浙江农业学报 ›› 2024, Vol. 36 ›› Issue (11): 2584-2595.DOI: 10.3969/j.issn.1004-1524.20240191
陈锴妮1,2(), 席宇航1, 章兴3, 张辉1,2,*(
)
收稿日期:
2024-03-04
出版日期:
2024-11-25
发布日期:
2024-11-27
作者简介:
陈锴妮(1998—),女,浙江杭州人,硕士研究生,主要从事植物蛋白功能性开发研究。E-mail: kkchen@zju.edu.cn
通讯作者:
*张辉,E-mail: hubert0513@zju.edu.cn
基金资助:
CHEN Kaini1,2(), XI Yuhang1, ZHANG Xing3, ZHANG Hui1,2,*(
)
Received:
2024-03-04
Online:
2024-11-25
Published:
2024-11-27
摘要:
为研究热处理对竹笋蛋白理化特性和抗氧化活性的影响,针对碱溶法提取的竹笋蛋白,进行可控的加热处理(80~100 ℃,15、30 min),探究其微观结构的变化规律和对功能特性的影响,并评价其抗氧化活性。结果表明:竹笋蛋白在可控的热处理下结构构象发生变化,α螺旋含量显著下降,表明形成大分子聚集体,同时表面疏水性明显增加,而更长时间和较高温度的加热处理也会导致竹笋蛋白的溶解度降低,浊度上升;加热处理后竹笋蛋白的持水性、持油性、热稳定性、起泡能力明显提高,但是乳化能力有所下降;竹笋蛋白经热处理后,其抗氧化活性明显提升,在80 ℃处理15 min条件下表现出最高的2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)自由基清除率(95.40%±1.59%),在80 ℃处理30 min条件下表现出最高的1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除率(78.20%±1.97%)和铁离子还原能力(65.255%±1.00%)。综上所述,可控的加热处理可以改善竹笋蛋白的理化特性和抗氧化活性,进一步扩大其在食品加工领域的应用。
中图分类号:
陈锴妮, 席宇航, 章兴, 张辉. 可控热处理对竹笋蛋白理化特性和抗氧化活性的影响[J]. 浙江农业学报, 2024, 36(11): 2584-2595.
CHEN Kaini, XI Yuhang, ZHANG Xing, ZHANG Hui. Effects of controlled heat treatment on physicochemical characteristics and antioxidant activity of bamboo shoot protein[J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2584-2595.
图1 不同加热温度和时间对竹笋蛋白粒径的影响 BSP-80/15,80 ℃加热15 min;BSP-90/15,90 ℃加热15 min;BSP-100/15,100 ℃加热15min;BSP-80/30,80 ℃加热30 min;BSP-90/30,90 ℃加热30min;BSP-100/30,100 ℃加热30min;BSP-N,未经过热处理的样品。柱状图上无相同小写字母的表示各处理间差异显著(P<0.05)。下同。
Fig.1 Effect of varying heating temperatures and time on particle size of bamboo shoot proteins BSP-80/15, Heating at 80 ℃ for 15 min; BSP-90/15, Heating at 90 ℃ for 15 min; BSP-100/15, Heating at 100 ℃ for 15 min; BSP-80/30, Heating at 80 ℃ for 30 min; BSP-90/30, Heating at 90 ℃ for 30 min; BSP-100/30, Heating at 100 ℃ for 30 min; BSP-N, Sample without heat treatment. Different lowercase letters above the columns represent significant (P<0.05) differences among treatments. The same as below.
样品 Sample | 总巯基含量 Total sulfhydryl content | 游离巯基含量 Free sulfhydryl content |
---|---|---|
BSP-N | 2.75±0.02 a | 1.92±0.14 a |
BSP-80/15 | 2.22±0.11 b | 1.40±0.30 b |
BSP-90/15 | 2.09±0.07 c | 0.78±0.10 e |
BSP-100/15 | 1.95±0.20 d | 0.98±0.22 d |
BSP-80/30 | 2.05±0.08 c | 1.02±0.14 d |
BSP-90/30 | 2.01±0.12 c | 1.25±0.07 c |
BSP-100/30 | 1.43±0.19 e | 0.66±0.03 f |
表1 不同加热温度和时间对竹笋蛋白巯基含量的影响
Table 1 Effects of different heating temperatures and time on the sulfhydryl content of bamboo shoot protein μmol·g-1
样品 Sample | 总巯基含量 Total sulfhydryl content | 游离巯基含量 Free sulfhydryl content |
---|---|---|
BSP-N | 2.75±0.02 a | 1.92±0.14 a |
BSP-80/15 | 2.22±0.11 b | 1.40±0.30 b |
BSP-90/15 | 2.09±0.07 c | 0.78±0.10 e |
BSP-100/15 | 1.95±0.20 d | 0.98±0.22 d |
BSP-80/30 | 2.05±0.08 c | 1.02±0.14 d |
BSP-90/30 | 2.01±0.12 c | 1.25±0.07 c |
BSP-100/30 | 1.43±0.19 e | 0.66±0.03 f |
图5 不同加热温度和时间对竹笋蛋白持水性和持油性的影响
Fig.5 Effect of varying heating temperatures and time on water binding capacity and oil binding capacity of bamboo shoot protein
图6 不同加热温度和时间对竹笋蛋白乳化活性和乳化稳定性的影响
Fig.6 Effect of varying heating temperatures and time on emulsifying activity index and emulsifying stability index of bamboo shoot protein
图8 不同加热温度和时间对竹笋蛋白ABTS、DPPH自由基清除能力和铁离子还原/抗氧化能力的影响
Fig.8 Effect of varying heating temperatures and time on ABTS scavenging rate, DPPH scavenging rate and FRAP (ferric ion reducing antioxidant power) of bamboo shoot protein
[1] | YEASMIN L, ALI M N, GANTAIT S, et al. Bamboo: an overview on its genetic diversity and characterization[J]. 3Biotech, 2015, 5(1): 1-11. |
[2] | WANG Y L, CHEN J, WANG D M, et al. A systematic review on the composition, storage, processing of bamboo shoots: focusing the nutritional and functional benefits[J]. Journal of Functional Foods, 2020, 71: 104015. |
[3] | DU J J, ZHU Q, GUO J G, et al. Effects of ultrasonic and steam-cooking treatments on the physicochemical properties of bamboo shoots protein and the stability of O/W emulsion[J]. Heliyon, 2023, 9(9): e19825. |
[4] | LI J W, XI Y H, WU L R, et al. Preparation, characterization and in vitro digestion of bamboo shoot protein/soybean protein isolate based-oleogels by emulsion-templated approach[J]. Food Hydrocolloids, 2023, 136: 108310. |
[5] | GROSSMANN L, MCCLEMENTS D J. Current insights into protein solubility: a review of its importance for alternative proteins[J]. Food Hydrocolloids, 2023, 137: 108416. |
[6] | CALDERÓN-CHIU C, CALDERÓN-SANTOYO M, HERMAN-LARA E, et al. Jackfruit (Artocarpus heterophyllus Lam) leaf as a new source to obtain protein hydrolysates: physicochemical characterization, techno-functional properties and antioxidant capacity[J]. Food Hydrocolloids, 2021, 112: 106319. |
[7] | WANG Y, LI Z Q, LI H, et al. Effect of hydrolysis on the emulsification and antioxidant properties of plant-sourced proteins[J]. Current Opinion in Food Science, 2022, 48: 100949. |
[8] | WANG Y, YUAN J J, ZHANG Y R, et al. Unraveling the effect of combined heat and high-pressure homogenization treatment on the improvement of chickpea protein solubility from the perspectives of colloidal state change and structural characteristic modification[J]. Food Chemistry, 2024, 442: 138470. |
[9] | ALAVI F, CHEN L Y, EMAM-DJOMEH Z. Effect of ultrasound-assisted alkaline treatment on functional property modifications of faba bean protein[J]. Food Chemistry, 2021, 354: 129494. |
[10] | LIU K L, ZHENG J B, CHEN F S. Heat-induced changes in the physicochemical properties and in vitro digestibility of rice protein fractions[J]. Journal of Food Science and Technology, 2021, 58(4): 1368-1377. |
[11] | WU W, LI F, WU X J. Effects of rice bran rancidity on oxidation, structural characteristics and interfacial properties of rice bran globulin[J]. Food Hydrocolloids, 2021, 110: 106123. |
[12] | ELLMAN G L. Tissue sulfhydryl groups[J]. Archives of Biochemistry and Biophysics, 1959, 82(1): 70-77. |
[13] | HASKARD C A, LI-CHAN E C Y. Hydrophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANS-) fluorescent probes[J]. Journal of Agricultural and Food Chemistry, 1998, 46(7): 2671-2677. |
[14] | MIR N A, RIAR C S, SINGH S. Improvement in the functional properties of quinoa (Chenopodium quinoa) protein isolates after the application of controlled heat-treatment: effect on structural properties[J]. Food Structure, 2021, 28: 100189. |
[15] | YEASMIN F, PRASAD P, SAHU J K. Effect of ultrasound on physicochemical, functional and antioxidant properties of red kidney bean (Phaseolus vulgaris L.) proteins extract[J]. Food Bioscience, 2024, 57: 103599. |
[16] | BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. |
[17] | DNYANESHWAR PATIL N, BAINS A, KAUR S, et al. Influence of dual succinylation and ultrasonication modification on the amino acid content, structural and functional properties of Chickpea (Cicer arietinum L.) protein concentrate[J]. Food Chemistry, 2024, 445: 138671. |
[18] | PEARCE K N, KINSELLA J E. Emulsifying properties of proteins: evaluation of a turbidimetric technique[J]. Journal of Agricultural and Food Chemistry, 1978, 26(3): 716-723. |
[19] | SHAHIDI F, HAN X Q, SYNOWIECKI J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus)[J]. Food Chemistry, 1995, 53(3): 285-293. |
[20] | LEE J H, KIM T K, KANG M C, et al. Protective effects of edible insect protein extracts from Protaetia brevitarsis against H2O2-induced oxidative stress in mouse C2C12 myoblast cells[J]. Food Bioscience, 2023, 52: 102396. |
[21] | LOPES C, AKEL FERRUCCIO C, DE ALBUQUERQUE SALES A C, et al. Effects of processing technologies on the antioxidant properties of common bean (Phaseolus vulgaris L.) and lentil (Lens culinaris) proteins and their hydrolysates[J]. Food Research International, 2023, 172: 113190. |
[22] | LIANG Y C, MATIA-MERINO L, GILLIES G, et al. The heat stability of milk protein-stabilized oil-in-water emulsions: a review[J]. Current Opinion in Colloid & Interface Science, 2017, 28: 63-73. |
[23] | JIANG S S, ALTAF HUSSAIN M, CHENG J J, et al. Effect of heat treatment on physicochemical and emulsifying properties of polymerized whey protein concentrate and polymerized whey protein isolate[J]. LWT, 2018, 98: 134-140. |
[24] | CHEN X, TUME R K, XIONG Y L, et al. Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(17): 2981-3003. |
[25] | AHMAD MALIK M, SAINI C S. Improvement of functional properties of sunflower protein isolates near isoelectric point: application of heat treatment[J]. LWT, 2018, 98: 411-417. |
[26] | TANG C H. Emulsifying properties of soy proteins: a critical review with emphasis on the role of conformational flexibility[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(12): 2636-2679. |
[27] | PEYRANO F, SPERONI F, AVANZA M V. Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure[J]. Innovative Food Science & Emerging Technologies, 2016, 33: 38-46. |
[28] | JIANG S S, DING J Z, ANDRADE J, et al. Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments[J]. Ultrasonics Sonochemistry, 2017, 38: 835-842. |
[29] | LAJNAF R, TRIGUI I, SAMET-BALI O, et al. Comparative study on emulsifying and physico-chemical properties of bovine and camel acid and sweet wheys[J]. Journal of Food Engineering, 2020, 268: 109741. |
[30] | LI J S, WANG B X, FAN J F, et al. Foaming, emulsifying properties and surface hydrophobicity of soy proteins isolate as affected by peracetic acid oxidation[J]. International Journal of Food Properties, 2019, 22(1): 689-703. |
[31] | XU H N, PAN J Y, DABBOUR M, et al. Synergistic effects of pH shift and heat treatment on solubility, physicochemical and structural properties, and lysinoalanine formation in silkworm pupa protein isolates[J]. Food Research International, 2023, 165: 112554. |
[32] | ZHU Y, FU S Y, WU C L, et al. The investigation of protein flexibility of various soybean cultivars in relation to physicochemical and conformational properties[J]. Food Hydrocolloids, 2020, 103: 105709. |
[33] | XIONG D D, XU Q Q, TIAN L J, et al. Mechanism of improving solubility and emulsifying properties of wheat gluten protein by pH cycling treatment and its application in powder oils[J]. Food Hydrocolloids, 2023, 135: 108132. |
[34] | ARZENI C, MARTÍNEZ K, ZEMA P, et al. Comparative study of high intensity ultrasound effects on food proteins functionality[J]. Journal of Food Engineering, 2012, 108(3): 463-472. |
[35] | GARCÍA ARTEAGA V, APÉSTEGUI GUARDIA M, MURANYI I, et al. Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates[J]. Innovative Food Science & Emerging Technologies, 2020, 65: 102449. |
[36] | FOEGEDING E A, DAVIS J P. Food protein functionality: a comprehensive approach[J]. Food Hydrocolloids, 2011, 25(8): 1853-1864. |
[37] | KINSELLA J E, FOX P F. Water sorption by proteins: milk and whey proteins[J]. Critical Reviews in Food Science and Nutrition, 1986, 24(2): 91-139. |
[38] | HU G J, ZHAO Y, GAO Q, et al. Functional properties of Chinese yam (Dioscorea opposita Thunb. cv. Baiyu) soluble protein[J]. Journal of Food Science and Technology, 2018, 55(1): 381-388. |
[39] | ZHANG Z Y, YANG Y L, TANG X Z, et al. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure[J]. Food Chemistry, 2015, 188: 111-118. |
[40] | SHILPASHREE B G, ARORA S, CHAWLA P, et al. Effect of succinylation on physicochemical and functional properties of milk protein concentrate[J]. Food Research International, 2015, 72: 223-230. |
[41] | YANG J S, MU T H, MA M M. Extraction, structure, and emulsifying properties of pectin from potato pulp[J]. Food Chemistry, 2018, 244: 197-205. |
[42] | IGARTÚA D E, DICHANO M C, FERRARI S B, et al. Combination of pH-shifting, ultrasound, and heat treatments to enhance solubility and emulsifying stability of rice protein isolate[J]. Food Chemistry, 2024, 433: 137319. |
[43] | SANTIAGO L A, FADEL O M, TAVARES G M. How does the thermal-aggregation behavior of black cricket protein isolate affect its foaming and gelling properties?[J]. Food Hydrocolloids, 2021, 110: 106169. |
[44] | NICORESCU I, VIAL C, TALANSIER E, et al. Comparative effect of thermal treatment on the physicochemical properties of whey and egg white protein foams[J]. Food Hydrocolloids, 2011, 25(4): 797-808. |
[45] | SHENG L, WANG Y B, CHEN J H, et al. Influence of high-intensity ultrasound on foaming and structural properties of egg white[J]. Food Research International, 2018, 108: 604-610. |
[46] | WEI W L, WANG W J, CHEN H, et al. A promising Artemisia capillaris Thunb. leaf proteins with high nutrition, applicable function and excellent antioxidant activity[J]. Food Chemistry, 2024, 21: 101153. |
[47] | FENG Z B, WU G X, LIU C H, et al. Edible coating based on whey protein isolate nanofibrils for antioxidation and inhibition of product browning[J]. Food Hydrocolloids, 2018, 79: 179-188. |
[48] | ZHAO Y G, WANG C X, LU W, et al. Evolution of physicochemical and antioxidant properties of whey protein isolate during fibrillization process[J]. Food Chemistry, 2021, 357: 129751. |
[49] | KARIMLOO A, RAZAVI S H, MOUSAVI S M. Improving the antioxidant activity of microbial canthaxanthin by its encapsulation with bioactive peptides of soybean protein[J]. Food Bioscience, 2023, 56: 103319. |
[1] | 赵小亮, 鲁雲, 康兴兴, 龙则宇, 郑晓杰. 雁荡山铁皮石斛多糖的提取、结构表征与体外抗氧化活性[J]. 浙江农业学报, 2024, 36(8): 1898-1908. |
[2] | 曹乃馨, 罗阳兰, 阎勇, 解修超, 张雯龙. 桑树桑黄JM-1胞外多糖液态培养基优化及其抗氧化性研究[J]. 浙江农业学报, 2024, 36(6): 1245-1255. |
[3] | 刘晨星, 曹艳, 夏其乐. 多花黄精根须皂苷的提取工艺及其抗氧化活性研究[J]. 浙江农业学报, 2024, 36(5): 1144-1152. |
[4] | 马波, 陶震, 周瑞, 王雪, 吕茜茜, 孙士红, 王寒, 高金秋, 张楚涵, 陈凤清. 花叶万年青功能成分提取条件优化与活性探究[J]. 浙江农业学报, 2023, 35(2): 383-393. |
[5] | 孙凤婷, 许振岚, 朱作艺, 张春荣, 汤涛, 赵学平, 盛清, 王强. 铁皮石斛的黄酮类成分测定及其生物可及性研究[J]. 浙江农业学报, 2023, 35(11): 2710-2719. |
[6] | 邵宇辰, 穆宏磊, 陈杭君, 殷军艺, 房祥军, 吴伟杰, 刘瑞玲, 韩延超, 郜海燕. 肠道条件和粒径对加工山核桃体外消化的影响[J]. 浙江农业学报, 2022, 34(8): 1734-1742. |
[7] | 刘晶, 胡晓, 杨贤庆, 陈胜军, 吴燕燕, 李来好, 戚勃, 邓建朝. 龙须菜蛋白质的提取及其酶解产物的抗氧化特性[J]. 浙江农业学报, 2022, 34(5): 1061-1072. |
[8] | 张娜, 周慕川, 王庆港, 丁玉先, 陈爱强. 热水处理对南丰蜜橘贮藏品质的影响及传热分析[J]. 浙江农业学报, 2022, 34(2): 370-377. |
[9] | 李雪, 张玉, 王君虹, 朱作艺, 孙素玲, 刘志, 朱申龙, 沈国新, Agusti ROMERO, 王伟. 初榨橄榄油中多酚化合物的UPLC-FLD检测及其抗氧化活性研究[J]. 浙江农业学报, 2021, 33(5): 907-915. |
[10] | 李园成, 孙宏, 吴逸飞, 姚晓红, 沈琦, 汤江武. 固态发酵棉籽仁的营养成分及其抗氧化活性[J]. 浙江农业学报, 2020, 32(4): 610-615. |
[11] | 杨志, 李文义, 高云涛, 熊华斌, 陈毅坚, 杨慧娟. 响应面法优化针叶樱桃总黄酮的提取工艺及其抗氧化活性研究[J]. 浙江农业学报, 2020, 32(10): 1866-1872. |
[12] | 沈璐, 李勤超, 田中贵, 稻村达也, 伊日布斯. 太阳热处理对小白菜根肿病防治效果的研究[J]. 浙江农业学报, 2020, 32(1): 98-107. |
[13] | 高帆, 夏惠, 王秀, 王进, 周琼, 吕秀兰, 梁东. 不同甜樱桃品种抗氧化物质及抗氧化活性分析[J]. 浙江农业学报, 2017, 29(6): 926-932. |
[14] | 柴新义, 倪瓒鹏, 于士军, 张微微, 殷培峰. 黑木耳菌丝体液体发酵富硒条件优化及其多糖抗氧化活性[J]. 浙江农业学报, 2017, 29(11): 1903-1911. |
[15] | 唐宏刚,肖朝耿,叶梦迪,朱培培,陈黎洪*. 猪骨蛋白酶解液美拉德反应产物的抗氧化活性研究[J]. 浙江农业学报, 2016, 28(8): 1396-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||