浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 591-602.DOI: 10.3969/j.issn.1004-1524.20240223
收稿日期:
2024-03-11
出版日期:
2025-03-25
发布日期:
2025-04-02
作者简介:
任安琪(1998—),女,湖南岳阳人,硕士研究生,研究方向为花卉栽培与繁殖。E-mail:1042359632@qq.com
通讯作者:
* 刘燕,E-mail:liu_yan@bjfu.edu.cn
基金资助:
REN Anqi(), HUANG Yiran, WAN Yingling, LIU Yan(
)
Received:
2024-03-11
Online:
2025-03-25
Published:
2025-04-02
摘要:
为明确生长素对芍药花茎直立性的影响,选取芍药直立品种‘大富贵’‘杨妃出浴’和弯茎品种‘垂头红’‘奇花露霜’为研究对象,使用4个质量浓度生长素(IAA)在芍药生长发育的5个时期进行持续处理,并观测其茎形态和解剖结构的变化。结果表明:IAA处理能使芍药花枝夹角减小,有效改善除‘垂头红’外的花茎直立性;同时,IAA处理在一定程度上降低了‘大富贵’‘杨妃出浴’和‘垂头红’的花茎长,并显著增加‘杨妃出浴’和‘奇花露霜’的花茎粗;总的来看,100 mg·L-1和150 mg·L-1是IAA对芍药花茎直立性进行调控的适宜质量浓度,质量浓度过高会影响花发育。观测茎解剖结构发现,IAA处理使4个芍药品种的维管组织发育提前,促进木质化,使除‘垂头红’外3个芍药品种花茎的维管数量、维管束宽在茎发育前中期增加,而皮层细胞层数、厚度和髓部面积占比减小,不同品种表现略有差异。以上结果表明,IAA处理可以促进芍药品种花茎维管组织的提前发育,促进茎成熟,降低花茎长或增加花茎粗从而增强花茎直立性,‘奇花露霜’可能是比‘垂头红’更具备直立性潜力的品种,这为芍药切花品种的选取和花茎性状的改良提供了参考依据。
中图分类号:
任安琪, 黄依然, 万映伶, 刘燕. 生长素对芍药花茎表型和解剖结构的影响[J]. 浙江农业学报, 2025, 37(3): 591-602.
REN Anqi, HUANG Yiran, WAN Yingling, LIU Yan. Effects of auxin on flower stem phenotype and anatomy of Paeonia lactiflora[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 591-602.
图1 芍药生长发育时期划分 S0,萌芽期;S1,伸长期;S2,展叶期;S3,育蕾期;S4,透色期;S5,花期。
Fig.1 Stages of growth and development of Paeonia lactiflora S0, Germination stage; S1, Elongation stage; S2, Leaf-spreading stage; S3, Bud bearing stage; S4, Color penetration stage; S5, Flowering stage.
图3 不同质量浓度IAA处理下芍药的花枝夹角变化 同一时期柱上无相同小写字母表示不同处理间差异显著(P<0.05)。下同。
Fig.3 Changes in flower stem angle of Paeonia lactiflora under different mass concentrations of IAA treatment The bars marked without the same lowercase letters in the same period indicate significant differences between different treatments(P<0.05). The same as below.
图6 IAA处理下芍药花茎生长发育过程中番红固绿染色变化 Co,皮层;Vb,维管束;Pi,髓。CK,对照组;IAA,IAA处理组。
Fig.6 Changes in saffron-fast green staining during growth and development of Paeonia lactiflora flower stem under IAA treatment Co, Cortex; Vb, Vascular bundle; Pi, Pith. CK, Control group; IAA, IAA treatment group.
时期 Stage | 处理 Treatment | 皮层细胞层数Number of cortex cell layers | 皮层厚度Cortex thickness/μm | ||||||
---|---|---|---|---|---|---|---|---|---|
‘大富贵’ Dafugui | ‘杨妃出浴’ Yangfei Chuyu | ‘垂头红’ Chuitou -hong | ‘奇花露霜’ Qihua Lushuang | ‘大富贵’ Dafugui | ‘杨妃出浴’ Yangfei Chuyu | ‘垂头红’ Chuitou -hong | ‘奇花露霜’ Qihua Lushuang | ||
S1 | CK | 14.04 ±1.51 | 13.75 ±1.14 | 12.00 ±1.23 | 12.82 ±1.83 | 488.02 ±58.59 | 455.48 ±39.88 | 379.63 ±49.13 | 409.87 ±79.66 |
IAA | 11.58 ±1.30* | 12.69 ±1.20* | 10.71 ±0.99* | 11.88 ±1.54* | 380.41 ±53.07* | 451.48 ±53.93 | 350.60 ±63.88 | 372.73 ±61.33 | |
S2 | CK | 12.57 ±1.08 | 12.86 ±0.95 | 10.90 ±1.10 | 11.68 ±1.25 | 452.27 ±66.45 | 439.80 ±30.32 | 269.21 ±33.56 | 393.74 ±46.96 |
IAA | 12.00 ±1.00 | 13.54 ±1.39 | 10.31 ±1.08 | 10.10 ±1.30* | 401.75 ±40.09* | 385.83 ±64.07* | 281.00 ±40.66 | 354.47 ±51.09* | |
S3 | CK | 11.71 ±1.36 | 12.50 ±0.76 | 9.74 ±1.21 | 10.00 ±1.00 | 371.10 ±54.08 | 344.55 ±37.53 | 253.48 ±20.89 | 318.32 ±63.20 |
IAA | 11.00 ±1.78 | 13.44 ±0.88 | 9.53 ±1.07 | 9.42 ±0.96 | 314.61 ±24.17* | 373.84 ±39.70 | 244.51 ±18.94 | 308.28 ±45.26 | |
S4 | CK | 11.58 ±1.08 | 12.14 ±1.35 | 9.75 ±1.06 | 10.53 ±1.71 | 350.28 ±45.40 | 288.72 ±44.79 | 230.97 ±39.63 | 297.04 ±54.92 |
IAA | 11.20 ±1.27 | 12.86 ±1.04 | 10.09 ±1.38 | 9.43 ±1.09 | 332.27 ±50.93 | 283.78 ±33.00 | 235.82 ±38.99 | 264.77 ±42.90 | |
S5 | CK | 11.60 ±1.17 | 12.43 ±0.98 | 10.29 ±0.95 | 10.69 ±1.35 | 294.12 ±42.57 | 293.22 ±41.12 | 230.62 ±42.72 | 251.81 ±36.86 |
IAA | 11.00 ±1.00 | 12.75 ±1.04 | 10.00 ±0.58 | 9.91 ±1.27 | 282.63 ±53.02 | 293.12 ±54.38 | 212.50 ±19.86 | 254.55 ±31.37 |
表1 IAA处理下芍药花茎皮层的特征变化
Table 1 Changes in the cortex characters of Paeonia lactiflora flower stem under IAA treatment
时期 Stage | 处理 Treatment | 皮层细胞层数Number of cortex cell layers | 皮层厚度Cortex thickness/μm | ||||||
---|---|---|---|---|---|---|---|---|---|
‘大富贵’ Dafugui | ‘杨妃出浴’ Yangfei Chuyu | ‘垂头红’ Chuitou -hong | ‘奇花露霜’ Qihua Lushuang | ‘大富贵’ Dafugui | ‘杨妃出浴’ Yangfei Chuyu | ‘垂头红’ Chuitou -hong | ‘奇花露霜’ Qihua Lushuang | ||
S1 | CK | 14.04 ±1.51 | 13.75 ±1.14 | 12.00 ±1.23 | 12.82 ±1.83 | 488.02 ±58.59 | 455.48 ±39.88 | 379.63 ±49.13 | 409.87 ±79.66 |
IAA | 11.58 ±1.30* | 12.69 ±1.20* | 10.71 ±0.99* | 11.88 ±1.54* | 380.41 ±53.07* | 451.48 ±53.93 | 350.60 ±63.88 | 372.73 ±61.33 | |
S2 | CK | 12.57 ±1.08 | 12.86 ±0.95 | 10.90 ±1.10 | 11.68 ±1.25 | 452.27 ±66.45 | 439.80 ±30.32 | 269.21 ±33.56 | 393.74 ±46.96 |
IAA | 12.00 ±1.00 | 13.54 ±1.39 | 10.31 ±1.08 | 10.10 ±1.30* | 401.75 ±40.09* | 385.83 ±64.07* | 281.00 ±40.66 | 354.47 ±51.09* | |
S3 | CK | 11.71 ±1.36 | 12.50 ±0.76 | 9.74 ±1.21 | 10.00 ±1.00 | 371.10 ±54.08 | 344.55 ±37.53 | 253.48 ±20.89 | 318.32 ±63.20 |
IAA | 11.00 ±1.78 | 13.44 ±0.88 | 9.53 ±1.07 | 9.42 ±0.96 | 314.61 ±24.17* | 373.84 ±39.70 | 244.51 ±18.94 | 308.28 ±45.26 | |
S4 | CK | 11.58 ±1.08 | 12.14 ±1.35 | 9.75 ±1.06 | 10.53 ±1.71 | 350.28 ±45.40 | 288.72 ±44.79 | 230.97 ±39.63 | 297.04 ±54.92 |
IAA | 11.20 ±1.27 | 12.86 ±1.04 | 10.09 ±1.38 | 9.43 ±1.09 | 332.27 ±50.93 | 283.78 ±33.00 | 235.82 ±38.99 | 264.77 ±42.90 | |
S5 | CK | 11.60 ±1.17 | 12.43 ±0.98 | 10.29 ±0.95 | 10.69 ±1.35 | 294.12 ±42.57 | 293.22 ±41.12 | 230.62 ±42.72 | 251.81 ±36.86 |
IAA | 11.00 ±1.00 | 12.75 ±1.04 | 10.00 ±0.58 | 9.91 ±1.27 | 282.63 ±53.02 | 293.12 ±54.38 | 212.50 ±19.86 | 254.55 ±31.37 |
时期 Stage | 处理 Treatment | 髓面积占比Pith area proportion/% | |||
---|---|---|---|---|---|
‘大富贵’ Dafugui | ‘杨妃出浴’ Yangfei Chuyu | ‘垂头红’ Chuitouhong | ‘奇花露霜’ Qihua Lushuang | ||
S1 | CK | 0.368±0.013 | 0.358±0.014 | 0.312±0.016 | 0.300±0.030 |
IAA | 0.309±0.010* | 0.320±0.003* | 0.331±0.016 | 0.325±0.011 | |
S2 | CK | 0.224±0.009 | 0.262±0.021 | 0.306±0.021 | 0.241±0.029 |
IAA | 0.221±0.014 | 0.337±0.022* | 0.292±0.019 | 0.185±0.045* | |
S3 | CK | 0.177±0.028 | 0.275±0.032 | 0.169±0.028 | 0.218±0.014 |
IAA | 0.180±0.034 | 0.312±0.029* | 0.155±0.030 | 0.205±0.016 | |
S4 | CK | 0.208±0.042 | 0.290±0.017 | 0.215±0.018 | 0.203±0.024 |
IAA | 0.203±0.017 | 0.389±0.010* | 0.191±0.029 | 0.240± 0.023 | |
S5 | CK | 0.186±0.009 | 0.324±0.011 | 0.219±0.043 | 0.232±0.027 |
IAA | 0.225±0.028 | 0.309±0.015 | 0.232±0.034 | 0.220±0.032 |
表2 IAA处理下芍药花茎髓面积占比变化
Table 2 Changes in the pith area proportion of Paeonia lactiflora flower stem under IAA treatment
时期 Stage | 处理 Treatment | 髓面积占比Pith area proportion/% | |||
---|---|---|---|---|---|
‘大富贵’ Dafugui | ‘杨妃出浴’ Yangfei Chuyu | ‘垂头红’ Chuitouhong | ‘奇花露霜’ Qihua Lushuang | ||
S1 | CK | 0.368±0.013 | 0.358±0.014 | 0.312±0.016 | 0.300±0.030 |
IAA | 0.309±0.010* | 0.320±0.003* | 0.331±0.016 | 0.325±0.011 | |
S2 | CK | 0.224±0.009 | 0.262±0.021 | 0.306±0.021 | 0.241±0.029 |
IAA | 0.221±0.014 | 0.337±0.022* | 0.292±0.019 | 0.185±0.045* | |
S3 | CK | 0.177±0.028 | 0.275±0.032 | 0.169±0.028 | 0.218±0.014 |
IAA | 0.180±0.034 | 0.312±0.029* | 0.155±0.030 | 0.205±0.016 | |
S4 | CK | 0.208±0.042 | 0.290±0.017 | 0.215±0.018 | 0.203±0.024 |
IAA | 0.203±0.017 | 0.389±0.010* | 0.191±0.029 | 0.240± 0.023 | |
S5 | CK | 0.186±0.009 | 0.324±0.011 | 0.219±0.043 | 0.232±0.027 |
IAA | 0.225±0.028 | 0.309±0.015 | 0.232±0.034 | 0.220±0.032 |
时期 Stage | 处理 Treatment | 维管束数量Vascular bundle number | 维管束宽Vascular bundle width/μm | ||||||
---|---|---|---|---|---|---|---|---|---|
‘大富贵’ Dafugui | ‘杨妃出浴’ Yangfei Chuyu | ‘垂头红’ Chuitou- hong | ‘奇花露霜’ Qihua Lushuang | ‘大富贵’ Dafugui | ‘杨妃出浴’ Yangfei Chuyu | ‘垂头红’ Chuitou- hong | ‘奇花露霜’ Qihua Lushuang | ||
S1 | CK | 21.33 ±1.16 | 20.00 ±1.00 | 16.50 ±2.52 | 17.00 ±0.82 | 788.87 ±148.15 | 679.40 ±113.78 | 672.01 ±88.56 | 640.54 ±151.83 |
IAA | 22.33 ±1.16 | 21.67 ±1.16 | 16.50 ±1.29 | 18.00 ±0.82 | 771.61 ±163.84 | 751.83 ±114.69 | 674.48 ±90.95 | 623.45 ±153.60 | |
S2 | CK | 20.75 ±0.50 | 20.33 ±0.58 | 17.80 ±0.84 | 16.75 ±1.71 | 734.09 ±71.78 | 737.42 ±126.76 | 530.34 ±78.94 | 713.22 ±110.84 |
IAA | 21.33 ±0.58 | 26.00 ±2.00* | 19.00 ±1.16 | 18.00 ±0.82 | 786.15 ±103.16* | 763.69 ±121.01 | 578.45 ±108.90 | 733.03 ±131.15 | |
S3 | CK | 19.80 ±1.10 | 21.00 ±0.01 | 17.67 ±1.53 | 14.50 ±0.58 | 807.19 ±72.23 | 628.15 ±117.37 | 543.99 ±73.60 | 773.17 ±172.11 |
IAA | 22.33 ±0.58* | 23.33 ±1.53* | 18.00 ±1.00 | 15.25 ±0.96 | 790.16 ±73.32 | 728.64 ±161.83* | 550.19 ±52.69 | 849.86 ±172.74* | |
S4 | CK | 21.50 ±1.29 | 21.00 ±1.00 | 16.00 ±1.87 | 15.00 ±0.82 | 876.93 ±121.65 | 596.51 ±115.99 | 535.33 ±97.92 | 755.78 ±169.76 |
IAA | 24.33 ±0.58* | 25.33 ±0.58* | 17.20 ±1.30 | 16.00 ±2.16 | 881.02 ±119.76 | 598.41 ±129.65 | 566.20 ±59.22 | 813.06 ±134.04 | |
S5 | CK | 20.80 ±1.48 | 17.00 ±1.73 | 17.50 ±1.29 | 14.75 ±0.50 | 762.31 ±106.33 | 688.12 ±115.38 | 607.91 ±99.91 | 804.23 ±189.94 |
IAA | 20.00 ±1.41 | 19.67 ±0.58* | 17.20 ±0.84 | 15.50 ±1.29 | 752.13 ±98.87 | 708.26 ±104.66 | 604.42 ±101.76 | 795.20 ±144.66 |
表3 IAA处理下芍药花茎维管的特征变化
Table 3 Changes in the vascular characters of Paeonia lactiflora flower stem under IAA treatment
时期 Stage | 处理 Treatment | 维管束数量Vascular bundle number | 维管束宽Vascular bundle width/μm | ||||||
---|---|---|---|---|---|---|---|---|---|
‘大富贵’ Dafugui | ‘杨妃出浴’ Yangfei Chuyu | ‘垂头红’ Chuitou- hong | ‘奇花露霜’ Qihua Lushuang | ‘大富贵’ Dafugui | ‘杨妃出浴’ Yangfei Chuyu | ‘垂头红’ Chuitou- hong | ‘奇花露霜’ Qihua Lushuang | ||
S1 | CK | 21.33 ±1.16 | 20.00 ±1.00 | 16.50 ±2.52 | 17.00 ±0.82 | 788.87 ±148.15 | 679.40 ±113.78 | 672.01 ±88.56 | 640.54 ±151.83 |
IAA | 22.33 ±1.16 | 21.67 ±1.16 | 16.50 ±1.29 | 18.00 ±0.82 | 771.61 ±163.84 | 751.83 ±114.69 | 674.48 ±90.95 | 623.45 ±153.60 | |
S2 | CK | 20.75 ±0.50 | 20.33 ±0.58 | 17.80 ±0.84 | 16.75 ±1.71 | 734.09 ±71.78 | 737.42 ±126.76 | 530.34 ±78.94 | 713.22 ±110.84 |
IAA | 21.33 ±0.58 | 26.00 ±2.00* | 19.00 ±1.16 | 18.00 ±0.82 | 786.15 ±103.16* | 763.69 ±121.01 | 578.45 ±108.90 | 733.03 ±131.15 | |
S3 | CK | 19.80 ±1.10 | 21.00 ±0.01 | 17.67 ±1.53 | 14.50 ±0.58 | 807.19 ±72.23 | 628.15 ±117.37 | 543.99 ±73.60 | 773.17 ±172.11 |
IAA | 22.33 ±0.58* | 23.33 ±1.53* | 18.00 ±1.00 | 15.25 ±0.96 | 790.16 ±73.32 | 728.64 ±161.83* | 550.19 ±52.69 | 849.86 ±172.74* | |
S4 | CK | 21.50 ±1.29 | 21.00 ±1.00 | 16.00 ±1.87 | 15.00 ±0.82 | 876.93 ±121.65 | 596.51 ±115.99 | 535.33 ±97.92 | 755.78 ±169.76 |
IAA | 24.33 ±0.58* | 25.33 ±0.58* | 17.20 ±1.30 | 16.00 ±2.16 | 881.02 ±119.76 | 598.41 ±129.65 | 566.20 ±59.22 | 813.06 ±134.04 | |
S5 | CK | 20.80 ±1.48 | 17.00 ±1.73 | 17.50 ±1.29 | 14.75 ±0.50 | 762.31 ±106.33 | 688.12 ±115.38 | 607.91 ±99.91 | 804.23 ±189.94 |
IAA | 20.00 ±1.41 | 19.67 ±0.58* | 17.20 ±0.84 | 15.50 ±1.29 | 752.13 ±98.87 | 708.26 ±104.66 | 604.42 ±101.76 | 795.20 ±144.66 |
[1] | 万映伶, 刘爱青, 张孔英, 等. 菏泽和洛阳芍药品种资源表型多样性研究[J]. 北京林业大学学报, 2018, 40(3): 110-121. |
WAN Y L, LIU A Q, ZHANG K Y, et al. Phenotype diversity of herbaceous peony variety resources in Heze, Shandong of Eastern China and Luoyang, Henan of Central China[J]. Journal of Beijing Forestry University, 2018, 40(3): 110-121. (in Chinese with English abstract) | |
[2] | 万映伶, 朱梦婷, 刘爱青, 等. 中国观赏芍药表型多样性解析与资源评价[J]. 中国农业科学, 2022, 55(18): 3629-3639. |
WAN Y L, ZHU M T, LIU A Q, et al. Phenotypic diversity analysis of Chinese ornamental herbaceous peonies and its germplasm resource evaluation[J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639. (in Chinese with English abstract) | |
[3] | LI C Z, TAO J, ZHAO D Q, et al. Effect of calcium sprays on mechanical strength and cell wall fractions of herbaceous peony (Paeonia lactiflora Pall.) inflorescence stems[J]. International Journal of Molecular Sciences, 2012, 13(4): 4704-4713. |
[4] | TANG Y H, ZHAO D Q, MENG J S, et al. EGTA reduces the inflorescence stem mechanical strength of herbaceous peony by modifying secondary wall biosynthesis[J]. Horticulture Research, 2019, 6: 36. |
[5] | ZHAO D Q, HAO Z J, TAO J, et al. Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora Pall.)[J]. Scientia Horticulturae, 2013, 151: 165-172. |
[6] | ZHAO D Q, XU C, LUAN Y T, et al. Silicon enhances stem strength by promoting lignin accumulation in herbaceous peony (Paeonia lactiflora Pall.)[J]. International Journal of Biological Macromolecules, 2021, 190: 769-779. |
[7] | ZHANG Y S, WANG Y B, YE D L, et al. Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification[J]. Plant Science, 2020, 290: 110196. |
[8] | 郭人铭. 外源激素处理对矮秆大豆突变体生理生化特性的影响[D]. 哈尔滨: 东北农业大学, 2014. |
GUO R M. Effects of exogenous hormone treatment on physiological and biochemical characteristics of dwarf mutant soybean[D]. Harbin:Northeast Agricultural University, 2014. (in Chinese with English abstract) | |
[9] | 王春鹏. 化控对夏玉米茎秆发育、产量形成及养分积累的影响[D]. 保定: 河北农业大学, 2023. |
WANG C P. Effects of chemical control on stem development, yield formation and nutrient accumulation of summer maize[D]. Baoding: Hebei Agricultural University, 2023. (in Chinese with English abstract) | |
[10] | 韦丁一. 赤霉素在甘蓝型油菜抗倒伏性及杂种优势中的功能分析[D]. 荆州: 长江大学, 2022. |
WEI D Y. Functional analysis of gibberellin in lodging resistance and heterosis in Brassica napus L[D]. Jingzhou: Yangtze University, 2022. (in Chinese with English abstract) | |
[11] | 石文波. 褪黑素对芍药花茎强度的调控作用及其机理初步研究[D]. 扬州: 扬州大学, 2021. |
SHI W B. Preliminary study on the regulation effect of melatonin on Paeonia lactiflora inflorescence stem strength and its mechanism[D]. Yangzhou: Yangzhou University, 2021. (in Chinese with English abstract) | |
[12] | PERROT-RECHENMANN C. Cellular responses to auxin: division versus expansion[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(5): a001446. |
[13] | WANG B, SMITH S M, LI J Y. Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology, 2018, 69: 437-468. |
[14] | 尹昌喜, 汪献芳, 曾汉来, 等. 生长素对植物茎伸长的调控作用[J]. 植物生理学通讯, 2009, 45(5): 503-508. |
YIN C X, WANG X F, ZENG H L, et al. Auxin involved in regulation of stem elongation[J]. Plant Physiology Communications, 2009, 45(5): 503-508. (in Chinese with English abstract) | |
[15] | HARDTKE C S, BERLETH T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development[J]. The EMBO Journal, 1998, 17(5): 1405-1411. |
[16] | ZHONG R, YE Z H. Alteration of auxin polar transport in the Arabidopsis ifl1 mutants[J]. Plant Physiology, 2001, 126(2): 549-563. |
[17] | YUAN H M, ZHAO L J, GUO W D, et al. Exogenous application of phytohormones promotes growth and regulates expression of wood formation-related genes in Populus simonii×P. nigra[J]. International Journal of Molecular Sciences, 2019, 20(3): 792. |
[18] | LI L L, ZHANG Y C, ZHENG T C, et al. Comparative gene expression analysis reveals that multiple mechanisms regulate the weeping trait in Prunus mume[J]. Scientific Reports, 2021, 11(1): 2675. |
[19] | WAN Y L, ZHANG M, HONG A Y, et al. Transcriptome and weighted correlation network analyses provide insights into inflorescence stem straightness in Paeonia lactiflora[J]. Plant Molecular Biology, 2020, 102(3): 239-252. |
[20] | 侯竞涵, 万映伶, 刘爱青, 等. 芍药不同品种发育过程中花茎细胞壁成分变化[J]. 浙江农业学报, 2022, 34(10): 2220-2229. |
HOU J H, WAN Y L, LIU A Q, et al. Content changes of cell wall composition during stem development in different varieties of Paeonia lactiflora[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2220-2229. (in Chinese) | |
[21] | 牛立军. 芍药切花露地及设施生产栽培技术研究[D]. 北京: 北京林业大学, 2010. |
NIU L J. Cut flower production technology of herb peony in openland and greenhouse[D]. Beijing: Beijing Forestry University, 2010. (in Chinese with English abstract) | |
[22] | 李和平. 植物显微技术[M]. 2版. 北京: 科学出版社, 2009. |
[23] | JIANG Z F, LIU D D, WANG T Q, et al. Concentration difference of auxin involved in stem development in soybean[J]. Journal of Integrative Agriculture, 2020, 19(4): 953-964. |
[24] | 马青美, 许莹莹, 赵美爱, 等. 玉米茎秆抗倒伏相关生理生化指标及关键酶基因的表达分析[J]. 植物生理学报, 2019, 55(8): 1123-1132. |
MA Q M, XU Y Y, ZHAO M A, et al. Physiological and biochemical indexes related to lodging resistance of maize stalk and expression analysis of key enzyme genes[J]. Plant Physiology Journal, 2019, 55(8): 1123-1132. (in Chinese with English abstract) | |
[25] | 赵小红, 白羿雄, 姚有华, 等. 禾谷类作物茎秆特性与茎倒伏关系的研究[J]. 植物生理学报, 2021, 57(2): 257-264. |
ZHAO X H, BAI Y X, YAO Y H, et al. Research progress on the relationship between stem characteristics and crop stem lodging[J]. Plant Physiology Journal, 2021, 57(2): 257-264. (in Chinese with English abstract) | |
[26] | 武维华. 植物生理学[M]. 3版. 北京: 科学出版社, 2018. |
[27] | 周宇飞, 闫彤, 张姣, 等. 外源IAA对高粱幼苗内源激素含量及分蘖发生的影响[J]. 生态学杂志, 2017, 36(8): 2191-2197. |
ZHOU Y F, YAN T, ZHANG J, et al. Effects of exogenous IAA application on endogenous hormone contents and tillering in Sorghum[J]. Chinese Journal of Ecology, 2017, 36(8): 2191-2197. (in Chinese with English abstract) | |
[28] | HIRANO K, OKUNO A, HOBO T, et al. Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance[J]. PLoS One, 2014, 9(7): e96009. |
[29] | 周紫晶, 范付华, 尚先文, 等. 外源IAA对马尾松幼苗茎干次生生长的影响[J]. 林业科学, 2021, 57(9): 42-51. |
ZHOU Z J, FAN F H, SHANG X W, et al. Effects of exogenous IAA on stem secondary growth of Pinus massoniana seedlings[J]. Scientia Silvae Sinicae, 2021, 57(9): 42-51. (in Chinese with English abstract) | |
[30] | 李成忠, 孙燕, 赵大球, 等. 芍药花茎生长形态指标与机械强度的关系[J]. 浙江农业学报, 2015, 27(2): 182-188. |
LI C Z, SUN Y, ZHAO D Q, et al. Relationship between mechanical strength and morphological index of inflorescence stem of herbaceous peony (Paeonia lactiflora Pall.)[J]. Acta Agriculturae Zhejiangensis, 2015, 27(2): 182-188. (in Chinese with English abstract) | |
[31] | 赵琳, 刘爱青, 张嘉, 等. 设施栽培芍药茎秆直立性研究[J]. 浙江农业学报, 2015, 27(5): 769-775. |
ZHAO L, LIU A Q, ZHANG J, et al. Study on the stem orthostatic performance of Paeonia lactiflora under facility cultivation[J]. Acta Agriculturae Zhejiangensis, 2015, 27(5): 769-775. (in Chinese with English abstract) | |
[32] | 李晓冰. 生长素、乙烯利对大豆生根及茎伸长的调控作用[D]. 哈尔滨: 东北农业大学, 2018. |
LI X B. Regulation of auxin and ethephon on rooting and stem elongation of soybean[D]. Harbin:Northeast Agricultural University, 2018. (in Chinese with English abstract) | |
[33] | 龚万灼, 杜成章, 龙珏臣, 等. TIBA对不同耐荫性大豆套作苗期生长和倒伏率的影响[J]. 大豆科学, 2019, 38(4): 570-575. |
GONG W Z, DU C Z, LONG J C, et al. Effects of triiodobenzoic acid (TIBA) on growth and lodging rate of different shade-tolerant soybean during vegetative stages under relay intercropping[J]. Soybean Science, 2019, 38(4): 570-575. (in Chinese with English abstract) | |
[34] | 苗永美, 简兴, 钱立生, 等. IAA和GA3对弱光胁迫下甜瓜幼苗生长及光合的影响[J]. 分子植物育种, 2018, 16(7): 2335-2340. |
MIAO Y M, JIAN X, QIAN L S, et al. Effects of IAA and GA3 on melon growth and photosynthesis under low light stress[J]. Molecular Plant Breeding, 2018, 16(7): 2335-2340. (in Chinese with English abstract) | |
[35] | JIN M R, LIU Y L, SHI B S, et al. Exogenous IAA improves the seedling growth of Syringa villosa via regulating the endogenous hormones and enhancing the photosynthesis[J]. Scientia Horticulturae, 2023, 308: 111585. |
[36] | ZHAO D Q, SHI W B, XIA X, et al. Microstructural and lignin characteristics in herbaceous peony cultivars with different stem strengths[J]. Postharvest Biology and Technology, 2020, 159: 111043. |
[37] | BRULÉ V, RAFSANJANI A, PASINI D, et al. Hierarchies of plant stiffness[J]. Plant Science, 2016, 250: 79-96. |
[38] | 田敏, 夏琼梅, 李纪元. 植物的次生生长及其分子调控[J]. 遗传, 2007, 29(11): 1324-1330. |
TIAN M, XIA Q M, LI J Y. The secondary growth in plant and its molecular regulation[J]. Hereditas, 2007, 29(11): 1324-1330. (in Chinese with English abstract) | |
[39] | 杨立伟, 施季森. 不同浓度外源IAA处理对杉木茎部基因表达的影响[J]. 遗传, 2012, 34(4): 94-106. |
YANG L W, SHI J S. Cloning and expression analysis of differentially expressed genes in Chinese fir stems treated by different concentrations of exogenous IAA[J]. Hereditas, 2012, 34(4): 94-106. (in Chinese with English abstract) | |
[40] | YU M, LIU K, LIU S Q, et al. Effect of exogenous IAA on tension wood formation by facilitating polar auxin transport and cellulose biosynthesis in hybrid poplar (Populus deltoids×Populus nigra) wood[J]. Holzforschung, 2017, 71(2): 179-188. |
[1] | 李杏, 刘燕, 高健洲. 三种芍药属植物FLOWERING LOCUS T(FT)同源基因的克隆与表达分析[J]. 浙江农业学报, 2025, 37(1): 90-102. |
[2] | 侯竞涵, 万映伶, 刘爱青, 洪爱英, 刘燕. 芍药不同品种发育过程中花茎细胞壁成分变化[J]. 浙江农业学报, 2022, 34(10): 2220-2229. |
[3] | 石文波, 高天翔, 胡蕴钰, 许聪, 陶俊, 赵大球. 芍药花茎强度与褪黑素含量的关系分析[J]. 浙江农业学报, 2021, 33(4): 632-639. |
[4] | 葛金涛, 王江英, 赵文静, 邵小斌, 朱朋波, 汤雪燕, 孙明伟, 刘兴满. 魏可葡萄气生根发育的转录组分析[J]. 浙江农业学报, 2020, 32(9): 1645-1655. |
[5] | 许娜, 王大海, 杜传印, 杜沙沙, 王晓萌, 张彦, 张玉琴, 吴元华, 管恩森, 石屹. 株距对烟苗生长发育的影响[J]. 浙江农业学报, 2020, 32(8): 1342-1350. |
[6] | 严文一, 谢永东, 仰路希, 陈延, 王海霞, 孙勃, 贺忠群. 两个品种人参菜形态、解剖结构比较与核型分析[J]. 浙江农业学报, 2019, 31(8): 1321-1330. |
[7] | 杨舟, 吕可, 吕珊, 王俊杰, 张荻. 百子莲2个ARF基因与2个Aux/IAA基因的全长克隆与序列分析[J]. 浙江农业学报, 2019, 31(1): 86-97. |
[8] | 薛莞莞, 龚荣高, 丁建林, 李克强, 邹金, 李如龙, 彭宏贵. 赤霉素喷施对红灯甜樱桃果实品质及解剖结构的影响[J]. 浙江农业学报, 2018, 30(6): 978-984. |
[9] | 滕尧, 李安定, 郝自远, 张洪亮, 张丽敏, 蔡国俊. 西番莲解剖结构特征及低温胁迫下叶片结构与抗寒性的关系[J]. 浙江农业学报, 2018, 30(11): 1849-1858. |
[10] | 邓贤兰, 刘鑫, 曹裕松, 管杰. 井冈山山顶矮林优势种云锦杜鹃和猴头杜鹃叶片解剖结构比较[J]. 浙江农业学报, 2017, 29(4): 583-589. |
[11] | 赵琳1,刘爱青2,张嘉1,韩靖1,刘燕1,*. 设施栽培芍药茎秆直立性研究 [J]. 浙江农业学报, 2015, 27(5): 769-. |
[12] | 李成忠1,孙燕1,赵大球2,陶俊2,*. 芍药花茎生长形态指标与机械强度的关系[J]. 浙江农业学报, 2015, 27(2): 182-. |
[13] | 孙晓梅;尚盼盼;赵琳;张嘉;刘燕*;赵志琴. 容器栽培对芍药生长发育、干物质积累及分配的影响[J]. , 2014, 26(3): 0-632637. |
[14] | 袁燕波;王历慧;于晓南*. 芍药休眠芽发育进程内源激素变化研究[J]. , 2014, 26(1): 0-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||