土壤微生物量碳、氮及酶活性的影响[J]. 北方园艺, 2023(7): 79-86. |
LYU L X, WANG X R, WANG W, et al. Effects of natural grass on soil microbial biomass carbon, nitrogen and enzyme activities in apricot orchards in northwest Hebei[J]. Northern Horticulture, 2023(7): 79-86. (in Chinese with English abstract) | |
[29] | 肖依玲, 王胜男. 钾对果树品质影响研究进展[J]. 种子科技, 2019, 37(10): 129-130. |
XIAO Y L, WANG S N. Research progress on effects of potassium on fruit quality[J]. Seed Science & Technology, 2019, 37(10): 129-130. (in Chinese) | |
[30] | 周敏, 毛曦, 陈环, 等. 葡萄钾营养及其在果实中积累的研究进展[J]. 果树学报, 2017, 34(6): 752-761. |
ZHOU M, MAO X, CHEN H, et al. Research advances on potassium nutrition and berry accumulation in grapevines[J]. Journal of Fruit Science, 2017, 34(6): 752-761. (in Chinese with English abstract) | |
[31] | 张东东, 李琪, 储宝华, 等. 追施钾肥对苹果叶片光合作用、矿质营养及果实品质的影响[J]. 西北农林科技大学学报(自然科学版), 2023, 51(4): 102-109. |
ZHANG D D, LI Q, CHU B H, et al. Effects of topdressing potassium fertilizer on photosynthesis, mineral nutrition of apple leaves and fruit quality[J]. Journal of Northwest A & F University(Natural Science Edition), 2023, 51(4): 102-109. (in Chinese with English abstract) | |
[32] | SHEN C W, SHI X Q, XIE C Y, et al. The change in microstructure of petioles and peduncles and transporter gene expression by potassium influences the distribution of nutrients and sugars in pear leaves and fruit[J]. Journal of Plant Physiology, 2019, 232: 320-333. |
[33] | 俞明亮. 苹果花青苷色素的形成[J]. 北方果树, 1992(4): 34-36. |
YU M L. Formation of apple anthocyanin pigment[J]. Northern Fruits, 1992(4): 34-36. (in Chinese) | |
[34] | 郭秀珠, 姜武, 黄品湖, 等. 钾镁肥配施对杨梅品质和矿质营养的影响[J]. 中国南方果树, 2017, 46(3): 72-75. |
GUO X Z, JIANG W, HUANG P H, et al. Effects of combined application of potassium and magnesium fertilizer on quality and mineral nutrition of Myrica rubra[J]. South China Fruits, 2017, 46(3): 72-75. (in Chinese) |
[1] | 闫鸿媛, 俞浙萍, 张淑文, 倪晓鹏, 李向男, 梁森苗. 杨梅肉葱病发生与营养元素关联分析[J]. 浙江农业学报, 2024, 36(7): 1626-1633. |
[2] | 朱学慧, 谢辉, 韩守安, 王敏, 白世践, 马云龙, 王艳蒙, 麦斯乐, 潘明启, 张雯. 两种植物生长调节剂对无核白鸡心葡萄果实品质的影响[J]. 浙江农业学报, 2024, 36(6): 1309-1319. |
[3] | 汪颖, 王尖, 冯子珊, 汪宝根, 吴新义, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴晓花. 瓠瓜果实品质性状因子分析和综合评价[J]. 浙江农业学报, 2024, 36(2): 334-343. |
[4] | 罗莎莎, 王如月, 甄紫怡, 吴嘉龙, 徐业勇, 巴合提牙儿·克热木, 孙雅丽, 虎海防. 灌溉时间和灌溉量对杏李裂果率与果实品质的影响[J]. 浙江农业学报, 2024, 36(2): 365-372. |
[5] | 宗自豪, 何丁生, 牛犇, 黄俊, 房祥军, 吴伟杰, 陈杭君, 郜海燕. 不同镂空包装对雨天采收杨梅贮运品质的影响[J]. 浙江农业学报, 2024, 36(1): 196-204. |
[6] | 岳宗伟, 李嘉骁, 孙向阳, 刘国梁, 李素艳, 王晨晨, 查贵超, 魏宁娴. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
[7] | 张赛丽, 房祥军, 吴伟杰, 高原, 陈杭君, 杨海龙, 郜海燕. 不同干燥方式对杨梅果渣粉抗氧化活性和风味的影响[J]. 浙江农业学报, 2023, 35(6): 1440-1451. |
[8] | 张春荣, 郭钤, 孔丽萍, 吴园园, 林琴, 许振岚, 赵学平, 汤涛. 嘧菌酯在杨梅中的残留行为及膳食暴露风险评估[J]. 浙江农业学报, 2023, 35(4): 942-951. |
[9] | 郑锡良, 梁森苗, 俞浙萍, 任海英, 孙鹂, 林瑞, 张淑文, 戚行江. 杨梅树体健康状态的量化指标评价[J]. 浙江农业学报, 2022, 34(9): 1945-1954. |
[10] | 潘旭婕, 刘瑞玲, 邓尚贵, 吴伟杰, 陈杭君, 郜海燕. 乳酸菌发酵杨梅果酱工艺优化及其风味成分分析[J]. 浙江农业学报, 2022, 34(7): 1502-1512. |
[11] | 郑园园, 俞浙萍, 张淑文, 李有贵, 孙鹂, 郑锡良, 戚行江. 杨梅枝条醇提物对A375细胞增殖和凋亡的影响及其分子机制[J]. 浙江农业学报, 2022, 34(5): 974-983. |
[12] | 赵宇洪, 何文, 李根, 王强, 谢锐, 王燕, 陈清, 王小蓉. 四川地区琯溪蜜柚及其芽变品种的果实品质[J]. 浙江农业学报, 2022, 34(5): 995-1004. |
[13] | 蔡继业, 房祥军, 韩延超, 丁玉庭, 陈杭君, 吴伟杰, 郜海燕. 气调贮藏对东魁杨梅品质的影响[J]. 浙江农业学报, 2022, 34(2): 352-359. |
[14] | 郝金莲, 杨钰琪, 王茹, 杨梦思, 廖晨宇, 陈虹, 虎海防. 不同采收期对温185和新新2核桃品质的影响[J]. 浙江农业学报, 2022, 34(10): 2188-2198. |
[15] | 吴嘉维, 姚张良, 胡琪琪, 张杰, 陈轶, 蒋建荣, 周国鑫, 王霞. 浙北桐乡梨锈病防治适期和防治药剂研究[J]. 浙江农业学报, 2021, 33(9): 1668-1675. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||