浙江农业学报 ›› 2024, Vol. 36 ›› Issue (9): 2020-2030.DOI: 10.3969/j.issn.1004-1524.20231074
周毛措1,2(), 卢建雄1, 郭晓农1, 冯玉兰1, 柴薇薇1,*(
), 高鹏飞2,*(
)
收稿日期:
2023-09-08
出版日期:
2024-09-25
发布日期:
2024-09-30
作者简介:
高鹏飞,E-mail:gpf800411@126.com通讯作者:
柴薇薇,E-mail:基金资助:
ZHOU Maocuo1,2(), LU Jianxiong1, GUO Xiaonong1, FENG Yulan1, CHAI Weiwei1,*(
), GAO Pengfei2,*(
)
Received:
2023-09-08
Online:
2024-09-25
Published:
2024-09-30
摘要:
为优化藜麦秸秆发酵工艺,提高藜麦秸秆作为饲料的营养价值,以尿素为营养添加剂,以藜麦秸秆为原材料,研究发酵时间、尿素添加量和含水量对藜麦秸秆发酵品质的影响。发酵时间设置为10、15、20、25、30 d,尿素添加量设置为2、3、4、5、6 g·kg-1,含水量设置为30%、40%、50%、60%、70%,发酵结束后检测发酵藜麦秸秆中粗蛋白、粗脂肪和粗纤维的含量。在单因素试验结果基础上,选取具有代表性的营养成分粗蛋白和粗纤维含量进行响应面分析。结果显示,尿素添加量对发酵藜麦秸秆中粗蛋白和粗纤维含量的影响最大,其次是发酵时间,秸秆含水量的影响相对较小。通过响应面法分析,确定了最优的发酵条件,即尿素添加量为4.7 g·kg-1,发酵时间为27 d,秸秆含水量为61%。在此条件下发酵,预测藜麦秸秆粗蛋白含量可以达到6.768%,粗纤维含量可以降低至45.947%。该研究提供了一种提高藜麦秸秆饲用价值的方法,即通过添加适量的尿素并进行厌氧发酵,这不仅可以提高藜麦秸秆的营养价值,还可以为藜麦秸秆的高价值利用提供理论基础。
中图分类号:
周毛措, 卢建雄, 郭晓农, 冯玉兰, 柴薇薇, 高鹏飞. 基于响应面法优化藜麦秸秆发酵工艺[J]. 浙江农业学报, 2024, 36(9): 2020-2030.
ZHOU Maocuo, LU Jianxiong, GUO Xiaonong, FENG Yulan, CHAI Weiwei, GAO Pengfei. Optimization of quinoa straw fermentation process based on response surface methodology[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2020-2030.
水平 Level | 因素Factor | ||
---|---|---|---|
A发酵时间 Fermentation time/d | B尿素添加量 Urea addition/ (g·kg-1) | C秸秆含水量 Water content of straw/% | |
-1 | 20 | 3 | 50 |
0 | 25 | 4 | 60 |
1 | 30 | 5 | 70 |
表1 响应面试验的因素与水平
Table 1 Factors and levels of response surface test
水平 Level | 因素Factor | ||
---|---|---|---|
A发酵时间 Fermentation time/d | B尿素添加量 Urea addition/ (g·kg-1) | C秸秆含水量 Water content of straw/% | |
-1 | 20 | 3 | 50 |
0 | 25 | 4 | 60 |
1 | 30 | 5 | 70 |
秸秆 Straw | 粗蛋白含量 Crude protein content | 粗纤维含量 Crude fiber content | 粗脂肪含量 Crude fat content |
---|---|---|---|
藜麦秸秆 | 6.37 | 55.70 | 0.52 |
Quinoa straw | |||
玉米秸秆 | 6.25 | 46.37 (NDF), | 1.14 |
Corn stalk | 33.37 (ADF) | ||
豆类秸秆 | 7.10~15.00 | 17.50~42.08 | 1.05~4.50 |
Bean straw |
表2 藜麦秸秆、玉米秸秆和豆类秸秆主要营养成分对比
Table 2 Comparation of main nutrient components among quinoa straw, corn stalk and bean straw %
秸秆 Straw | 粗蛋白含量 Crude protein content | 粗纤维含量 Crude fiber content | 粗脂肪含量 Crude fat content |
---|---|---|---|
藜麦秸秆 | 6.37 | 55.70 | 0.52 |
Quinoa straw | |||
玉米秸秆 | 6.25 | 46.37 (NDF), | 1.14 |
Corn stalk | 33.37 (ADF) | ||
豆类秸秆 | 7.10~15.00 | 17.50~42.08 | 1.05~4.50 |
Bean straw |
图1 发酵时间对发酵藜麦秸秆品质的影响 数据后无相同小写字母表示差异显著(P<0.05)。下同。
Fig.1 Effect of fermentation time on the quality of fermented quinoa straw Date marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
序号 No. | A发酵时间 Fermentation time/d | B尿素添加量 Urea addition/ (g·kg-1) | C秸秆含水量 Water content of straw/% | Y1粗蛋白含量 Crude protein content/% | Y2粗纤维含量 Crude fiber content/% |
---|---|---|---|---|---|
1 | -1 | -1 | 0 | 5.26 | 54.12 |
2 | 1 | -1 | 0 | 6.13 | 46.10 |
3 | -1 | 1 | 0 | 6.24 | 46.78 |
4 | 1 | 1 | 0 | 6.57 | 46.30 |
5 | -1 | 0 | -1 | 5.60 | 48.21 |
6 | 1 | 0 | -1 | 5.82 | 48.99 |
7 | -1 | 0 | 1 | 5.26 | 48.56 |
8 | 1 | 0 | 1 | 5.86 | 46.49 |
9 | 0 | -1 | -1 | 6.63 | 54.36 |
10 | 0 | 1 | -1 | 6.35 | 48.00 |
11 | 0 | -1 | 1 | 5.69 | 53.49 |
12 | 0 | 1 | 1 | 6.73 | 47.50 |
13 | 0 | 0 | 0 | 6.34 | 47.37 |
14 | 0 | 0 | 0 | 6.69 | 47.84 |
15 | 0 | 0 | 0 | 6.55 | 46.12 |
16 | 0 | 0 | 0 | 6.60 | 45.98 |
17 | 0 | 0 | 0 | 6.62 | 46.41 |
表3 响应面法试验方案与结果
Table 3 Scheme and results of response surface test
序号 No. | A发酵时间 Fermentation time/d | B尿素添加量 Urea addition/ (g·kg-1) | C秸秆含水量 Water content of straw/% | Y1粗蛋白含量 Crude protein content/% | Y2粗纤维含量 Crude fiber content/% |
---|---|---|---|---|---|
1 | -1 | -1 | 0 | 5.26 | 54.12 |
2 | 1 | -1 | 0 | 6.13 | 46.10 |
3 | -1 | 1 | 0 | 6.24 | 46.78 |
4 | 1 | 1 | 0 | 6.57 | 46.30 |
5 | -1 | 0 | -1 | 5.60 | 48.21 |
6 | 1 | 0 | -1 | 5.82 | 48.99 |
7 | -1 | 0 | 1 | 5.26 | 48.56 |
8 | 1 | 0 | 1 | 5.86 | 46.49 |
9 | 0 | -1 | -1 | 6.63 | 54.36 |
10 | 0 | 1 | -1 | 6.35 | 48.00 |
11 | 0 | -1 | 1 | 5.69 | 53.49 |
12 | 0 | 1 | 1 | 6.73 | 47.50 |
13 | 0 | 0 | 0 | 6.34 | 47.37 |
14 | 0 | 0 | 0 | 6.69 | 47.84 |
15 | 0 | 0 | 0 | 6.55 | 46.12 |
16 | 0 | 0 | 0 | 6.60 | 45.98 |
17 | 0 | 0 | 0 | 6.62 | 46.41 |
来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 方差 Variance | F值 F value | P | 显著性 Significance |
---|---|---|---|---|---|---|
回归模型Regression Model | 3.830 0 | 9 | 0.426 0 | 19.67 | 0.000 4 | ** |
A | 0.510 1 | 1 | 0.510 1 | 23.56 | 0.001 8 | ** |
B | 0.594 1 | 1 | 0.594 1 | 27.44 | 0.001 2 | ** |
C | 0.092 4 | 1 | 0.092 4 | 4.27 | 0.077 6 | |
AB | 0.072 9 | 1 | 0.072 9 | 3.37 | 0.109 1 | |
AC | 0.036 1 | 1 | 0.036 1 | 1.67 | 0.237 6 | |
BC | 0.435 6 | 1 | 0.435 6 | 20.12 | 0.002 8 | ** |
A2 | 1.580 0 | 1 | 1.580 0 | 72.96 | <0.000 1 | ** |
B2 | 0.044 2 | 1 | 0.044 2 | 2.04 | 0.196 0 | |
C2 | 0.411 2 | 1 | 0.411 2 | 18.99 | 0.003 3 | ** |
残差Residual | 0.151 6 | 7 | 0.021 7 | |||
失拟项Quasi missing term | 0.081 0 | 3 | 0.027 0 | 1.53 | 0.336 8 | |
纯误差Pure error | 0.070 6 | 4 | 0.017 7 | |||
合计Total | 3.990 0 | 16 |
表4 粗蛋白含量的响应面拟合回归方程方差分析结果
Table 4 Analysis of variance of response surface fitting regression equation for crude protein content
来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 方差 Variance | F值 F value | P | 显著性 Significance |
---|---|---|---|---|---|---|
回归模型Regression Model | 3.830 0 | 9 | 0.426 0 | 19.67 | 0.000 4 | ** |
A | 0.510 1 | 1 | 0.510 1 | 23.56 | 0.001 8 | ** |
B | 0.594 1 | 1 | 0.594 1 | 27.44 | 0.001 2 | ** |
C | 0.092 4 | 1 | 0.092 4 | 4.27 | 0.077 6 | |
AB | 0.072 9 | 1 | 0.072 9 | 3.37 | 0.109 1 | |
AC | 0.036 1 | 1 | 0.036 1 | 1.67 | 0.237 6 | |
BC | 0.435 6 | 1 | 0.435 6 | 20.12 | 0.002 8 | ** |
A2 | 1.580 0 | 1 | 1.580 0 | 72.96 | <0.000 1 | ** |
B2 | 0.044 2 | 1 | 0.044 2 | 2.04 | 0.196 0 | |
C2 | 0.411 2 | 1 | 0.411 2 | 18.99 | 0.003 3 | ** |
残差Residual | 0.151 6 | 7 | 0.021 7 | |||
失拟项Quasi missing term | 0.081 0 | 3 | 0.027 0 | 1.53 | 0.336 8 | |
纯误差Pure error | 0.070 6 | 4 | 0.017 7 | |||
合计Total | 3.990 0 | 16 |
来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 方差 Variance | F值 F value | P | 显著性 Significance |
---|---|---|---|---|---|---|
回归模型Regression Model | 115.24 | 9 | 12.80 | 7.09 | 0.008 6 | ** |
A | 11.98 | 1 | 11.98 | 6.63 | 0.036 7 | ** |
B | 47.48 | 1 | 47.84 | 26.29 | 0.001 4 | ** |
C | 1.55 | 1 | 1.55 | 0.86 | 0.385 3 | |
AB | 14.21 | 1 | 14.21 | 7.87 | 0.026 3 | * |
AC | 2.03 | 1 | 2.03 | 1.12 | 0.324 2 | |
BC | 0.03 | 1 | 0.03 | 0.02 | 0.894 4 | |
A2 | 1.50 | 1 | 1.50 | 0.83 | 0.392 4 | |
B2 | 19.97 | 1 | 19.97 | 11.06 | 0.012 7 | * |
C2 | 15.45 | 1 | 15.45 | 8.55 | 0.022 2 | * |
残差Residual | 12.64 | 7 | 1.81 | |||
失拟项Quasi missing term | 9.97 | 3 | 3.32 | 4.96 | 0.077 9 | |
纯误差Pure error | 2.68 | 4 | 0.67 | |||
合计Total | 127.89 | 16 |
表5 粗纤维含量的响应面拟合回归方程的方差分析结果
Table 5 Analysis of variance of response surface fitting regression equation for crude fiber content
来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 方差 Variance | F值 F value | P | 显著性 Significance |
---|---|---|---|---|---|---|
回归模型Regression Model | 115.24 | 9 | 12.80 | 7.09 | 0.008 6 | ** |
A | 11.98 | 1 | 11.98 | 6.63 | 0.036 7 | ** |
B | 47.48 | 1 | 47.84 | 26.29 | 0.001 4 | ** |
C | 1.55 | 1 | 1.55 | 0.86 | 0.385 3 | |
AB | 14.21 | 1 | 14.21 | 7.87 | 0.026 3 | * |
AC | 2.03 | 1 | 2.03 | 1.12 | 0.324 2 | |
BC | 0.03 | 1 | 0.03 | 0.02 | 0.894 4 | |
A2 | 1.50 | 1 | 1.50 | 0.83 | 0.392 4 | |
B2 | 19.97 | 1 | 19.97 | 11.06 | 0.012 7 | * |
C2 | 15.45 | 1 | 15.45 | 8.55 | 0.022 2 | * |
残差Residual | 12.64 | 7 | 1.81 | |||
失拟项Quasi missing term | 9.97 | 3 | 3.32 | 4.96 | 0.077 9 | |
纯误差Pure error | 2.68 | 4 | 0.67 | |||
合计Total | 127.89 | 16 |
图4 发酵藜麦秸秆中粗蛋白含量三维响应面曲线 a,发酵时间与尿素添加量交互作用;b,发酵时间与秸秆含水量交互作用;c,尿素添加量与秸秆含水量交互作用。下同。
Fig.4 Three-dimensional response surface curve of crude protein content in fermented quinoa straw a, Interaction between fermentation time and urea addition; b, Interaction between fermentation time and water content of straw; c, Interaction between urea addition and water content of straw.The same as below.
[1] | 肖正春, 张广伦. 藜麦及其资源开发利用[J]. 中国野生植物资源, 2014, 33(2): 62-66. |
XIAO Z C, ZHANG G L. Development and utilization of Chenopodium quinoa Willd[J]. Chinese Wild Plant Resources, 2014, 33(2): 62-66. (in Chinese with English abstract) | |
[2] | 魏玉明, 杨发荣, 刘文瑜, 等. 藜麦不同生育期营养物质积累与分配规律[J]. 草业科学, 2018, 35(7): 1720-1727. |
WEI Y M, YANG F R, LIU W Y, et al. Regulation of nutrient accumulation and distribution in quinoa at different growth stages[J]. Pratacultural Science, 2018, 35(7): 1720-1727. (in Chinese with English abstract) | |
[3] | FLÓREZ-MARTÍNEZ D H, RODRÍGUEZ-CORTINA J, CHAVEZ-OLIVEROS L F, et al. Current trends and prospects in quinoa research: an approach for strategic knowledge areas[J]. Food Science & Nutrition, 2024, 12(3): 1479-1501. |
[4] | 杨发荣, 黄杰, 魏玉明, 等. 藜麦生物学特性及应用[J]. 草业科学, 2017, 34(3): 607-613. |
YANG F R, HUANG J, WEI Y M, et al. A review of biological characteristics, applications, and culture of Chenopodium quinoa[J]. Pratacultural Science, 2017, 34(3): 607-613. (in Chinese with English abstract) | |
[5] | 胡志萍, 尼玛草, 次仁拥青, 等. 氮素和微生物菌剂对菊苣粗蛋白含量和粗纤维含量的影响[J]. 林业科技通讯, 2024(1): 46-50. |
HU Z P, NI M C, CI R, et al. Effects of nitrogen and microbial agents on crude protein and crude fiber content of Cichorium intybus[J]. Forest Science and Technology, 2024(1): 46-50. (in Chinese with English abstract) | |
[6] | 王天武, 王腾达, 张玉晶, 等. 非蛋白氮在反刍动物生产中的研究进展[J]. 饲料研究, 2023, 46(7): 138-141. |
WANG T W, WANG T D, ZHANG Y J, et al. Progress of research on non-protein nitrogen in ruminant production[J]. Feed Research, 2023, 46(7): 138-141. (in Chinese with English abstract) | |
[7] | 曾兵, 张新全, 张新跃. 尿素在肉牛饲养中的应用[J]. 四川畜牧兽医, 2004, 31(8): 43-44. |
ZENG B, ZHANG X Q, ZHANG X Y. Application of urea in beef cattle feeding[J]. Sichuan Animal and Veterinary Sciences, 2004, 31(8): 43-44. (in Chinese) | |
[8] | 吴进东, 陈云波, 孙武. 添加尿素对青贮玉米秸秆品质的影响[J]. 皖西学院学报, 2007, 23(5): 87-89. |
WU J D, CHEN Y B, SUN W. Influence of adding urea on the quality of silage corn straw[J]. Journal of West Anhui University, 2007, 23(5): 87-89. (in Chinese with English abstract) | |
[9] | 王雨琼, 王敏玲, 周道玮. 添加丙酸钙和尿素对玉米秸秆黄贮发酵品质的影响[J]. 河南农业大学学报, 2017, 51(5): 662-666. |
WANG Y Q, WANG M L, ZHOU D W. Effects of adding calcium propionate and urea on fermentation quality of yellow storage of corn stalk[J]. Journal of Henan Agricultural University, 2017, 51(5): 662-666. (in Chinese with English abstract) | |
[10] | 谢展, 穆麟, 张志飞, 等. 尿素对紫花苜蓿和稻秸与豆粕混合青贮的影响[J]. 湖南农业大学学报(自然科学版), 2022, 48(4): 483-487. |
XIE Z, MU L, ZHANG Z F, et al. Effect of urea on mixed silage from alfalfa, rice straw and soybean meal[J]. Journal of Hunan Agricultural University(Natural Sciences), 2022, 48(4): 483-487. (in Chinese with English abstract) | |
[11] | 麦合木提·依马木尼亚孜. 尿素和微生物青贮添加剂对青贮饲料营养成分的影响[J]. 新疆畜牧业, 2013, 28(2): 39-41. |
MAIHEMUTI Y. Effects of urea and microbial silage additives on nutritional components of silage[J]. Xingjiang Xumuye, 2013, 28(2): 39-41. (in Chinese) | |
[12] | PHILLIP Y L, HASSANIEN H A M, ABOU EL-FADEL M H, et al. Effect of acetic acid addition to rice straw pre-treated with urea on performance of dairy ewes[J]. Tropical Animal Health and Production, 2023, 55(5): 351. |
[13] | 张丽英. 饲料分析及饲料质量检测技术[M]. 4版. 北京: 中国农业大学出版社, 2016. |
[14] | 伏桂华, 杨宝良, 张飞, 等. 尿素对全株玉米青贮饲料发酵品质和饲料营养价值的影响[J]. 饲料研究, 2021, 44(14): 117-119. |
FU G H, YANG B L, ZHANG F, et al. Effect of urea on fermentation quality and nutritional value of whole corn silage[J]. Feed Research, 2021, 44(14): 117-119. (in Chinese with English abstract) | |
[15] | 张玲, 高飞虎, 李雪, 等. 秸秆饲料加工技术研究进展[J]. 南方农业, 2018, 12(25): 85-87. |
ZHANG L, GAO F H, LI X, et al. Advance in the research on fodder processing techniques[J]. South China Agriculture, 2018, 12(25): 85-87. (in Chinese with English abstract) | |
[16] | 杨游. 稻草秸秆氨化的机理研究及参数优化[D]. 重庆: 西南农业大学, 2004. |
YANG Y. Mechanism study and parameter optimization of ammoniation of rice straw[D]. Chongqing: Southwest Agricultural University, 2004. (in Chinese with English abstract) | |
[17] | 李红宇, 许丽, 方美琪, 等. 黄贮玉米秸秆中玉米浆添加水平对其发酵品质主要指标的影响[J]. 东北农业大学学报, 2013, 44(9): 137-143. |
LI H Y, XU L, FANG M Q, et al. Effect of addition level for corn steep liquor on main index of fermentation quality in yellow corn stover silage[J]. Journal of Northeast Agricultural University, 2013, 44(9): 137-143. (in Chinese with English abstract) | |
[18] | 谭树义, 魏立民, 王峰, 等. 尿素对苏丹草青贮发酵品质的影响[J]. 中国饲料, 2014(17): 18-19. |
TAN S Y, WEI L M, WANG F, et al. Effects of urea on fermentation quality of Sorghum sudanense (Piper) Stapt[J]. China Feed, 2014(17): 18-19. (in Chinese with English abstract) | |
[19] | 曹振. 尿素预处理玉米秸秆的脱木质素动力学及厌氧发酵特性研究[D]. 哈尔滨: 东北农业大学, 2020. |
CAO Z. Study on delignification kinetics and anaerobic fermentation characteristics of corn stalk pretreated by urea[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese with English abstract) | |
[20] | 顾雅梅, 边高瑞, 张曦元, 等. 不同尿素、麦麸的添加水平对咖啡渣发酵效果的影响[J]. 中国饲料, 2023(19): 158-162. |
GU Y M, BIAN G R, ZHANG X Y, et al. Effects of different levels of urea and wheat bran on the fermentation effect of coffee grounds[J]. China Feed, 2023(19): 158-162. (in Chinese with English abstract) | |
[21] |
KASHONGWE O B, MIGWI P, BEBE B O, et al. Improving the nutritive value of wheat straw with urea and yeast culture for dry season feeding of dairy cows[J]. Tropical Animal Health and Production, 2014, 46(6): 1009-1014.
DOI PMID |
[22] | 李龙, 高林青, 蔡锋隆, 等. 发酵饲料发酵品质评定的研究进展[J]. 中国饲料, 2023(2): 13-16. |
LI L, GAO L Q, CAI F L, et al. Research progress on evaluation of feed fermentation quality[J]. China Feed, 2023(2): 13-16. (in Chinese with English abstract) | |
[23] | RAYMOND L J, ERFLE J D, SAUER F D, et al. Protein and free amino acid patterns in maize ensiled with or without urea[J]. Journal of the Science of Food and Agriculture, 1978, 29(6): 506-512. |
[24] |
荣辉, 余成群, 李志华, 等. 添加糖蜜和尿素对象草青贮发酵品质的影响[J]. 草地学报, 2012, 20(5): 940-946.
DOI |
RONG H, YU C Q, LI Z H, et al. Effects of adding molasses and urea on fermentation quality of Napier grass silage[J]. Acta Agrestia Sinica, 2012, 20(5): 940-946. (in Chinese with English abstract)
DOI |
|
[25] | 王英琪. 玉米秸秆厌氧发酵预处理技术研究[D]. 大庆: 黑龙江八一农垦大学, 2019. |
WANG Y Q. Study on pretreatment technology of corn stalk by anaerobic fermentation[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019. (in Chinese with English abstract) | |
[26] | 马君. 秸秆的氨化厌氧发酵工艺优化与反应器的启动[D]. 西安: 陕西科技大学, 2013. |
MA J. Optimization of ammoniation anaerobic fermentation process of straw and start-up of reactor[D]. Xi’an: Shaanxi University of Science & Technology, 2013. (in Chinese with English abstract) | |
[27] | 孙国强, 崔海净, 蔡李逢, 等. 尿素与氢氧化钙不同组合对麦秸纤维含量的影响[J]. 河南农业科学, 2012, 41(2): 149-151. |
SUN G Q, CUI H J, CAI L F, et al. Effects of different combination of urea and calcium hydroxide on the fiber content of wheat straw[J]. Journal of Henan Agricultural Sciences, 2012, 41(2): 149-151. (in Chinese with English abstract) | |
[28] | 刘建勇, 余梅, 王安奎, 等. 添加尿素对甘蔗梢青贮的影响[J]. 中国牛业科学, 2010, 36(4): 22-25. |
LIU J Y, YU M, WANG A K, et al. Influences of the quality of sugarcane tip silage by adding urea[J]. China Cattle Science, 2010, 36(4): 22-25. (in Chinese with English abstract) | |
[29] | 吴兆鹏, 蚁细苗, 钟映萍, 等. 添加剂对甘蔗梢叶青贮营养价值的影响[J]. 广西科学, 2016, 23(1): 51-55. |
WU Z P, YI X M, ZHONG Y P, et al. Effects of additives on the nutritional value of sugarcane tip silage[J]. Guangxi Sciences, 2016, 23(1): 51-55. (in Chinese with English abstract) | |
[30] | 魏志敏, 赵宇, 崔纪菡, 等. 藜麦作为饲料饲草的应用潜力分析[J]. 中国畜禽种业, 2022, 18(2): 81-82. |
WEI Z M, ZHAO Y, CUI J H, et al. Analysis of application potential of quinoa as forage grass[J]. The Chinese Livestock and Poultry Breeding, 2022, 18(2): 81-82. (in Chinese) | |
[31] |
赵小雪, 王仕玉, 郭凤根, 等. 乳酸菌及纤维素酶对不同藜麦秸秆青贮发酵品质的影响[J]. 草地学报, 2022, 30(10): 2827-2833.
DOI |
ZHAO X X, WANG S Y, GUO F G, et al. Effects of lactic acid bacteria and cellulase on fermentation quality of straw silage of different Chenopodium quinoa willd[J]. Acta Agrestia Sinica, 2022, 30(10): 2827-2833. (in Chinese with English abstract) | |
[32] |
吕敬, 吴治勇, 郭晓农, 等. 基于响应面法的乳酸菌发酵藜麦秸秆工艺条件优化[J]. 浙江农业学报, 2022, 34(9): 1866-1876.
DOI |
LYU J, WU Z Y, GUO X N, et al. Optimization of fermented quinoa straw with lactic acid bacteria by response surface methodology[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1866-1876. (in Chinese with English abstract)
DOI |
|
[33] | 李晓燕, 谢丽霞, 严秉莲, 等. 日粮中添加藜麦秸秆对湖羊生长性能和屠宰性能的影响[J]. 中国草食动物科学, 2022, 42(1): 79-81. |
LI X Y, XIE L X, YAN B L, et al. Effects of quinoa straw supplementation on growth performance and slaughter performance of Hu sheep[J]. China Herbivore Science, 2022, 42(1): 79-81. (in Chinese with English abstract) |
[1] | 张妮, 陶文扬, 罗梦帆, 周万怡, 郑晓杰, 李彦坡, 金火喜, 杨颖. 酶解辅助提取对铁皮石斛多糖结构和菌群调节功能的影响[J]. 浙江农业学报, 2024, 36(9): 2099-2109. |
[2] | 李淑艳, 焦婷, 齐帅, 张霞, 王虎宁, 赵生国. 体外法研究异绿原酸对绵羊日粮养分消化与瘤胃发酵的影响[J]. 浙江农业学报, 2024, 36(8): 1753-1763. |
[3] | 曹乃馨, 罗阳兰, 阎勇, 解修超, 张雯龙. 桑树桑黄JM-1胞外多糖液态培养基优化及其抗氧化性研究[J]. 浙江农业学报, 2024, 36(6): 1245-1255. |
[4] | 刘雯雯, 胡连清, 周万海, 魏琴, 冯瑞章, 赵鑫, 车丽涛, 陈金玉. 饲粮中不同含量油樟叶对肉兔肠道pH、盲肠发酵和盲肠菌群的影响[J]. 浙江农业学报, 2024, 36(6): 1279-1289. |
[5] | 张斌, 袁志辉, 彭陆军, 周向平, 周德英, 王锡春. 发酵稻壳通过增强氮代谢途径影响烟草幼苗的生长发育[J]. 浙江农业学报, 2024, 36(2): 237-246. |
[6] | 张玥, 陈慧, 郑雅丹, 杨鹏, 柯志刚, 戴央章, 金友定, 丁玉庭, 刘书来. 贻贝糟制过程中的品质变化[J]. 浙江农业学报, 2024, 36(2): 416-423. |
[7] | 何宇, 吕卫光, 李双喜, 郑宪清, 张翰林, 张娟琴, 张海韵, 白娜玲, 刘善良. γ-聚谷氨酸发酵液对小白菜生长及氮磷肥料利用率的影响[J]. 浙江农业学报, 2023, 35(2): 329-337. |
[8] | 张喜闻, 郭晓农, 王泽兴, 王亚玲. 不同复合益生菌对藜麦秸秆发酵饲料的发酵工艺优化[J]. 浙江农业学报, 2023, 35(12): 2818-2829. |
[9] | 赵赛赛, 宁喜斌. 接种模仿葡萄球菌(Staphylococcus simulans)ZSJ6和添加芹菜粉对发酵香肠中亚硝酸盐及生物胺含量的影响[J]. 浙江农业学报, 2023, 35(12): 2944-2953. |
[10] | 周力, 桂林生. 饲粮中小麦颗粒用量对藏羊公羔瘤胃内环境的影响[J]. 浙江农业学报, 2023, 35(11): 2543-2554. |
[11] | 王海基, 王敏, 卢勇涛, 营雨琨, 王吉亮, 薛理, 秦朝民, 何玉泽. 弹齿链耙式残膜回收机链耙装置的设计与试验[J]. 浙江农业学报, 2023, 35(10): 2465-2476. |
[12] | 吕敬, 吴治勇, 郭晓农, 冯玉兰, 卢建雄, 柴薇薇. 基于响应面法的乳酸菌发酵藜麦秸秆工艺条件优化[J]. 浙江农业学报, 2022, 34(9): 1866-1876. |
[13] | 潘旭婕, 刘瑞玲, 邓尚贵, 吴伟杰, 陈杭君, 郜海燕. 乳酸菌发酵杨梅果酱工艺优化及其风味成分分析[J]. 浙江农业学报, 2022, 34(7): 1502-1512. |
[14] | 何秀, 徐美余, 辛维岗, 张棋麟, 王峰, 林连兵. 豆粕添加和发酵时间对甜象草青贮营养品质与细菌多样性的影响[J]. 浙江农业学报, 2022, 34(10): 2160-2171. |
[15] | 杨叶爽, 张映萍, 陈伊凡, 张晋, 李欢欢, 陈黎洪, 唐宏刚, 高斌. 响应面法优化复配蛋液配方[J]. 浙江农业学报, 2022, 34(1): 153-162. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 878
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||