[1] |
范承啸, 韩俊, 熊志军, 等. 无人机遥感技术现状与应用[J]. 测绘科学, 2009, 34(5): 214-215.
|
|
FAN C X, HAN J, XIONG Z J, et al. Application and status of unmanned aerial vehicle remote sensing technology[J]. Science of Surveying and Mapping, 2009, 34(5): 214-215. (in Chinese with English abstract)
|
[2] |
张宏鸣, 谭紫薇, 韩文霆, 等. 基于无人机遥感的玉米株高提取方法[J]. 农业机械学报, 2019, 50(5): 241-250.
|
|
ZHANG H M, TAN Z W, HAN W T, et al. Extraction method of maize height based on UAV remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 241-250. (in Chinese with English abstract)
|
[3] |
李广, 张立元, 宋朝阳, 等. 小麦倒伏信息无人机多时相遥感提取方法[J]. 农业机械学报, 2019, 50(4): 211-220.
|
|
LI G, ZHANG L Y, SONG C Y, et al. Extraction method of wheat lodging information based on multi-temporal UAV remote sensing data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 211-220. (in Chinese with English abstract)
|
[4] |
NIU Y X, ZHANG L Y, ZHANG H H, et al. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery[J]. Remote Sensing, 2019, 11(11): 1261.
|
[5] |
张玲, 陈新平, 贾良良. 基于无人机可见光遥感的夏玉米氮素营养动态诊断参数研究[J]. 植物营养与肥料学报, 2018, 24(1): 261-269.
|
|
ZHANG L, CHEN X P, JIA L L. Parameter research of using UAV-based visible spectral analysis technology in dynamical diagnosis of nitrogen status of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 261-269. (in Chinese with English abstract)
|
[6] |
高开秀, 高雯晗, 明金, 等. 无人机载多光谱遥感监测冬油菜氮素营养研究[J]. 中国油料作物学报, 2019, 41(2): 232-242.
|
|
GAO K X, GAO W H, MING J, et al. Monitoring of nitrogen nutrition in winter rapeseed using UAV-borne multispectral data[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(2): 232-242. (in Chinese with English abstract)
|
[7] |
ZHANG M N, ZHOU J F, SUDDUTH K A, et al. Estimation of maize yield and effects of variable-rate nitrogen application using UAV-based RGB imagery[J]. Biosystems Engineering, 2020, 189: 24-35.
|
[8] |
田婷, 张青, 张海东, 等. 基于无人机遥感的水稻产量估测[J]. 中国稻米, 2022, 28(1): 67-71.
|
|
TIAN T, ZHANG Q, ZHANG H D, et al. Estimating yield of rice based on remote sensing by unmanned aerial vehicle[J]. China Rice, 2022, 28(1): 67-71. (in Chinese with English abstract)
|
[9] |
闫征远, 范洁茹, 刘伟, 等. 基于田间空气中病菌孢子浓度的小麦白粉病病情估计模型研究[J]. 植物病理学报, 2017, 47(2): 253-261.
|
|
YAN Z Y, FAN J R, LIU W, et al. Models of disease index estimation of wheat powdery mildew based on the concentrations of Blumeria graminis f. sp. tritici conidia in the fields[J]. Acta Phytopathologica Sinica, 2017, 47(2): 253-261. (in Chinese with English abstract)
|
[10] |
严海军, 卓越, 李茂娜, 等. 基于机器学习和无人机多光谱遥感的苜蓿产量预测[J]. 农业工程学报, 2022, 38(11): 64-71.
|
|
YAN H J, ZHUO Y, LI M N, et al. Alfalfa yield prediction using machine learning and UAV multispectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 64-71. (in Chinese with English abstract)
|
[11] |
韩文霆, 张立元, 牛亚晓, 等. 无人机遥感技术在精量灌溉中应用的研究进展[J]. 农业机械学报, 2020, 51(2): 1-14.
|
|
HAN W T, ZHANG L Y, NIU Y X, et al. Review on UAV remote sensing application in precision irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 1-14. (in Chinese with English abstract)
|
[12] |
吴才聪, 胡冰冰, 赵明, 等. 基于无人机影像和半变异函数的玉米螟空间分布预报方法[J]. 农业工程学报, 2017, 33(9): 84-91.
|
|
WU C C, HU B B, ZHAO M, et al. Prediction method for spatial distribution of corn borer based on unmanned aerial vehicle images and semivariance function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 84-91. (in Chinese with English abstract)
|
[13] |
马书英, 郭增长, 王双亭, 等. 板栗树红蜘蛛虫害无人机高光谱遥感监测研究[J]. 农业机械学报, 2021, 52(4): 171-180.
|
|
MA S Y, GUO Z Z, WANG S T, et al. Hyperspectral remote sensing monitoring of Chinese chestnut red mite insect pests in UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 171-180. (in Chinese with English abstract)
|
[14] |
ABDULRIDHA J, BATUMAN O, AMPATZIDIS Y. UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning[J]. Remote Sensing, 2019, 11(11): 1373.
|
[15] |
孙钰, 周焱, 袁明帅, 等. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报, 2018, 34(21): 74-81.
|
|
SUN Y, ZHOU Y, YUAN M S, et al. UAV real-time monitoring for forest pest based on deep learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 74-81. (in Chinese with English abstract)
|
[16] |
BACKOULOU G F, ELLIOTT N C, GILES K, et al. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors[J]. Computers and Electronics in Agriculture, 2011, 78(2): 123-129.
|
[17] |
崔美娜. 基于无人机遥感的棉花螨害动态监测研究[D]. 石河子: 石河子大学, 2019.
|
|
CUI M N. Study on dynamic monitoring of cotton spider mites based on remote sensing of UAV[D]. Shihezi: Shihezi University, 2019. (in Chinese with English abstract)
|
[18] |
钟雪明, 王晔青, 曹梦娇, 等. 耕作制度演变对水稻螟虫发生为害的影响[J]. 中国植保导刊, 2018, 38(6): 30-35.
|
|
ZHONG X M, WANG Y Q, CAO M J, et al. Impact of farming system development on occurring of rice borers[J]. China Plant Protection, 2018, 38(6): 30-35. (in Chinese)
|
[19] |
KASINATHAN T, SINGARAJU D, UYYALA S R. Insect classification and detection in field crops using modern machine learning techniques[J]. Information Processing in Agriculture, 2021, 8(3): 446-457.
|
[20] |
TUDA M, LUNA-MALDONADO A I. Image-based insect species and gender classification by trained supervised machine learning algorithms[J]. Ecological Informatics, 2020, 60: 101135.
|
[21] |
MARKOVIĆ D, VUJIČIĆ D, TANASKOVIĆ S, et al. Prediction of pest insect appearance using sensors and machine learning[J]. Sensors, 2021, 21(14): 4846.
|
[22] |
汪航, 师茁, 王岩, 等. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究: 以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
|
|
WANG H, SHI Z, WANG Y, et al. A method for detecting the damage of Apocheima cinerarius erschoff based on MODIS time series: case studies in Bachu Populus euphratica forest of Xinjiang Province[J]. Remote Sensing Technology and Application, 2018, 33(4): 686-695. (in Chinese with English abstract)
|
[23] |
OLSSON P O, LINDSTRÖM J, EKLUNDH L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI[J]. Remote Sensing of Environment, 2016, 181: 42-53.
|
[24] |
GREENE A D, REAY-JONES F P F, KIRK K R, et al. Spatial associations of key lepidopteran pests with defoliation, NDVI, and plant height in soybean[J]. Environmental Entomology, 2021, 50(6): 1378-1392.
|