浙江农业学报 ›› 2022, Vol. 34 ›› Issue (5): 1061-1072.DOI: 10.3969/j.issn.1004-1524.2022.05.21
刘晶1,2(), 胡晓2, 杨贤庆2,*(
), 陈胜军2, 吴燕燕2, 李来好2, 戚勃2, 邓建朝2
收稿日期:
2020-11-16
出版日期:
2022-05-25
发布日期:
2022-06-06
通讯作者:
杨贤庆
作者简介:
* 杨贤庆,E-mail: yxqgd@163.com基金资助:
LIU Jing1,2(), HU Xiao2, YANG Xianqing2,*(
), CHEN Shengjun2, WU Yanyan2, LI Laihao2, QI Bo2, DENG Jianchao2
Received:
2020-11-16
Online:
2022-05-25
Published:
2022-06-06
Contact:
YANG Xianqing
摘要:
以干燥后的龙须菜(Gracilaria lemaneiformis)粉为原料,采用超声辅助碱提酸沉法提取龙须菜蛋白质。首先通过单因素实验选择了影响龙须菜蛋白质提取率的因素及水平范围,然后以Box-Behnken中心组合设计原理建立二次响应面回归模型,确定了最佳提取条件为:碱浓度0.2 mol·L-1、液固比24:1 (mL·g-1)、超声时间70 min、超声功率482 W,在此条件下的龙须菜蛋白质提取率为73.78%。此外,对提取得到的龙须菜蛋白质进行了酶解,分别研究了木瓜蛋白酶、碱性蛋白酶、植物蛋白复合酶、胰蛋白酶和胃蛋白酶对酶解产物抗氧化活性和分子量的影响。结果表明,在酶解4 h后,碱性蛋白酶酶解产物的抗氧化活性显著高于其他4种酶酶解产物和龙须菜蛋白质,其铁离子还原能力(ferric reducing antioxidant power, FRAP)、1,1-二苯基-2-苦基肼(DPPH)自由基清除率和2,2'-联氮-双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)自由基清除率分别为81.88 μg·mL-1、63.29%、64.25%,分子量主要集中在1 500 u以下。本研究可为龙须菜蛋白质的提取及其高值化利用提供一定参考。
中图分类号:
刘晶, 胡晓, 杨贤庆, 陈胜军, 吴燕燕, 李来好, 戚勃, 邓建朝. 龙须菜蛋白质的提取及其酶解产物的抗氧化特性[J]. 浙江农业学报, 2022, 34(5): 1061-1072.
LIU Jing, HU Xiao, YANG Xianqing, CHEN Shengjun, WU Yanyan, LI Laihao, QI Bo, DENG Jianchao. Extraction and antioxidant activity of enzymolysis products of Gracilaria lemaneiformis protein[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1061-1072.
因素 Factor | 水平 Level | ||
---|---|---|---|
-1 | 0 | 1 | |
碱浓度Alkali concentration/(mol·L-1) | 0.15 | 0.20 | 0.25 |
液固比Liquid-solid ratio/(mL·g-1) | 20:1 | 25:1 | 30:1 |
超声时间Ultrasonic time/min | 60 | 70 | 80 |
超声功率Ultrasonic power/W | 400 | 500 | 600 |
表1 因素水平编码表
Table 1 Factor level coding table
因素 Factor | 水平 Level | ||
---|---|---|---|
-1 | 0 | 1 | |
碱浓度Alkali concentration/(mol·L-1) | 0.15 | 0.20 | 0.25 |
液固比Liquid-solid ratio/(mL·g-1) | 20:1 | 25:1 | 30:1 |
超声时间Ultrasonic time/min | 60 | 70 | 80 |
超声功率Ultrasonic power/W | 400 | 500 | 600 |
种类 Type | 加酶量 Enzyme amount/% | 时间 Time/h | pH | 温度 Temperature/℃ | 料液比 Solid-liquid ratio/(g·mL-1) |
---|---|---|---|---|---|
木瓜蛋白酶Papain | 3 | 4 | 6.5 | 50 | 1:50 |
碱性蛋白酶Alkaline protease | 3 | 4 | 8 | 50 | 1:50 |
植物蛋白复合酶Plant protein complex enzyme | 3 | 4 | 8 | 50 | 1:50 |
胰蛋白酶Trypsin | 3 | 4 | 8 | 37 | 1:50 |
胃蛋白酶Pepsin | 3 | 4 | 3 | 37 | 1:50 |
表2 龙须菜蛋白酶解条件
Table 2 Enzymatic conditions of G. lemaneiformis protein
种类 Type | 加酶量 Enzyme amount/% | 时间 Time/h | pH | 温度 Temperature/℃ | 料液比 Solid-liquid ratio/(g·mL-1) |
---|---|---|---|---|---|
木瓜蛋白酶Papain | 3 | 4 | 6.5 | 50 | 1:50 |
碱性蛋白酶Alkaline protease | 3 | 4 | 8 | 50 | 1:50 |
植物蛋白复合酶Plant protein complex enzyme | 3 | 4 | 8 | 50 | 1:50 |
胰蛋白酶Trypsin | 3 | 4 | 8 | 37 | 1:50 |
胃蛋白酶Pepsin | 3 | 4 | 3 | 37 | 1:50 |
图1 不同超声条件对龙须菜蛋白质提取率的影响 点线图上无相同小写字母的表示各处理间差异显著(P<0.05)。
Fig.1 Effect of different ultrasonic conditions on the extraction ratio of G. lemaneiformis protein Different lowercase letters above the data points represent statistically significant (P<0.05) differences among treatments.
方差来源 Source | 平方和 Sum of squares | 自由度 df | 均方 Mean squares | F值 F value | P值 P value | 显著性 Significant |
---|---|---|---|---|---|---|
模型Model | 1 277.71 | 14 | 91.27 | 54.45 | <0.000 1 | *** |
A | 26.14 | 1 | 26.14 | 15.59 | 0.001 5 | ** |
B | 57.73 | 1 | 57.73 | 34.44 | <0.000 1 | *** |
C | 11.12 | 1 | 11.12 | 6.63 | 0.022 0 | * |
D | 12.40 | 1 | 12.40 | 7.40 | 0.016 6 | * |
AB | 8.12 | 1 | 8.12 | 4.85 | 0.045 0 | * |
AC | 15.44 | 1 | 15.44 | 9.21 | 0.008 9 | ** |
AD | 0.12 | 1 | 0.12 | 0.07 | 0.793 8 | |
BC | 46.99 | 1 | 46.99 | 28.03 | 0.000 1 | *** |
BD | 145.32 | 1 | 145.32 | 86.70 | <0.000 1 | *** |
CD | 102.21 | 1 | 102.21 | 60.98 | <0.000 1 | *** |
A2 | 77.91 | 1 | 77.91 | 46.48 | <0.000 1 | *** |
B2 | 260.06 | 1 | 260.06 | 155.15 | <0.000 1 | *** |
C2 | 555.38 | 1 | 555.38 | 331.34 | <0.000 1 | *** |
D2 | 337.61 | 1 | 337.61 | 201.42 | <0.000 1 | *** |
残差Residual | 23.47 | 14 | 1.68 | |||
失拟项 Lack of fit | 17.36 | 10 | 1.74 | 1.14 | 0.490 4 | 不显著 Not significant |
纯误差Pure error | 6.11 | 4 | 1.53 | |||
总变异Cor total | 1 301.18 | 28 |
表3 模型回归方程方差分析
Table 3 ANOVA of regression equation
方差来源 Source | 平方和 Sum of squares | 自由度 df | 均方 Mean squares | F值 F value | P值 P value | 显著性 Significant |
---|---|---|---|---|---|---|
模型Model | 1 277.71 | 14 | 91.27 | 54.45 | <0.000 1 | *** |
A | 26.14 | 1 | 26.14 | 15.59 | 0.001 5 | ** |
B | 57.73 | 1 | 57.73 | 34.44 | <0.000 1 | *** |
C | 11.12 | 1 | 11.12 | 6.63 | 0.022 0 | * |
D | 12.40 | 1 | 12.40 | 7.40 | 0.016 6 | * |
AB | 8.12 | 1 | 8.12 | 4.85 | 0.045 0 | * |
AC | 15.44 | 1 | 15.44 | 9.21 | 0.008 9 | ** |
AD | 0.12 | 1 | 0.12 | 0.07 | 0.793 8 | |
BC | 46.99 | 1 | 46.99 | 28.03 | 0.000 1 | *** |
BD | 145.32 | 1 | 145.32 | 86.70 | <0.000 1 | *** |
CD | 102.21 | 1 | 102.21 | 60.98 | <0.000 1 | *** |
A2 | 77.91 | 1 | 77.91 | 46.48 | <0.000 1 | *** |
B2 | 260.06 | 1 | 260.06 | 155.15 | <0.000 1 | *** |
C2 | 555.38 | 1 | 555.38 | 331.34 | <0.000 1 | *** |
D2 | 337.61 | 1 | 337.61 | 201.42 | <0.000 1 | *** |
残差Residual | 23.47 | 14 | 1.68 | |||
失拟项 Lack of fit | 17.36 | 10 | 1.74 | 1.14 | 0.490 4 | 不显著 Not significant |
纯误差Pure error | 6.11 | 4 | 1.53 | |||
总变异Cor total | 1 301.18 | 28 |
必需氨基酸 Essential amino acids | 含量 Content/ (g·kg-1) | FAO评分标准模式 FAO scoring standard mode/(mg·g-1) | 全鸡蛋蛋白 Whole egg protein/(mg·g-1) | 氨基酸评分 AAS/% | 化学评分 CS/% | 非必需氨基酸 Nonessential amino acid | 含量 Content/ (g·kg-1) |
---|---|---|---|---|---|---|---|
缬氨酸Val | 53.0 | 310 | 410 | 152.65 | 115.42 | 天冬氨酸Asp | 77.6 |
蛋氨酸 Met | 24.8 | 220 | 386 | 100.65 | 57.36 | 谷氨酸Glu | 104.4 |
赖氨酸 Lys | 26.6 | 340 | 441 | 69.85 | 53.85 | 丝氨酸Ser | 51.9 |
亮氨酸 Leu | 74.8 | 440 | 534 | 151.79 | 125.07 | 组氨酸His | 2.3 |
异亮氨酸Ile | 48.7 | 250 | 331 | 173.93 | 131.37 | 甘氨酸Gly | 28.5 |
苏氨酸Thr | 41.1 | 250 | 292 | 146.79 | 125.67 | 精氨酸Arg | 62.3 |
苯丙氨酸 Phe | 48.1 | 丙氨酸Ala | 56.3 | ||||
色氨酸Trp | 4.1 | 酪氨酸Try | 52.8 | ||||
脯氨酸Pro | 26.9 | ||||||
苯丙氨酸+酪氨酸 | 380 | 565 | 237.07 | 159.45 | 半胱氨酸Cys | 90.8 | |
Phe+Tyr | |||||||
E | 321.2 | N | 553.8 |
表4 龙须菜蛋白氨基酸组成及必需氨基酸分析
Table 4 Amino acid of composition and essential amino acid analysis of G. lemaneiformis protein
必需氨基酸 Essential amino acids | 含量 Content/ (g·kg-1) | FAO评分标准模式 FAO scoring standard mode/(mg·g-1) | 全鸡蛋蛋白 Whole egg protein/(mg·g-1) | 氨基酸评分 AAS/% | 化学评分 CS/% | 非必需氨基酸 Nonessential amino acid | 含量 Content/ (g·kg-1) |
---|---|---|---|---|---|---|---|
缬氨酸Val | 53.0 | 310 | 410 | 152.65 | 115.42 | 天冬氨酸Asp | 77.6 |
蛋氨酸 Met | 24.8 | 220 | 386 | 100.65 | 57.36 | 谷氨酸Glu | 104.4 |
赖氨酸 Lys | 26.6 | 340 | 441 | 69.85 | 53.85 | 丝氨酸Ser | 51.9 |
亮氨酸 Leu | 74.8 | 440 | 534 | 151.79 | 125.07 | 组氨酸His | 2.3 |
异亮氨酸Ile | 48.7 | 250 | 331 | 173.93 | 131.37 | 甘氨酸Gly | 28.5 |
苏氨酸Thr | 41.1 | 250 | 292 | 146.79 | 125.67 | 精氨酸Arg | 62.3 |
苯丙氨酸 Phe | 48.1 | 丙氨酸Ala | 56.3 | ||||
色氨酸Trp | 4.1 | 酪氨酸Try | 52.8 | ||||
脯氨酸Pro | 26.9 | ||||||
苯丙氨酸+酪氨酸 | 380 | 565 | 237.07 | 159.45 | 半胱氨酸Cys | 90.8 | |
Phe+Tyr | |||||||
E | 321.2 | N | 553.8 |
图5 不同酶对龙须菜蛋白质酶解产物抗氧化活性的影响 酶种类E1、E2、E3、E4、E5分别为木瓜蛋白酶、碱性蛋白酶、植物蛋白复合酶、胰蛋白酶和胃蛋白酶,P表示龙须菜蛋白质。柱状图上无相同小写字母的表示各处理间差异显著(P <0.05)。
Fig.5 Effects of different enzymes on antioxidant activity of G. lemaneiformis protein enzymolysis products The enzyme types of E1, E2, E3, E4 and E5 were papain, alkaline protease, plant protein complex enzyme, trypsin and pepsin, respectively. P was the protein of G. lemaneiformis. Different lowercase letters above the columns represent statistically significant (P <0.05) differences among treatments.
分子量分布 Molecular weight distribution | 酶种类The enzyme types | |||||
---|---|---|---|---|---|---|
木瓜蛋白酶 Papain | 碱性蛋白酶 Alkaline protease | 复合蛋白酶 Complex enzyme | 胰蛋白酶 Trypsin | 胃蛋白酶 Pepsin | ||
>10 000 u | 18.13 | 0 | 0 | 0 | 0 | |
5 000~<10 000 u | 3.36 | 0.90 | 0.10 | 0.86 | 0 | |
3 000~<5 000 u | 3.65 | 2.05 | 0.84 | 2.16 | 0 | |
1 500~<3 000 u | 8.78 | 6.40 | 3.89 | 7.75 | 0.12 | |
500~<1 500 u | 22.99 | 28.42 | 25.91 | 27.86 | 14.79 | |
<500 u | 43.11 | 62.23 | 69.27 | 61.36 | 85.09 |
表5 酶解产物的分子量分布
Table 5 Molecular weight distribution of enzymolysis products %
分子量分布 Molecular weight distribution | 酶种类The enzyme types | |||||
---|---|---|---|---|---|---|
木瓜蛋白酶 Papain | 碱性蛋白酶 Alkaline protease | 复合蛋白酶 Complex enzyme | 胰蛋白酶 Trypsin | 胃蛋白酶 Pepsin | ||
>10 000 u | 18.13 | 0 | 0 | 0 | 0 | |
5 000~<10 000 u | 3.36 | 0.90 | 0.10 | 0.86 | 0 | |
3 000~<5 000 u | 3.65 | 2.05 | 0.84 | 2.16 | 0 | |
1 500~<3 000 u | 8.78 | 6.40 | 3.89 | 7.75 | 0.12 | |
500~<1 500 u | 22.99 | 28.42 | 25.91 | 27.86 | 14.79 | |
<500 u | 43.11 | 62.23 | 69.27 | 61.36 | 85.09 |
[1] |
CAO D Q, LV X, XU X T, et al. Purification and identification of a novel ACE inhibitory peptide from marine alga Gracilariopsis lemaneiformis protein hydrolysate[J]. European Food Research and Technology, 2017, 243(10): 1829-1837.
DOI URL |
[2] |
CHEN B B, ZOU D H, ZHU M J, et al. Effects of CO2 levels and light intensities on growth and amino acid contents in red seaweed Gracilaria lemaneiformis[J]. Aquaculture Research, 2017, 48(6): 2683-2690.
DOI URL |
[3] |
WANG X M, ZHANG Z S, ZHOU H C, et al. The anti-aging effects of Gracilaria lemaneiformis polysaccharide in Caenorhabditis elegans[J]. International Journal of Biological Macromolecules, 2019, 140: 600-604.
DOI URL |
[4] | 张秀梅, 孙灵毅, 贺加贝, 等. 菊花心江蓠(Gracilaria lichevoides)营养成分分析及评价[J]. 河北渔业, 2020(3): 5-7. |
ZHANG X M, SUN L Y, HE J B, et al. The nutritional analysis and evaluation of Gracilaria lichevoides[J]. Hebei Fisheries, 2020(3): 5-7. (in Chinese with English abstract) | |
[5] | 张永雨, 陈美珍, 余杰, 等. 龙须菜藻胆蛋白抗突变与抗肿瘤作用的研究[J]. 中国海洋药物, 2005, 24(3): 36-38. |
ZHANG Y Y, CHEN M Z, YU J, et al. Studies on the antimutagenic and antitumour effects of phycobiliproteins from Gracilaria lemaneiformis[J]. Chinese Journal of Marine Drugs, 2005, 24(3):36-38. (in Chinese with English abstract) | |
[6] |
KARAMI Z, AKBARI-ADERGANI B. Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties[J]. Journal of Food Science and Technology, 2019, 56(2): 535-547.
DOI URL |
[7] | 黄沐晨, 杨傅佳, 陈旭, 等. 海洋源生物活性肽的构效关系与作用机理研究进展[J]. 食品科学, 2021, 42(19):271-280. |
HUANG M C, YANG B J, CHEN X, et al. Research progress on the structure-activity relationship and mechanism of marine bioactive peptides[J]. Food Science, 2021, 42(19):271-280. (in Chinese with English abstract)
DOI URL |
|
[8] |
MITTAL R, TAVANANDI H A, MANTRI V A, et al. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum(Rhodophyta)[J]. Ultrasonics Sonochemistry, 2017, 38: 92-103.
DOI URL |
[9] |
CHEMAT F, ROMBAUT N, SICAIRE A G, et al. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review[J]. Ultrasonics Sonochemistry, 2017, 34: 540-560.
DOI URL |
[10] | 崔晓瑞, 王丽, 石菲菲, 等. 超声波辅助碱法提取大球盖菇蛋白质工艺的优化[J]. 食品安全质量检测学报, 2020, 11(20): 7536-7543. |
CUI X R, WANG L, SHI F F, et al. Optimization of extraction process of Stropharia rugosoannulata protein by ultrasonic-assisted alkali[J]. Journal of Food Safety & Quality, 2020, 11(20): 7536-7543. (in Chinese with English abstract) | |
[11] | 张乐, 王赵改, 李鹏, 等. 提取方法对金针菇菌根蛋白特性的影响[J]. 中国食品学报, 2017, 17(4): 89-97. |
ZHANG L, WANG Z G, LI P, et al. Effects of extracting methods on properties of proteins from root of Flammunlina velutipes[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(4): 89-97. (in Chinese with English abstract) | |
[12] |
HATAMNIA A A, ABBASPOUR N, DARVISHZADEH R. Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits[J]. Food Chemistry, 2014, 145: 306-311.
DOI URL |
[13] | 李瑞杰, 胡晓, 李来好, 等. 罗非鱼皮酶解物钙离子结合能力及其结合物的抗氧化活性[J]. 南方水产科学, 2019, 15(6): 106-111. |
LI R J, HU X, LI L H, et al. Calcium ion binding ability of tilapia skin hydrolysate and its antioxidant activity[J]. South China Fisheries Science, 2019, 15(6): 106-111. (in Chinese with English abstract) | |
[14] |
SATO N, FURUTA T, TAKEDA T, et al. Antioxidant activity of proteins extracted from red alga dulse harvested in Japan[J]. Journal of Food Biochemistry, 2019, 43(2): e12709.
DOI URL |
[15] |
DOU J, MENG Y H, LIU L, et al. Purification, characterization and antioxidant activities of polysaccharides from thinned-young apple[J]. International Journal of Biological Macromolecules, 2015, 72: 31-40.
DOI URL |
[16] |
SABEENA FARVIN K H, ANDERSEN L L, OTTE J, et al. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: fractionation and characterisation of peptide fractions[J]. Food Chemistry, 2016, 204: 409-419.
DOI URL |
[17] | 郝东宇, 席兴军, 初侨, 等. Box-Behnken响应面法优化辣木叶蛋白超声提取工艺研究[J]. 分析仪器, 2018(6): 128-136. |
HAO D Y, XI X J, CHU Q, et al. Optimization of ultrasound extraction process for protein from leaves of Moringa oleifera by Box-Behnken response surface methodology[J]. Analytical Instrumentation, 2018(6): 128-136. (in Chinese with English abstract) | |
[18] | 邸红艳, 马海乐, 王洋, 等. 超声辅助提取核桃粕蛋白的工艺研究[J]. 现代食品科技, 2019, 35(7): 164-172. |
DI H Y, MA H L, WANG Y, et al. Ultrasound-assisted extraction of the proteins from walnut meal[J]. Modern Food Science and Technology, 2019, 35(7): 164-172. (in Chinese with English abstract) | |
[19] |
WANG B, ATUNGULU G G, KHIR R, et al. Ultrasonic treatment effect on enzymolysis kinetics and activities of ACE-inhibitory peptides from oat-isolated protein[J]. Food Biophysics, 2015, 10(3): 244-252.
DOI URL |
[20] | 唐鑫媛, 夏延斌, 文新昱, 等. 超声波辅助碱法提取辣椒渣中蛋白质的工艺优化[J]. 食品与机械, 2015, 31(2): 222-226. |
TANG X Y, XIA Y B, WEN X Y, et al. Comparison and optimization on extraction of protein in pepper residues by ultrasonic-assisted alkali method[J]. Food & Machinery, 2015, 31(2): 222-226. (in Chinese with English abstract) | |
[21] | 于娇, 陈胜军, 胡晓, 等. 超声波辅助提取坛紫菜蛋白条件优化及其基础特性研究[J]. 食品与发酵工业, 2019, 45(8): 142-148. |
YU J, CHEN S J, HU X, et al. Extraction and characterization of protein from Porphyra haitanensis by optimized ultrasound-assisted extraction[J]. Food and Fermentation Industries, 2019, 45(8): 142-148. (in Chinese with English abstract) | |
[22] | 姜伊悦, 张小勇, 崔泰花, 等. 元蘑蛋白的超声辅助提取及结构分析[J]. 食品科技, 2019, 44(8): 228-234. |
JIANG Y Y, ZHANG X Y, CUI T H, et al. Ultrasound extraction and structural characteristics of protein from Hohenbuehelia serotina[J]. Food Science and Technology, 2019, 44(8): 228-234. (in Chinese with English abstract) | |
[23] | 林彬彬, 唐旭, 汪少芸. 龙须菜蛋白的提取及其功能性质研究[J]. 中国食品学报, 2018, 18(12): 137-143. |
LIN B B, TANG X, WANG S Y. Studies on extraction of Gracilaria lemaneiformis protein and its properties[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(12): 137-143. (in Chinese with English abstract) | |
[24] | 石嘉怿, 王婷婷. 粳稻总蛋白提取工艺的响应面优化及其氨基酸组分分析[J]. 粮食与油脂, 2020, 33(9): 34-38. |
SHI J Y, WANG T T. Response surface optimization of total protein extraction technology of japonica rice and its amino acid composition analysis[J]. Cereals & Oils, 2020, 33(9): 34-38. (in Chinese with English abstract) | |
[25] | 蔡苗苗, 陈胜军, 杨贤庆, 等. 舌状蜈蚣藻蛋白质的提取及其抗氧化活性研究[J]. 南方水产科学, 2020, 16(2): 99-106. |
CAI M M, CHEN S J, YANG X Q, et al. Extraction and antioxidant activity of protein from Grateloupia livida[J]. South China Fisheries Science, 2020, 16(2): 99-106. (in Chinese with English abstract) | |
[26] | 陈洪彬, 鄂昱瑾, 温美钦, 等. 龙须菜抗氧化肽的制备及其体外抗氧化活性[J]. 泉州师范学院学报, 2015, 33(2): 43-47. |
CHEN H B, E Y J, WEN M Q, et al. Preparation and antioxidant activity in vitro of antioxidative peptides from Gracilaria lemaneiformis[J]. Journal of Quanzhou Normal University, 2015, 33(2): 43-47. (in Chinese with English abstract) | |
[27] |
CHAI T T, LAW Y C, WONG F C, et al. Enzyme-assisted discovery of antioxidant peptides from edible marine invertebrates: a review[J]. Marine Drugs, 2017, 15(2): 42.
DOI URL |
[28] |
ALEMÁN A, GIMÉNEZ B, PÉREZ-SANTIN E, et al. Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate[J]. Food Chemistry, 2011, 125(2): 334-341.
DOI URL |
[29] |
YANG H Y, YANG S N, KONG J L, et al. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy[J]. Nature Protocols, 2015, 10(3): 382-396.
DOI URL |
[30] | 王莹, 邢杰, 李幸芳, 等. 基于FTIR和1H-NMR方法分析高压脉冲电场技术对抗氧化肽KWFH的结构影响[J]. 食品科学, 2017, 38(1): 116-120. |
WANG Y, XING J, LI X F, et al. Using FTIR and 1H-NMR to explore the structure of antioxidant peptide KWFH treated by pulsed electric field (PEF)[J]. Food Science, 2017, 38(1): 116-120. (in Chinese with English abstract)
DOI URL |
[1] | 李雪, 张玉, 王君虹, 朱作艺, 孙素玲, 刘志, 朱申龙, 沈国新, Agusti ROMERO, 王伟. 初榨橄榄油中多酚化合物的UPLC-FLD检测及其抗氧化活性研究[J]. 浙江农业学报, 2021, 33(5): 907-915. |
[2] | 李园成, 孙宏, 吴逸飞, 姚晓红, 沈琦, 汤江武. 固态发酵棉籽仁的营养成分及其抗氧化活性[J]. 浙江农业学报, 2020, 32(4): 610-615. |
[3] | 杨志, 李文义, 高云涛, 熊华斌, 陈毅坚, 杨慧娟. 响应面法优化针叶樱桃总黄酮的提取工艺及其抗氧化活性研究[J]. 浙江农业学报, 2020, 32(10): 1866-1872. |
[4] | 高帆, 夏惠, 王秀, 王进, 周琼, 吕秀兰, 梁东. 不同甜樱桃品种抗氧化物质及抗氧化活性分析[J]. 浙江农业学报, 2017, 29(6): 926-932. |
[5] | 柴新义, 倪瓒鹏, 于士军, 张微微, 殷培峰. 黑木耳菌丝体液体发酵富硒条件优化及其多糖抗氧化活性[J]. 浙江农业学报, 2017, 29(11): 1903-1911. |
[6] | 唐宏刚,肖朝耿,叶梦迪,朱培培,陈黎洪*. 猪骨蛋白酶解液美拉德反应产物的抗氧化活性研究[J]. 浙江农业学报, 2016, 28(8): 1396-. |
[7] | 张强1,2,吴彩娥1,*. 羊肚菌菌丝体蛋白的理化特性及抗氧化活性[J]. 浙江农业学报, 2016, 28(8): 1408-. |
[8] | 金群力,张作法, 范丽军, 蔡为明*. 棕色双孢蘑菇子实体不同生长阶段抗氧化活性比较[J]. 浙江农业学报, 2016, 28(5): 797-. |
[9] | 郑雪良1,刘春荣1,*,王登亮1,毕旭灿2,杨波2,孙崇德3. 胡柚小青果的黄酮类化合物及抗氧化活性研究[J]. 浙江农业学报, 2015, 27(7): 1185-. |
[10] | 尹娜1,林小清2,杨月伟1,徐海圣2,*. 宽体金线蛭抗氧化活性肽的分离纯化及体外活性研究[J]. 浙江农业学报, 2015, 27(3): 348-. |
[11] | 邵金华;李涛;杨佳. 微波辅助大蒜多糖的提取及其抗氧化活性的研究[J]. , 2013, 25(4): 0-872. |
[12] | 张豫超;谢 鸣;陈俊伟;徐红霞;张慧琴;蒋桂华*. 不同采收期草莓果实抗氧化物质含量和抗氧化活性的变化[J]. , 2009, 21(3): 0-254. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 709
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 420
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||