浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 603-611.DOI: 10.3969/j.issn.1004-1524.20240107

• 植物保护 • 上一篇    下一篇

基于无人机多光谱遥感的早稻二化螟为害程度评价

曹梦娇1(), 白石2, 唐攀攀2, 王晔青1, 徐红星3,*(), 周国鑫4   

  1. 1.嘉兴市土肥植保与农村能源站,浙江 嘉兴 314100
    2.南湖实验室 大数据技术研究中心,浙江 嘉兴 314100
    3.浙江省农业科学院 植物保护与微生物研究所,浙江 杭州 310021
    4.浙江农林大学 现代农学院,浙江 杭州 311300
  • 收稿日期:2024-01-25 出版日期:2025-03-25 发布日期:2025-04-02
  • 作者简介:曹梦娇(1990—),女,浙江嘉善人,硕士,农艺师,研究方向为农作物病虫害监测与预警。E-mail:1240562399@qq.com
  • 通讯作者: * 徐红星,E-mail:hzxuhongxing@163.com
  • 基金资助:
    浙江省重点研发计划(2022C02034);浙江省粮油产业技术项目

Evaluation of damage degree of Chilo suppressalis on early rice based on unmanned aerial vehicle multispectral remote sensing

CAO Mengjiao1(), BAI Shi2, TANG Panpan2, WANG Yeqing1, XU Hongxing3,*(), ZHOU Guoxin4   

  1. 1. Jiaxing Soil Fertilizer, Plant Protection and Rural Energy Station, Jiaxing 314100, Zhejiang, China
    2. Big Data Technology Research Center, Nanhu Laboratory, Jiaxing 314100, Zhejiang, China
    3. Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
    4. College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
  • Received:2024-01-25 Online:2025-03-25 Published:2025-04-02

摘要:

为明确无人机多光谱遥感技术能否用于早稻二化螟为害程度评估,通过喷施不同农药、不同次数来控制二化螟的为害,利用多光谱无人机获取b1(450 nm)、b2(555 nm)、b3(660 nm)、b4(720 nm)、b5(750 nm)、b6(840 nm)波段的反射率数据,记录田间作物生长状态和环境信息,采用线性回归、支持向量机、随机森林、岭回归、Lasso回归和贝叶斯回归等6种机器学习模型,研究了在3个时间段获取的多光谱数据和二化螟为害率的相关性。结果表明,基于双时相(抽穗期、腊熟期)数据的支持向量机模型更能反映二化螟为害信息,预测结果与实际的田间二化螟为害程度相对一致。研究结果初步证实,无人机多光谱遥感结合双时相支持向量机模型可有效评估二化螟的为害程度,可为智慧植保的发展提供一定的理论依据与参考。

关键词: 二化螟, 为害率, 多光谱, 建模

Abstract:

To clarify the applicability of unmanned aerial vehicle (UAV) multispectral remote sensing in the assessment of the damage severity caused by Chilo suppressalis on early rice, diversified damage ratios were artificially created by spraying different pesticides with varying frequencies. The reflectance of 6 bands, namely, b1 (450 nm), b2 (555 nm), b3 (660 nm), b4 (720 nm), b5 (750 nm) and b6 (840 nm) was acquired by utilizing UAV multispectral image, and the crop growth and environmental information were obtained in the field. Six machine learning models, including linear regression, support vector machine, random forest, ridge regression, Lasso regression (least absolute shrinkage and selection operator regression) and Bayesian regression, were employed to establish relationships between the multispectral data acquired during three periods and the determined damage ratio of Chilo suppressalis. It was shown that the support vector machine with two-phase (heading stage and wax ripening stage) data could better reflect the real damage of Chilo suppressalis on early rice, and the predicted result was relatively consistent with the real situation in the field. This study preliminarily proved that the support vector machine with two-phase data obtained by UAV multispectral remote sensing could be used to evaluate the damage degree of Chilo suppressalis on early rice, which could provide theoretical basis and reference for the development of intelligent plant protection.

Key words: Chilo suppressalis, damage ratio, multispectral, modeling

中图分类号: