浙江农业学报 ›› 2024, Vol. 36 ›› Issue (10): 2338-2346.DOI: 10.3969/j.issn.1004-1524.20231418
彭正菊1,2(
), 谌迪2(
), 张岑2, 卢文静2, 喻宏应1,2, 郭慧媛3, 蒋晗1,*(
), 肖朝耿2,*(
)
收稿日期:2023-12-20
出版日期:2024-10-25
发布日期:2024-10-30
作者简介:彭正菊(1999—),女,重庆人,硕士研究生,研究方向为蜂胶的活性研究与应用。E-mail: pengzj1127@163.com;#为共同第一作者
通讯作者:
*蒋晗,E-mail: jianghan825@126.com;肖朝耿,E-mail: xiaochaogeng@163.com
基金资助:
PENG Zhengju1,2(
), CHEN Di2(
), ZHANG Cen2, LU Wenjing2, YU Hongying1,2, GUO Huiyuan3, JIANG Han1,*(
), XIAO Chaogeng2,*(
)
Received:2023-12-20
Online:2024-10-25
Published:2024-10-30
摘要:
蜂胶是一种良好的药食两用天然产品,具有广泛的生物活性。为探索山茶油提取对蜂胶中活性成分及抗氧化活性的影响,该研究以总黄酮为评价指标,通过单因素及响应面实验获得蜂胶提取最佳工艺条件,并对油提物的DPPH清除能力和铁离子还原能力等抗氧化活性进行了评价,最后以蜂胶中典型的脂溶性高良姜素为例,利用分子对接对其抗氧化活性机制进行了探究。结果表明,提取的最佳工艺为: 温度41 ℃,液固比16∶1 mL·g-1, 提取时间31 h,此时总黄酮的含量为35.59 mg·g-1。在该工艺下获得的油提物对DPPH清除率的IC50值为12.48 μg·mL-1,总抗氧化能力(FRAP)为3.70 mmol·g-1。此外,分子对接结果表明,蜂胶中典型脂溶性成分高良姜素与蜂胶的抗氧化作用密切相关。
中图分类号:
彭正菊, 谌迪, 张岑, 卢文静, 喻宏应, 郭慧媛, 蒋晗, 肖朝耿. 蜂胶油提物的制备及抗氧化活性研究[J]. 浙江农业学报, 2024, 36(10): 2338-2346.
PENG Zhengju, CHEN Di, ZHANG Cen, LU Wenjing, YU Hongying, GUO Huiyuan, JIANG Han, XIAO Chaogeng. Preparation and antioxidant activity of propolis oil extracts[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2338-2346.
| 水平 Level | 因素Factor | ||
|---|---|---|---|
| 提取温度 Extraction temperature/℃ | 液固比 Liquid-solid ratio/(mL·g-1) | 提取时间 Extraction time/h | |
| 1 | 25 | 5∶1 | 18 |
| 2 | 30 | 10∶1 | 24 |
| 3 | 35 | 15∶1 | 30 |
| 4 | 40 | 20∶1 | 36 |
| 5 | 45 | 25∶1 | 42 |
表1 单因素试验设计
Table 1 Single factor experimental design
| 水平 Level | 因素Factor | ||
|---|---|---|---|
| 提取温度 Extraction temperature/℃ | 液固比 Liquid-solid ratio/(mL·g-1) | 提取时间 Extraction time/h | |
| 1 | 25 | 5∶1 | 18 |
| 2 | 30 | 10∶1 | 24 |
| 3 | 35 | 15∶1 | 30 |
| 4 | 40 | 20∶1 | 36 |
| 5 | 45 | 25∶1 | 42 |
| 水平 Level | 因素Factor | ||
|---|---|---|---|
| A:提取温度 Extraction temperature/℃ | B:液固比 Liquid-solid ratio/(mL·g-1) | C:提取时间 Extraction time/h | |
| -1 | 35 | 10∶1 | 24 |
| 0 | 40 | 15∶1 | 30 |
| 1 | 45 | 20∶1 | 36 |
表2 响应面试验设计
Table 2 Response surface experimental design
| 水平 Level | 因素Factor | ||
|---|---|---|---|
| A:提取温度 Extraction temperature/℃ | B:液固比 Liquid-solid ratio/(mL·g-1) | C:提取时间 Extraction time/h | |
| -1 | 35 | 10∶1 | 24 |
| 0 | 40 | 15∶1 | 30 |
| 1 | 45 | 20∶1 | 36 |
| 序号 ID | A:温度 θ/℃ | B:液固比 Liquid-solid ratio/(mL·g-1) | C:时间 t/h | R总黄酮含量 Total flavonoids content/(mg·g-1) |
|---|---|---|---|---|
| 1 | 0 | -1 | 1 | 26.07 |
| 2 | 0 | 1 | -1 | 35.78 |
| 3 | -1 | -1 | 0 | 35.47 |
| 4 | -1 | 1 | 0 | 30.50 |
| 5 | 0 | 0 | 0 | 29.63 |
| 6 | 0 | 0 | 0 | 33.08 |
| 7 | 0 | 0 | 0 | 30.07 |
| 8 | 0 | -1 | -1 | 35.15 |
| 9 | 1 | -1 | 0 | 29.25 |
| 10 | 1 | 1 | 0 | 27.18 |
| 11 | -1 | 0 | 1 | 35.36 |
| 12 | 1 | 0 | -1 | 30.23 |
| 13 | 1 | 0 | 1 | 32.16 |
| 14 | 0 | 0 | 0 | 34.48 |
| 15 | 0 | 0 | 0 | 30.13 |
| 16 | 0 | 1 | 1 | 32.34 |
| 17 | -1 | 0 | -1 | 25.52 |
表3 响应面试验的设计及结果
Table 3 Design and results of the response surface test
| 序号 ID | A:温度 θ/℃ | B:液固比 Liquid-solid ratio/(mL·g-1) | C:时间 t/h | R总黄酮含量 Total flavonoids content/(mg·g-1) |
|---|---|---|---|---|
| 1 | 0 | -1 | 1 | 26.07 |
| 2 | 0 | 1 | -1 | 35.78 |
| 3 | -1 | -1 | 0 | 35.47 |
| 4 | -1 | 1 | 0 | 30.50 |
| 5 | 0 | 0 | 0 | 29.63 |
| 6 | 0 | 0 | 0 | 33.08 |
| 7 | 0 | 0 | 0 | 30.07 |
| 8 | 0 | -1 | -1 | 35.15 |
| 9 | 1 | -1 | 0 | 29.25 |
| 10 | 1 | 1 | 0 | 27.18 |
| 11 | -1 | 0 | 1 | 35.36 |
| 12 | 1 | 0 | -1 | 30.23 |
| 13 | 1 | 0 | 1 | 32.16 |
| 14 | 0 | 0 | 0 | 34.48 |
| 15 | 0 | 0 | 0 | 30.13 |
| 16 | 0 | 1 | 1 | 32.34 |
| 17 | -1 | 0 | -1 | 25.52 |
| 变异源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F-value | P值 P-value | 显著性 Significance |
|---|---|---|---|---|---|---|
| 模型 Model | 171.19 | 9 | 19.0 | 64.65 | <0.000 1 | ** |
| A-温度θ/℃ | 5.38 | 1 | 5.38 | 18.30 | 0.003 7 | ** |
| B-液固比Liquid-solid ratio/(mL·g-1) | 27.68 | 1 | 27.68 | 94.06 | <0.000 1 | ** |
| C-时间t/h | 5.02 | 1 | 5.02 | 17.08 | 0.004 4 | ** |
| AB | 11.36 | 1 | 11.36 | 38.60 | 0.000 4 | ** |
| AC | 2.28 | 1 | 2.28 | 7.75 | 0.027 2 | * |
| BC | 0.98 | 1 | 0.98 | 3.33 | 0.110 7 | 不显著Not significant |
| A2 | 13.86 | 1 | 13.86 | 47.09 | 0.000 2 | ** |
| B2 | 64.83 | 1 | 64.83 | 220.33 | <0.000 1 | ** |
| C2 | 28.77 | 1 | 28.77 | 97.78 | <0.000 1 | ** |
| 残差 Residual | 2.06 | 7 | 0.29 | - | - | - |
| 失拟项 Lack of Fit | 1.11 | 3 | 0.37 | 1.58 | 0.327 0 | 不显著Not significant |
表4 方差分析及显著性结果
Table 4 ANOVA and significance results
| 变异源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F-value | P值 P-value | 显著性 Significance |
|---|---|---|---|---|---|---|
| 模型 Model | 171.19 | 9 | 19.0 | 64.65 | <0.000 1 | ** |
| A-温度θ/℃ | 5.38 | 1 | 5.38 | 18.30 | 0.003 7 | ** |
| B-液固比Liquid-solid ratio/(mL·g-1) | 27.68 | 1 | 27.68 | 94.06 | <0.000 1 | ** |
| C-时间t/h | 5.02 | 1 | 5.02 | 17.08 | 0.004 4 | ** |
| AB | 11.36 | 1 | 11.36 | 38.60 | 0.000 4 | ** |
| AC | 2.28 | 1 | 2.28 | 7.75 | 0.027 2 | * |
| BC | 0.98 | 1 | 0.98 | 3.33 | 0.110 7 | 不显著Not significant |
| A2 | 13.86 | 1 | 13.86 | 47.09 | 0.000 2 | ** |
| B2 | 64.83 | 1 | 64.83 | 220.33 | <0.000 1 | ** |
| C2 | 28.77 | 1 | 28.77 | 97.78 | <0.000 1 | ** |
| 残差 Residual | 2.06 | 7 | 0.29 | - | - | - |
| 失拟项 Lack of Fit | 1.11 | 3 | 0.37 | 1.58 | 0.327 0 | 不显著Not significant |
图9 高良姜素与NOS3和NOS2对接情况 A是NOS3的蛋白结构图,B、C分别表示高良姜素与NOS3结合的2D和3D图;D是NOS2的蛋白结构图,E、F分别表示高良姜素与NOS2结合的2D和3D图。
Fig.9 Docking of galangin with NOS3and NOS2 A is the protein structure of NOS3,B and C represent 2D and 3D plots of galangin binding to NOS3; D is the protein structure of NOS2, E and F represent 2D and 3D plots of galangin binding to NOS2.
| [1] | 葛怡青, 汪浅, 仝涛. 蜂胶功能成分及生物活性研究进展[J]. 食品安全质量检测学报, 2022, 13(4): 1027-1035. |
| GE Y Q, WANG Q, TONG T. Research progress on functional components and bioactivities of propolis[J]. Journal of Food Safety & Quality, 2022, 13(4): 1027-1035. (in Chinese with English abstract) | |
| [2] | ZABAIOU N, FOUACHE A, TROUSSON A, et al. Biological properties of propolis extracts: something new from an ancient product[J]. Chemistry and Physics of Lipids, 2017, 207(Pt B): 214-222. |
| [3] | ZULHENDRI F, LESMANA R, TANDEAN S, et al. Recent update on the anti-inflammatory activities of propolis[J]. Molecules, 2022, 27(23): 8473. |
| [4] | GALEOTTI F, MACCARI F, FACHINI A, et al. Chemical composition and antioxidant activity of propolis prepared in different forms and in different solvents useful for finished products[J]. Foods, 2018, 7(3): 41. |
| [5] | PRZYBYŁEK I, KARPIŃSKI T M. Antibacterial properties of propolis[J]. Molecules, 2019, 24(11): 2047. |
| [6] | 国家药典委员会. 中华人民共和国药典一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020. |
| [7] | ANJUM S I, ULLAH A, KHAN K A, et al. Composition and functional properties of propolis (bee glue): a review[J]. Saudi Journal of Biological Sciences, 2019, 26(7): 1695-1703. |
| [8] | ZULLKIFLEE N, TAHA H, USMAN A. Propolis: its role and efficacy in human health and diseases[J]. Molecules, 2022, 27(18): 6120. |
| [9] | CUI J, DUAN X Q, KE L T, et al. Extraction,purification, structural character and biological properties of propolis flavonoids: a review[J]. Fitoterapia, 2022, 157: 105106. |
| [10] | POBIEGA K, KRAŚNIEWSKA K, DEREWIAKA D, et al. Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods[J]. Journal of Food Science and Technology, 2019, 56(12): 5386-5395. |
| [11] | ARSLAN S, PERÇIN D, SILICI S. The in vitro effects of propolis extracts prepared with different solvents on mutans streptococci[J]. Journal of Health Science, 2010, 19: 68-73. |
| [12] | KUBILIENE L, LAUGALIENE V, PAVILONIS A, et al. Alternative preparation of propolis extracts: comparison of their composition and biological activities[J]. BMC Complementary and Alternative Medicine, 2015, 15: 156. |
| [13] | JUODEIKAITE D, ŽILIUS M, BRIEDIS V. Preparation of aqueous propolis extracts applying microwave-assisted extraction[J]. Processes, 2022, 10(7): 1330. |
| [14] | SILICI S, BAYSA M. Antioxidant, antiradical and antipyretic effects of olive oil extract of propolis[J]. Journal of Apicultural Research, 2020, 59(5): 883-889. |
| [15] | CARVALHO A A, FINGER D, MACHADO C S, et al. In vivo antitumoural activity and composition of an oil extract of Brazilian propolis[J]. Food Chemistry, 2011, 126(3): 1239-1245. |
| [16] | FERREIRA A R, DA COSTA MACHADO M T, CHAGAS A G C M. Propolis oil extract as an alternative means to the alcoholic extract[J]. Observatório de la Economía Latinoamericana, 2023, 21(10): 15657-15676. |
| [17] | AKBARI S, ABDURAHMAN N H, YUNUS R M, et al. Extraction, characterization and antioxidant activity of fenugreek (Trigonella-Foenum Graecum) seed oil[J]. Materials Science for Energy Technologies, 2019, 2(2): 349-355. |
| [18] | REIS J S S, OLIVEIRA G B, MONTEIRO M C, et al. Antidepressant-and anxiolytic-like activities of an oil extract of propolis in rats[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2014, 21(11): 1466-1472. |
| [19] | 张佳淼, 李丹丹, 李杰, 等. 山楂叶总黄酮提取工艺优化及抗氧化性研究[J]. 食品工业, 2023, 44(11): 82-87. |
| ZHANG J M, LI D D, LI J, et al. Optimization of extraction process and antioxidant activity of total flavonoids from hawthorn leaves[J]. The Food Industry, 2023, 44(11): 82-87. (in Chinese with English abstract) | |
| [20] | HAO C, CHEN L Z, DONG H J, et al. Extraction of flavonoids from scutellariae radix using ultrasound-assisted deep eutectic solvents and evaluation of their anti-inflammatory activities[J]. ACS Omega, 2020, 5(36): 23140-23147. |
| [21] | LIAO J Q, GUO Z R, YU G C. Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells[J]. Ultrasonics Sonochemistry, 2021, 76: 105661. |
| [22] | JAFARI F, MOVAGHARNEJAD K, SADEGHI E. Infrared drying effects on the quality of eggplant slices and process optimization using response surface methodology[J]. Food Chemistry, 2020, 333: 127423. |
| [23] | 魏磊, 王伟, 侯玥莹, 等. 葛叶总黄酮的提取工艺优化及抗菌抗氧化能力研究[J]. 安徽农业科学, 2021, 49(14): 152-156, 161. |
| WEI L, WANG W, HOU Y Y, et al. Extraction optimization of total flavonoids from Pueraria lobate leaves and evaluations of their antibacterial and antioxidant activities[J]. Journal of Anhui Agricultural Sciences, 2021, 49(14): 152-156, 161. (in Chinese with English abstract) | |
| [24] | OUYANG X J, LI X C, LU W B, et al. A null B-ring improves the antioxidant levels of flavonol: a comparative study between galangin and 3, 5, 7-trihydroxychromone[J]. Molecules, 2018, 23(12): 3083. |
| [25] | JAILANI F, WILLIAMSON G. Effect of edible oils on quercetin, kaempferol and galangin transport and conjugation in the intestinal Caco-2/HT29-MTX co-culture model[J]. Food & Function, 2014, 5(4): 653-662. |
| [26] | NICHITOI M M, JOSCEANU A M, ISOPESCU R D, et al. Polyphenolics profile effects upon the antioxidant and antimicrobial activity of propolis extracts[J]. Scientific Reports, 2021, 11(1): 20113. |
| [27] | BIGNON E, RIZZA S, FILOMENI G, et al. Use of computational biochemistry for elucidating molecular mechanisms of nitric oxide synthase[J]. Computational and Structural Biotechnology Journal, 2019, 17: 415-429. |
| [28] | 陈柳燕, 吴传梅, 梁潘, 等. 基于斑马鱼模型和网络药理学研究四方木皮的抗炎作用及其机制[J]. 中国中药杂志, 2024(11):3070-3080. |
| CHEN L Y, WU C M, LIANG P, et al. Anti-inflammatory effect and its mechanism of Saracae Cortex based onzebrafish model and network pharmacology[J]. China Journal of Chinese Materia Medica, 2024(11):3070-3080. (in Chinese with English abstract) | |
| [29] | CURTI V, ZACCARIA V, TSETEGHO SOKENG A J, et al. Bioavailability and in vivo antioxidant activity of a standardized polyphenol mixture extracted from brown propolis[J]. International Journal of Molecular Sciences, 2019, 20(5): 1250. |
| [1] | 李华鑫, 杨炫康, 陈颖, 吴晓婷, 刘思恋, 杨忠, 周成刚, 高丹丹. 燕麦麸皮蛋白抗氧化肽制备工艺优化及分离纯化[J]. 浙江农业学报, 2025, 37(9): 1958-1968. |
| [2] | 朱潇, 朱颖, 李宏军, 陈善峰. 挤压制备燕麦鹰嘴豆复配米的工艺优化及其品质[J]. 浙江农业学报, 2025, 37(5): 1149-1158. |
| [3] | 孙凤婷, 王旭, 韩新雨, 许振岚, 吴声敢, 黄浩, 汤涛, 盛清, 王强, 沈国强, 赵学平. 复硝酚钠对铁皮石斛中黄酮含量和抗氧化活性的影响[J]. 浙江农业学报, 2025, 37(4): 934-942. |
| [4] | 夏思, 房祥军, 吴伟杰, 刘瑞玲, 陈慧芝, 牛犇, 郜海燕. 发酵型杨梅果浆的制备及其功能风味品质研究[J]. 浙江农业学报, 2025, 37(3): 667-678. |
| [5] | 徐汇镔, 朱洁, 周朝生, 胡园, 陆荣茂. 基于响应面分析的养殖水产品中高风险喹诺酮类抗生素残留及其基质效应研究[J]. 浙江农业学报, 2025, 37(3): 689-700. |
| [6] | 周毛措, 卢建雄, 郭晓农, 冯玉兰, 柴薇薇, 高鹏飞. 基于响应面法优化藜麦秸秆发酵工艺[J]. 浙江农业学报, 2024, 36(9): 2020-2030. |
| [7] | 邵亚旭, 刘涛, 王事成, 晏磊. 秸秆-有机肥育秧基质的配比筛选与成型工艺[J]. 浙江农业学报, 2024, 36(8): 1856-1866. |
| [8] | 赵小亮, 鲁雲, 康兴兴, 龙则宇, 郑晓杰. 雁荡山铁皮石斛多糖的提取、结构表征与体外抗氧化活性[J]. 浙江农业学报, 2024, 36(8): 1898-1908. |
| [9] | 李飞, 苏甜甜, 苏康杰, 徐可, 马力, 刘子明. 螺旋藻和红球藻对斑马鱼生长性能、抗氧化酶、磷酸酶和热休克蛋白的影响[J]. 浙江农业学报, 2024, 36(7): 1511-1518. |
| [10] | 曹乃馨, 罗阳兰, 阎勇, 解修超, 张雯龙. 桑树桑黄JM-1胞外多糖液态培养基优化及其抗氧化性研究[J]. 浙江农业学报, 2024, 36(6): 1245-1255. |
| [11] | 张晋, 吴晓丽, 田雨薇, 赵珂, 李欢欢, 达色, 次仁达杰, 陈黎洪, 唐宏刚. 超声波辅助酶解牦牛血粉提取氯化血红素的响应面工艺优化及品质表征[J]. 浙江农业学报, 2024, 36(6): 1357-1367. |
| [12] | 刘晨星, 曹艳, 夏其乐. 多花黄精根须皂苷的提取工艺及其抗氧化活性研究[J]. 浙江农业学报, 2024, 36(5): 1144-1152. |
| [13] | 宋鹏, 李理想, 江厚龙, 王茹, 李慧, 赵鹏宇, 张均, 秦平伟, 任江波, 陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响[J]. 浙江农业学报, 2024, 36(3): 494-502. |
| [14] | 虎丽霞, 张婧, 高彦强, 毛尔晔, 韩康宁, 杨滟, 颉建明. 长时间镁胁迫对芹菜叶绿素荧光特性与抗氧化能力的影响[J]. 浙江农业学报, 2024, 36(2): 295-307. |
| [15] | 陈锴妮, 席宇航, 章兴, 张辉. 可控热处理对竹笋蛋白理化特性和抗氧化活性的影响[J]. 浙江农业学报, 2024, 36(11): 2584-2595. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||