浙江农业学报 ›› 2024, Vol. 36 ›› Issue (11): 2596-2604.DOI: 10.3969/j.issn.1004-1524.20231352
许辰一1(), 杨佳欣1, 金忠煜1, 于丰华1,2,*(
)
收稿日期:
2023-12-02
出版日期:
2024-11-25
发布日期:
2024-11-27
作者简介:
许辰一(1996—),男,辽宁沈阳人,硕士研究生,研究方向为基于无人机矢量高光谱遥感水稻氮素研究。E-mail:xtyxcy11@163.com
通讯作者:
*于丰华,E-mail:adan@syau.edu.cn
基金资助:
XU Chenyi1(), YANG Jiaxin1, JIN Zhongyu1, YU Fenghua1,2,*(
)
Received:
2023-12-02
Online:
2024-11-25
Published:
2024-11-27
摘要:
大田作物的偏振光谱信息是利用偏振遥感技术部分去除田间作物镜面反射的光谱信息,进而提升利用光谱技术对大田作物农情信息的监测精度。本研究综述了大田作物偏振光谱遥感数据获取、数据处理,以及大田作物长势信息定量反演关键技术,梳理了偏振光谱技术在大田作物监测方面的基本研究方法,总结了作物偏振光谱的特性,分析了近年来偏振光谱在大田作物农学参量定量反演研究中的发展态势,以期从不同的角度来展现偏振光谱在大田作物研究中的潜在应用,为今后大田作物偏振光谱检测研究提供参考。
中图分类号:
许辰一, 杨佳欣, 金忠煜, 于丰华. 偏振光谱在大田作物农学参量反演中的研究进展[J]. 浙江农业学报, 2024, 36(11): 2596-2604.
XU Chenyi, YANG Jiaxin, JIN Zhongyu, YU Fenghua. Research progress in polarization spectroscopy in the inversion of agronomic parameters of field crops[J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2596-2604.
图1 pBRDF几何关系图[12] n, 表示法线向量;s,表示光源方向向量,代表光线的入射方向。α,入射角,指光线与法线之间的夹角;θi,入射角,入射光线与表面法线之间的夹角;θr,反射角;β,其他特定角度或角度差异;dEi和dLr分别表示微分入射能量和微分反射辐射亮度;φi 和φr表示入射光线和反射光线在水平面的方位角。
Fig.1 pBRDF geometric relationship diagram n, Normal vector; s, Direction vector of the light source, representing the incident direction of the light; α, Incident angle,it refers to the angle between the light and the normal line; θi, Incident angle, it refers to the angle between the incident light and the surface normal;θr, Reflection angle; β, Other specific angles or angle differences; dEi, Differential incident energy; dLr, Differential reflection radiance; φi, Azimuth of the incident light in the horizontal plane; φr, The azimuth of the reflected light in the horizontal plane.
[1] | 赵春江. 农业知识智能服务技术综述[J]. 智慧农业(中英文), 2023, 5(2): 126-148. |
ZHAO C J. Agricultural knowledge intelligent service technology: a review[J]. Smart Agriculture, 2023, 5(2): 126-148. (in Chinese with English abstract) | |
[2] | YU F H, BAI J C, JIN Z Y, et al. Combining the critical nitrogen concentration and machine learning algorithms to estimate nitrogen deficiency in rice from UAV hyperspectral data[J]. Journal of Integrative Agriculture, 2023, 22(4): 1216-1229. |
[3] | YAN Y, LI D, KUANG Q L, et al. Integration of canopy water removal and spectral triangle index for improved estimations of leaf nitrogen and grain protein concentrations in winter wheat[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-18. |
[4] | LI A Q, JIA F G, FEI J M, et al. Numerical investigation of flow similarity of rice grains in friction rice mill and establishment of scale-up rule[J]. Computers and Electronics in Agriculture, 2023, 211: 108010. |
[5] | YU F H, XIANG S, BAI J C, et al. PIOSL: an improved version of PROSPECT model for simulating leaf optical properties by considering leaf internal structural variations[J]. Computers and Electronics in Agriculture, 2023, 211: 108030. |
[6] | 尹彦鑫, 孟志军, 赵春江, 等. 大田无人农场关键技术研究现状与展望[J]. 智慧农业(中英文), 2022, 4(4): 1-25. |
YIN Y X, MENG Z J, ZHAO C J, et al. State-of-the-art and prospect of research on key technical for unmanned farms of field corp[J]. Smart Agriculture, 2022, 4(4): 1-25. (in Chinese with English abstract) | |
[7] | 林沂, 刘思远, 晏磊, 等. 叶表面偏振反射测量对冬小麦氮含量高光谱估算的提升[J]. 光谱学与光谱分析, 2020, 40(6): 1956-1964. |
LIN Y, LIU S Y, YAN L, et al. Improvement of hyperspectral estimation of nitrogen content in winter wheat by leaf surface polarized reflection measurement[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1956-1964. (in Chinese with English abstract) | |
[8] | 何元. 基于无人机图像的甘蓝型油菜栽培指标反演模型研究[D]. 长沙: 湖南农业大学, 2019. |
HE Y. Cultivation index inversion model of Brassica napus based on UAV image[D]. Changsha: Hunan Agricultural University, 2019. (in Chinese with English abstract) | |
[9] | GRANT L, DAUGHTRY C S T, VANDERBILT V C. Polarized and specular reflectance variation with leaf surface features[J]. Physiologia Plantarum, 1993, 88(1): 1-9. |
[10] | 曹英丽, 肖文, 刘亚帝, 等. 高光谱数据降维与水稻氮素含量解析方法[J]. 沈阳农业大学学报, 2021, 52(1): 109-115. |
CAO Y L, XIAO W, LIU Y D, et al. Dimension reduction of hyperspectral data and analysis of rice nitrogen content[J]. Journal of Shenyang Agricultural University, 2021, 52(1): 109-115. (in Chinese with English abstract) | |
[11] | 梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6): 618-671. |
LIANG S L, BAI R, CHEN X N, et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing, 2020, 24(6): 618-671. (in Chinese with English abstract) | |
[12] | 赵云升, 孙仲秋, 李少平, 等. 偏振遥感的回顾与展望[J]. 大气与环境光学学报, 2010, 5(3): 190-197. |
ZHAO Y S, SUN Z Q, LI S P, et al. Review and outlook of polarized remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2010, 5(3): 190-197. (in Chinese with English abstract) | |
[13] | BREON F M, TANRE D, LECOMTE P, et al. Polarized reflectance of bare soils and vegetation: measurements and models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 487-499. |
[14] | 卢珍, 张春影, 杨秀云, 等. 不同类型植被双向反射与偏振特性[J]. 遥感信息, 2017, 32(5): 23-30. |
LU Z, ZHANG C Y, YANG X Y, et al. Bidirectional reflectance and polarization characteristics of different vegetation covers[J]. Remote Sensing Information, 2017, 32(5): 23-30. (in Chinese with English abstract) | |
[15] | NICODEMUS F E. Directional reflectance and emissivity of an opaque surface[J]. Applied Optics, 1965, 4(7): 767. |
[16] | 郑爽, 杨迪, 刘卿, 等. 基于一种随机粗糙表面构型的偏振双向反射分布函数[J]. 光电技术应用, 2022, 37(6): 22-27. |
ZHENG S, YANG D, LIU Q, et al. pBRDF based on new configuration for rough-surface materials[J]. Electro-Optic Technology Application, 2022, 37(6): 22-27. (in Chinese with English abstract) | |
[17] | 黄萌, 陈青山, 李晓英, 等. 粗糙表面反射偏振特性的研究进展[J]. 激光杂志, 2023, 44(7): 1-8. |
HUANG M, CHEN Q S, LI X Y, et al. Progress in the study of reflection polarization characteristics of rough surfaces[J]. Laser Journal, 2023, 44(7): 1-8. (in Chinese with English abstract) | |
[18] | 谢东辉, 王培娟, 朱启疆, 等. 单叶片偏振BRDF建模及参数反演[J]. 光谱学与光谱分析, 2010, 30(12): 3324-3328. |
XIE D H, WANG P J, ZHU Q J, et al. Modeling polarimetric BRDF of leaves surfaces[J]. Spectroscopy and Spectral Analysis, 2010, 30(12): 3324-3328. (in Chinese with English abstract) | |
[19] | OMER K, KUPINSKI M. Compression, interpolation, and importance sampling for polarized BRDF models[J]. Optics Express, 2022, 30(14): 25734-25752. |
[20] | 凌晋江, 李钢, 张仁斌, 等. 偏振光谱BRDF建模与仿真[J]. 光谱学与光谱分析, 2016, 36(1): 42-46. |
LING J J, LI G, ZHANG R B, et al. Modeling and simulation of spectral polarimetric BRDF[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 42-46. (in Chinese with English abstract) | |
[21] | XIE D H, QIN W H, WANG P J, et al. Influences of leaf-specular reflection on canopy BRF characteristics: a case study of real maize canopies with a 3-D scene BRDF model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 619-631. |
[22] | YANG B, KNYAZIKHIN Y, ZHAO H M, et al. Contribution of leaf specular reflection to canopy reflectance under black soil case using stochastic radiative transfer model[J]. Agricultural and Forest Meteorology, 2018, 263: 477-482. |
[23] | YANG B, KNYAZIKHIN Y, XIE D H, et al. Influence of leaf specular reflection on canopy radiative regime using an improved version of the stochastic radiative transfer model[J]. Remote Sensing, 2018, 10(10): 1632. |
[24] | 赵虎, 叶鹏, 王聪欣. 植被反射光谱中的偏振现象研究[J]. 遥感信息, 2016, 31(6): 22-25. |
ZHAO H, YE P, WANG C X. Polarization phenomenon for reflectance spectra of vegetation[J]. Remote Sensing Information, 2016, 31(6): 22-25. (in Chinese with English abstract) | |
[25] | 宋开山, 赵云升, 张柏. 偏振反射与二向性反射的关系: 以不同物候期杨树单叶的室内光谱测量为例[J]. 中国科学院研究生院学报, 2005, 22(2): 164-169. |
SONG K S, ZHAO Y S, ZHANG B. Relationship between polarized and bi-directional reflectance: case study of poplar tree leave reflectance data collected in the lab[J]. Journal of the Graduate School of the Chinese Academy of Science, 2005, 22(2): 164-169. (in Chinese with English abstract) | |
[26] | 李小路, 李昀晔, 谢鑫浩, 等. 基于叶片含水量的激光偏振成像模型研究[J]. 红外与激光工程, 2017, 46(11): 1106004. |
LI X L, LI Y Y, XIE X H, et al. Laser polarization imaging models based on leaf moisture content[J]. Infrared and Laser Engineering, 2017, 46(11): 1106004. (in Chinese with English abstract) | |
[27] | 孙仲秋, 赵云升. 基于地表偏振反射模型的植被冠层偏振反射特性研究[J]. 激光与光电子学进展, 2016, 53(10): 102802. |
SUN Z Q, ZHAO Y S. Polarized reflectance characteristics of vegetation canopies based on polarization reflection model[J]. Laser & Optoelectronics Progress, 2016, 53(10): 102802. (in Chinese with English abstract) | |
[28] | LI L, CHE H Z, DERIMIAN Y, et al. Retrievals of fine mode light-absorbing carbonaceous aerosols from POLDER/PARASOL observations over East and South Asia[J]. Remote Sensing of Environment, 2020, 247: 111913. |
[29] | LUCAS PATTY C H, POMMEROL A, KÜHN J G, et al. Directional aspects of vegetation linear and circular polarization biosignatures[J]. Astrobiology, 2022, 22(9): 1034-1046. |
[30] | 杨彬, 晏磊, Yuri Knyazikhin, 等. 植被冠层立体结构与叶片倾角的偏振光效应[J]. 遥感学报, 2018, 22(6): 935-946. |
YANG B, YAN L, KNYAZIKHIN Y, et al. Vegetation polarimetric effect of three-dimensional structure and leaf inclination of canopy[J]. Journal of Remote Sensing, 2018, 22(6): 935-946. (in Chinese with English abstract) | |
[31] | 王凯, 刘宏, 郭奉奇. 偏振双向反射分布函数模型研究进展[J]. 渭南师范学院学报, 2021, 36(2): 80-88. |
WANG K, LIU H, GUO F Q. The progress of polarimetric bidirectional reflectance distribution function model[J]. Journal of Weinan Normal University, 2021, 36(2): 80-88. (in Chinese with English abstract) | |
[32] | 赵云升, 黄方, 金伦, 等. 植物单叶偏振反射特征研究[J]. 遥感学报, 2000, 4(2): 131-135. |
ZHAO Y S, HUANG F, JIN L, et al. Study on polarizing reflectance characteristics of plant simple leaf[J]. Journal of Remote Sensing, 2000, 4(2): 131-135. (in Chinese with English abstract) | |
[33] | 韩阳, 李潜, 赵云升, 等. 三因素及其交互作用对植物叶片多角度偏振高光谱特征的影响[J]. 红外与毫米波学报, 2010, 29(4): 316-320. |
HAN Y, LI Q, ZHAO Y S, et al. Effects of three interactive factors on the multi-angle polarized hyperspectrum of vegetation leaves[J]. Journal of Infrared and Millimeter Waves, 2010, 29(4): 316-320. (in Chinese with English abstract) | |
[34] | 秦川, 黄敬峰, 王海峰, 等. 植物不同叶片表面特征的偏振光谱特性研究[J]. 气象研究与应用, 2017, 38(1): 112-116. |
QIN C, HUANG J F, WANG H F, et al. Study on polarization spectrum characteristics of different foliar feature plants[J]. Journal of Meteorological Research and Application, 2017, 38(1): 112-116. (in Chinese with English abstract) | |
[35] | 秦川, 黄敬峰, 王海峰, 等. 光滑叶片的偏振高光谱特性及与叶绿素含量的关系[J]. 气象科学, 2019, 39(3): 421-426. |
QIN C, HUANG J F, WANG H F, et al. Polarized hyperspectral characteristics of smooth leaves and its relationship with chlorophyll content[J]. Journal of the Meteorological Sciences, 2019, 39(3): 421-426. (in Chinese with English abstract) | |
[36] | XIANG K S, CHENG T H, GU X F, et al. Analyzed polarized reflectance model of typical surface types over China based on the PARASOL measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 180: 109-116. |
[37] | 乔延利, 杨世植, 罗睿智, 等. 对地遥感中的光谱偏振探测方法研究[J]. 高技术通讯, 2001, 11(7): 36-39. |
QIAO Y L, YANG S Z, LUO R Z, et al. Research on polarized spectral monitoring for remote sensing of earth[J]. High Technology Letters, 2001, 11(7): 36-39. (in Chinese with English abstract) | |
[38] | 孙仲秋, 赵云升, 卢珊, 等. 偏振反射信息在植被遥感双向反射研究中的作用[J]. 遥感学报, 2018, 22(6): 947-956. |
SUN Z Q, ZHAO Y S, LU S, et al. Function of polarization on the bidirectional reflectance factor of vegetation samples[J]. Journal of Remote Sensing, 2018, 22(6): 947-956. (in Chinese with English abstract) | |
[39] | YANG L, CHEN W, BI P S, et al. Improving vegetation segmentation with shadow effects based on double input networks using polarization images[J]. Computers and Electronics in Agriculture, 2022, 199: 107123. |
[40] | 吴迪, 孙仲秋. 基于野外测量研究植被冠层偏振光谱反射特性[J]. 光谱学与光谱分析, 2017, 37(8): 2533-2538. |
WU D, SUN Z Q. The investigation of spectral polarization of vegetation canopy basing on the field measurements[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2533-2538. (in Chinese with English abstract) | |
[41] | KNYAZIKHIN Y, SCHULL M A, STENBERG P, et al. Hyperspectral remote sensing of foliar nitrogen content[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): E185-E192. |
[42] | 王吉, 牛铮, 黄妮, 等. 植被偏振特性在叶片水分含量反演中的作用[J]. 科学技术创新, 2023(5): 55-59. |
WANG J, NIU Z, HUANG N, et al. The role of vegetation polarization characteristics in leaf moisture content inversion[J]. Scientific and Technological Innovation, 2023(5): 55-59. (in Chinese with English abstract) | |
[43] | LI S Y, JIAO J N, CHEN J B, et al. A new polarization-based vegetation index to improve the accuracy of vegetation health detection by eliminating specular reflection of vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-18. |
[44] | 张子晗, 晏磊, 刘思远, 等. 基于偏振反射模型和随机森林回归的叶片氮含量反演[J]. 光谱学与光谱分析, 2021, 41(9): 2911-2917. |
ZHANG Z H, YAN L, LIU S Y, et al. Leaf nitrogen concentration retrieval based on polarization reflectance model and random forest regression[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2911-2917. (in Chinese with English abstract) | |
[45] | LIU M, SUN Z Q, LU S, et al. Combining multiangular, polarimetric, and hyperspectral measurements to estimate leaf nitrogen concentration from different plant species[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15. |
[46] | LIU S Y, YANG B, ZHANG Z H, et al. Influence of polarized reflection on airborne remote sensing of canopy foliar nitrogen content[J]. International Journal of Remote Sensing, 2020, 41(13): 4879-4900. |
[47] | SUN Z Q, LU S, OMASA K. A new method to estimate the leaf chlorophyll content from multiangular measurements: anisotropy index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14. |
[48] | LI Y F, SUN Z Q, LU S. Optimizing two-band spectral indices to estimate leaf chlorophyll content using the non-polarized reflectance factors[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. |
[49] | 许童羽, 杨佳欣, 白驹驰, 等. 基于无人机偏振遥感的水稻冠层氮素含量反演模型[J]. 农业机械学报, 2023, 54(10): 171-178. |
XU T Y, YANG J X, BAI J C, et al. Inversion model of nitrogen content of rice canopy based on UAV polarimetric remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(10): 171-178. (in Chinese with English abstract) | |
[50] | YADAV S A, PRASAD R, YADAV V P, et al. Far-field bistatic scattering simulation for rice crop biophysical parameters retrieval using modified radiative transfer model at X-and C-band[J]. Remote Sensing of Environment, 2022, 272: 112959. |
[1] | 俞沁佩, 孙鹂, 张淑文, 俞浙萍, 郑锡良, 戚行江. 园艺作物果实β-半乳糖苷酶研究进展[J]. 浙江农业学报, 2024, 36(9): 2184-2192. |
[2] | 朱仁超, 原樱其, 杨宇, 杨琦玥, 余爱华. 公路沿线农田重金属污染研究[J]. 浙江农业学报, 2024, 36(8): 1887-1897. |
[3] | 张晋, 吴晓丽, 田雨薇, 赵珂, 李欢欢, 达色, 次仁达杰, 陈黎洪, 唐宏刚. 超声波辅助酶解牦牛血粉提取氯化血红素的响应面工艺优化及品质表征[J]. 浙江农业学报, 2024, 36(6): 1357-1367. |
[4] | 程陈, 董朝阳, 郑生宏, 周宇博, 钟宁, 李文明, 朱阳春, 丁枫华, 冯利平, 黎贞发. 光温因子驱动的园艺作物叶龄模型模拟精度比较[J]. 浙江农业学报, 2024, 36(6): 1368-1378. |
[5] | 丛杰, 张悦如, 李禧龙, 潘宇轩, 吕黄珍, 吕程序. 手持式马铃薯干物质含量无损检测装置设计与试验[J]. 浙江农业学报, 2024, 36(4): 943-951. |
[6] | 王宇, 汪泓, 肖玖军, 李可相, 邢丹, 张永亮, 陈阳, 张蓝月. 基于优化植被指数组合的多品种辣椒叶片叶绿素数值估测[J]. 浙江农业学报, 2023, 35(9): 2109-2120. |
[7] | 汪洁, 陆若辉, 朱伟锋, 陈钰佩, 单英杰. 浙江省主要粮食作物秸秆还田替代化肥的潜力[J]. 浙江农业学报, 2023, 35(8): 1853-1863. |
[8] | 郭发旭, 冯全, 杨森, 杨婉霞. 基于无人机高光谱的马铃薯冠层叶片全氮含量反演[J]. 浙江农业学报, 2023, 35(8): 1904-1914. |
[9] | 仇逊超, 曹军, 张怡卓. 基于流形学习的红松仁脂肪近红外定量检测[J]. 浙江农业学报, 2023, 35(8): 1915-1926. |
[10] | 潘攀, 张建华, 郑晓明, 周国民, 胡林, 冯全, 柴秀娟. 深度学习在作物及其近缘种抗病性智能鉴定上的研究进展[J]. 浙江农业学报, 2023, 35(8): 1993-2012. |
[11] | 张梦, 佘宝, 杨玉莹, 黄林生, 朱梦琦. 基于无人机RGB影像的大豆种植区提取方法研究[J]. 浙江农业学报, 2023, 35(4): 952-961. |
[12] | 赵书慧, 张振华, 欧张丹, 田茂平, 陈玉梅, 赵紫薇. 国内农作物根系分泌物研究热点的初步探析[J]. 浙江农业学报, 2023, 35(3): 534-546. |
[13] | 朱永基, 陶新宇, 陈小芳, 苏祥祥, 刘吉凯, 李新伟. 基于无人机多光谱影像植被指数与纹理特征的冬小麦地上部生物量估算[J]. 浙江农业学报, 2023, 35(12): 2966-2976. |
[14] | 李祥, 朱海霞. 杂草致病菌株GD-0221的分离、鉴定与除草潜力[J]. 浙江农业学报, 2022, 34(9): 1967-1975. |
[15] | 刘启航, 高新国, 周国涛, 周强. 偏振波谱光态矢量光照参量对东亚飞蝗偏光响应效应的影响[J]. 浙江农业学报, 2022, 34(8): 1762-1771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||