浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 579-590.DOI: 10.3969/j.issn.1004-1524.20240224
张楚妮1(), 徐计东1,2, 高钦1, 单颖1,2, 方维焕1,2, 李肖梁1,2,*(
)
收稿日期:
2024-03-08
出版日期:
2025-03-25
发布日期:
2025-04-02
作者简介:
张楚妮(1999—),女,四川成都人,硕士研究生,研究方向为动物病原学与免疫学。E-mail:22117117@zju.edu.cn
通讯作者:
* 李肖梁,E-mail:xlli@zju.edu.cn
基金资助:
ZHANG Chuni1(), XU Jidong1,2, GAO Qin1, SHAN Ying1,2, FANG Weihuan1,2, LI Xiaoliang1,2,*(
)
Received:
2024-03-08
Online:
2025-03-25
Published:
2025-04-02
摘要:
猪流行性腹泻病毒(porcine epidemic diarrhea virus, PEDV)是一种引起高度接触性急性肠道传染病的冠状病毒,严重威胁生猪产业的健康发展。丁酸作为饲料添加剂,在生猪养殖中广泛应用,其不仅作为能量物质,还参与调控基因表达、抗炎和细胞周期等生命活动,但丁酸在PEDV感染中的作用机制尚不明确。本研究旨在探讨丁酸对PEDV复制的抑制作用及其潜在机制。通过实时荧光定量PCR(qRT-PCR)、免疫印迹和免疫荧光等技术检测丁酸处理对PEDV复制的影响,利用细胞周期相关蛋白表达分析和流式细胞术,研究PEDV感染对细胞周期的影响与丁酸的调控作用。结果表明:丁酸处理显著抑制了PEDV在猪肠道上皮细胞(IPEC-J2细胞)中的复制;PEDV感染可以上调细胞周期相关蛋白Cyclin A2的表达,同时诱导细胞S期(DNA合成期)阻滞帮助自身复制。丁酸通过下调Cyclin A2蛋白表达,缓解PEDV诱导的S期阻滞,从而发挥抗病毒作用。综上所述,丁酸通过调控细胞周期,缓解PEDV感染诱导的细胞周期S期阻滞,进而抑制病毒复制。本研究为丁酸在动物生产中作为抗病毒策略的应用提供了理论依据。
中图分类号:
张楚妮, 徐计东, 高钦, 单颖, 方维焕, 李肖梁. 丁酸抑制猪流行性腹泻病毒体外复制的分子机制[J]. 浙江农业学报, 2025, 37(3): 579-590.
ZHANG Chuni, XU Jidong, GAO Qin, SHAN Ying, FANG Weihuan, LI Xiaoliang. The molecular mechanism of inhibition of butyric acid to inhibit porcine epidemic diarrhea virus replication in vitro[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 579-590.
基因Gene | 正向引物序列Forward primer sequence (5'→3') | 反向引物序列Reverse primer sequence(5'→3') |
---|---|---|
PEDV N | CGGAACAGGACCTCACGCC | ACAATCTCAACTACGCTGGGAAG |
GAPDH | CACTGAGGACCAGGTTGTGTCCTGTGAC | TCCACCACCCTGTTGCTGTAGCCAAATTC |
表1 引物序列
Table 1 The sequences of primers
基因Gene | 正向引物序列Forward primer sequence (5'→3') | 反向引物序列Reverse primer sequence(5'→3') |
---|---|---|
PEDV N | CGGAACAGGACCTCACGCC | ACAATCTCAACTACGCTGGGAAG |
GAPDH | CACTGAGGACCAGGTTGTGTCCTGTGAC | TCCACCACCCTGTTGCTGTAGCCAAATTC |
图1 BA在IPEC-J2细胞中抑制PEDV复制 A,CCK-8法检测细胞活性;B、C,蛋白质免疫印迹法和灰度分析;D,qRT-PCR检测mRNA水平;E,病毒毒价测定;F,免疫荧光实验。数据以3个独立试验的平均值±标准差表示;ns,差异不显著;**,P<0.01;***,P<0.001。“+”代表PEDV感染,“-”代表Mock感染或者不添加丁酸处理。
Fig.1 BA inhibited PEDV replication in IPEC-J2 cells A, CCK-8 assay was used to detect cell activity; B and C, Western blotting and densitometric analysis of PEDV-N/β-actin ratio; D, mRNA levels were detected by qRT-PCR; E, 50% tissue culture infective dose; F, Immunofluorescence analysis. Data were expressed as the mean ±standard deviation of three independent experiments; ns, The difference was not significant; **, P<0.01; ***, P<0.001. The ‘+’ represented PEDV infection, while the ‘-’ represented Mock infection or treatment without adding butyric acid.
图2 BA对细胞周期相关蛋白表达的调节 A、B,用3 mmol·L-1 BA处理PEDV感染的IPEC-J2细胞,之后添加1 μmol·L-1蛋白酶体抑制剂MG132,24 h后收获细胞并提取总蛋白质,用Western blot检测PEDV N蛋白水平和H3K9的乙酰化水平,用qRT-PCR检测PEDV N基因的转录水平。C,用3 mmol·L-1 BA处理PEDV感染的IPEC-J2细胞,24 h后收获细胞并提取总蛋白质,用Western blot检测内质网应激相关蛋白PERK的磷酸化水平。D,用3 mmol·L-1 BA或NaB处理PEDV感染的IPEC-J2细胞,24 h后收获细胞并提取总蛋白质,用Western blot检测细胞周期相关蛋白。“+”代表抑制剂处理/PEDV感染,“-”代表等量DMSO处理/Mock感染。ns,差异不显著;***,P<0.001。
Fig.2 The regulation of cell cycle-related protein expression by BA A and B, PEDV-infected IPEC-J2 cells were treated with 3 mmol·L-1 BA, followed by the addition of 1 μmol·L-1 proteasome inhibitor MG132, after 24 hours, the cells were harvested, and total protein was extracted, Western blot was used to detect the levels of PEDV N protein and H3K9 acetylation, while qRT-PCR was employed to measure the transcriptional level of the PEDV N gene. C, PEDV-infected IPEC-J2 cells were treated with 3 mmol·L-1 BA, after 24 hours, the cells were harvested, and total protein was extracted, Western blot was used to assess the phosphorylation level of the endoplasmic reticulum stress-related protein PERK. D, PEDV-infected IPEC-J2 cells were treated with either 3 mmol·L-1 BA or NaB, after 24 hours, the cells were harvested, and total protein was extracted, Western blot was used to detect cell cycle-related proteins. The ‘+’ represented inhibitor treatment/PEDV infection, while the ‘-’ represented an equivalent amount of DMSO treatment/Mock infection. ns, The difference was not significant; ***, P<0.001.
图3 PEDV感染诱导细胞周期S期阻滞 A,PEDV感染不同时间点细胞周期相关蛋白的表达;B,流式细胞术检测细胞周期;C,流式结果的统计学分析;D,S期抑制剂对PEDV N蛋白表达的影响。“+”代表抑制剂处理/PEDV感染,“-”代表等量DMSO处理/Mock感染。*,P<0.05;**,P<0.01。
Fig.3 PEDV induced cell cycle arrest in S-phase A, Expression of cell cycle-related proteins at different time post-PEDV infection; B, Cell cycle analysis by flow cytometry; C, Statistical analysis of flow cytometry results; D, The impact of S-phase inhibitors on the expression of PEDV N protein. The ‘+’ represented inhibitor treatment/PEDV infection, while the ‘-’ represented an equivalent amount of DMSO treatment/Mock infection. *, P<0.05; **, P<0.01.
图4 BA减缓PEDV诱导的细胞周期S期阻滞 A,BA对细胞周期相关蛋白表达的影响;B,统计学分析;C,流式细胞术检测细胞周期。“+”代表PEDV感染, “-”代表Mock感染或者不添加丁酸处理。
Fig.4 BA mitigated PEDV-induced S-phase arrest of cell cycle A, The effect of BA on the expression of cell cycle-related proteins; B, Statistical analysis; C, Cell cycle was detected by flow cytometry. The ‘+’ represented PEDV infection, while the ‘-’ represented Mock infection or treatment without adding butyric acid.
[1] | GIOTI K, KOTTARIDI C, VOYIATZAKI C, et al. Animal coronaviruses induced apoptosis[J]. Life, 2021, 11(3): 185. |
[2] | YANG K M, JIANG Z Y, ZHENG C T, et al. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88[J]. Journal of Animal Science, 2014, 92(4): 1496-1503. |
[3] | JUNG K, SAIF L J. Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis[J]. Veterinary Journal, 2015, 204(2): 134-143. |
[4] | LEE S, KIM Y, LEE C. Isolation and characterization of a Korean porcine epidemic diarrhea virus strain KNU-141112[J]. Virus Research, 2015, 208: 215-224. |
[5] | WANG X M, NIU B B, YAN H, et al. Genetic properties of endemic Chinese porcine epidemic diarrhea virus strains isolated since 2010[J]. Archives of Virology, 2013, 158(12): 2487-2494. |
[6] | OH C, KIM Y, CHANG K O. Caspase-mediated cleavage of nucleocapsid protein of a protease-independent porcine epidemic diarrhea virus strain[J]. Virus Research, 2020, 285: 198026. |
[7] | WANG H, CHEN X Y, KONG N, et al. TRIM21 inhibits porcine epidemic diarrhea virus proliferation by proteasomal degradation of the nucleocapsid protein[J]. Archives of Virology, 2021, 166(7): 1903-1911. |
[8] | ZHANG Q Z, SHI K C, YOO D. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1[J]. Virology, 2016, 489: 252-268. |
[9] | DING Z, FANG L R, JING H Y, et al. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1[J]. Journal of Virology, 2014, 88(16): 8936-8945. |
[10] | JIAO Y J, KONG N, WANG H, et al. PABPC4 broadly inhibits coronavirus replication by degrading nucleocapsid protein through selective autophagy[J]. Microbiology Spectrum, 2021, 9(2): e0090821. |
[11] | NEUNLIST M, VAN LANDEGHEM L, MAHÉ M M, et al. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease[J]. Nature Reviews Gastroenterology & Hepatology, 2013, 10(2): 90-100. |
[12] | BRANDTZAEG P. The gut as communicator between environment and host: immunological consequences[J]. European Journal of Pharmacology, 2011, 668(Suppl 1): S16-S32. |
[13] | HUANG C, SONG P X, FAN P X, et al. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned Piglets1-3[J]. The Journal of Nutrition, 2015, 145(12): 2774-2780. |
[14] | LIU W H, LA A L T Z, EVANS A, et al. Supplementation with sodium butyrate improves growth and antioxidant function in dairy calves before weaning[J]. Journal of Animal Science and Biotechnology, 2021, 12(1): 2. |
[15] | WANG X K, HE G, PENG Y, et al. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway[J]. Scientific Reports, 2015, 5: 12676. |
[16] | FANG C L, SUN H, WU J, et al. Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets[J]. Journal of Animal Physiology and Animal Nutrition, 2014, 98(4): 680-685. |
[17] | YANG X, ZHUANG J, WU W, et al. Inhibitory effect of sodium butyrate on colorectal cancer cells and construction of the related molecular network[J]. BMC Cancer, 2021, 21(1): 127. |
[18] | YAN H, AJUWON K M. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway[J]. PLoS One, 2017, 12(6): e0179586. |
[19] | CHEN G X, RAN X, LI B, et al. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model[J]. eBioMedicine, 2018, 30: 317-325. |
[20] | APRAIZ A, MITXELENA J, ZUBIAGA A. Studying cell cycle-regulated gene expression by two complementary cell synchronization protocols[J]. Journal of Visualized Experiments, 2017(124): 55745. |
[21] | XU P, ZHOU Z, XIONG M, et al. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway[J]. PLoS Pathogens, 2017, 13(3): e1006266. |
[22] | SU M J, SHI D, XING X X, et al. Coronavirus porcine epidemic diarrhea virus nucleocapsid protein interacts with p53 to induce cell cycle arrest in S-phase and promotes viral replication[J]. Journal of Virology, 2021, 95(16): e0018721. |
[23] | KUMAR A, WU H X, COLLIER-HYAMS L S, et al. The bacterial fermentation product butyrate influences epithelial signaling via reactive oxygen species-mediated changes in cullin-1 neddylation[J]. Journal of Immunology, 2009, 182(1): 538-546. |
[24] | ZHAO Y, HU N M, JIANG Q, et al. Protective effects of sodium butyrate on rotavirus inducing endoplasmic reticulum stress-mediated apoptosis via PERK-eIF2α signaling pathway in IPEC-J2 cells[J]. Journal of Animal Science and Biotechnology, 2021, 12(1): 69. |
[25] | MATTHEWS H K, BERTOLI C, DE BRUIN R A M. Cell cycle control in cancer[J]. Nature Reviews Molecular Cell Biology, 2022, 23(1): 74-88. |
[26] | ZHANG S Y, TISCHER T, BARFORD D. Cyclin A2 degradation during the spindle assembly checkpoint requires multiple binding modes to the APC/C[J]. Nature Communications, 2019, 10(1): 3863. |
[27] | SUI L Y, LI L T, ZHAO Y H, et al. Host cell cycle checkpoint as antiviral target for SARS-CoV-2 revealed by integrative transcriptome and proteome analyses[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 21. |
[28] | SUN W, SUN J, LI M, et al. The effects of dietary sodium butyrate supplementation on the growth performance, carcass traits and intestinal microbiota of growing-finishing pigs[J]. Journal of Applied Microbiology, 2020, 128(6): 1613-1623. |
[29] | LI W X, LAN T Y, DING Q, et al. Effect of low protein diets supplemented with sodium butyrate, medium-chain fatty acids, or n-3 polyunsaturated fatty acids on the growth performance, immune function, and microbiome of weaned piglets[J]. International Journal of Molecular Sciences, 2023, 24(24): 17592. |
[30] | HAAK B W, LITTMANN E R, CHAUBARD J L, et al. Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT[J]. Blood, 2018, 131(26): 2978-2986. |
[31] | POELAERT K C K, VAN CLEEMPUT J, LAVAL K, et al. Beyond gut instinct: metabolic short-chain fatty acids moderate the pathogenesis of alphaherpesviruses[J]. Frontiers in Microbiology, 2019, 10: 723. |
[32] | LI J, RICHARDS E M, HANDBERG E M, et al. Butyrate regulates COVID-19-relevant genes in gut epithelial organoids from normotensive rats[J]. Hypertension, 2021, 77(2): e13-e16. |
[33] | IMAI K, OKAMOTO T, OCHIAI K. Involvement of Sp1 in butyric acid-induced HIV-1 gene expression[J]. Cellular Physiology and Biochemistry, 2015, 37(3): 853-865. |
[34] | CHEN D F, JIN D C, HUANG S M, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota[J]. Cancer Letters, 2020, 469: 456-467. |
[35] | THANGARAJU M, CRESCI G A, LIU K B, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon[J]. Cancer Research, 2009, 69(7): 2826-2832. |
[36] | PATTAYIL L, BALAKRISHNAN-SARASWATHI H T. In vitro evaluation of apoptotic induction of butyric acid derivatives in colorectal carcinoma cells[J]. Anticancer Research, 2019, 39(7): 3795-3801. |
[37] | PANT K, MISHRA A K, PRADHAN S M, et al. Butyrate inhibits HBV replication and HBV-induced hepatoma cell proliferation via modulating SIRT-1/Ac-p53 regulatory axis[J]. Molecular Carcinogenesis, 2019, 58(4): 524-532. |
[38] | GIL-RANEDO J, HERNANDO E, RIOLOBOS L, et al. The mammalian cell cycle regulates parvovirus nuclear capsid assembly[J]. PLoS Pathogens, 2015, 11(6): e1004920. |
[39] | SULLIVAN C S, PIPAS J M. T antigens of Simian virus 40: molecular chaperones for viral replication and tumorigenesis[J]. Microbiology and Molecular Biology Reviews, 2002, 66(2): 179-202. |
[40] | ZHU L, ZHAO W M, LU J, et al. Influenza virus matrix protein M1 interacts with SLD5 to block host cell cycle[J]. Cellular Microbiology, 2019, 21(8): e13038. |
[41] | MASENGA S K, MWEENE B C, LUWAYA E, et al. HIV-host cell interactions[J]. Cells, 2023, 12(10): 1351. |
[42] | DREMEL S E, JIMENEZ A R, TUCKER J M. “Transfer” of power: the intersection of DNA virus infection and tRNA biology[J]. Seminars in Cell & Developmental Biology, 2023, 146: 31-39. |
[43] | XU X G, ZHANG H L, ZHANG Q, et al. Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression[J]. Veterinary Microbiology, 2013, 164(3/4): 212-221. |
[44] | XU X G, ZHANG H L, ZHANG Q, et al. Porcine epidemic diarrhea virus M protein blocks cell cycle progression at S-phase and its subcellular localization in the porcine intestinal epithelial cells[J]. Acta Virologica, 2015, 59(3): 265-275. |
[45] | YANG J W, TIAN G, CHEN D W, et al. 1, 25-Dihydroxyvitamin D3 inhibits porcine epidemic diarrhea virus replication by regulating cell cycle resumption in IPEC-J2 porcine epithelial cells[J]. Microbial Pathogenesis, 2021, 158: 105017. |
[1] | 吴兴凤, 肖英平, 吕文涛, 马灵燕, 陈渠, 温洋, 徐娥. 丁酸梭菌通过调节结肠微生物结构和短链脂肪酸含量影响小鼠肌纤维类型[J]. 浙江农业学报, 2025, 37(3): 568-578. |
[2] | 郑园园, 俞浙萍, 张淑文, 李有贵, 孙鹂, 郑锡良, 戚行江. 杨梅枝条醇提物对A375细胞增殖和凋亡的影响及其分子机制[J]. 浙江农业学报, 2022, 34(5): 974-983. |
[3] | 夏青, 才冬杰, 方静, 王之盛, 邓俊良, 易军, 左之才. β-羟丁酸对牛肺泡巨噬细胞促炎细胞因子释放的影响研究[J]. 浙江农业学报, 2022, 34(2): 293-299. |
[4] | 冯上乐, 李雪男, 陈一格, 刘瑞琦, 白志毅, 李文娟. 三角帆蚌细胞周期蛋白基因筛选及其表达分析[J]. 浙江农业学报, 2021, 33(11): 2041-2050. |
[5] | 郭富城, 金丽, 苏强, 粟雨芯, 李方琳, 陈士恩, 马晓霞. PEDV N蛋白的原核表达纯化及B细胞抗原表位预测分析[J]. 浙江农业学报, 2020, 32(5): 762-769. |
[6] | 德西措姆, 王印, 杨泽晓, 姚学萍, 罗燕, 廖倡宇, 张鹏飞, 江地科, 项明源, 姜瑞姣, 宋勇. 2016—2018年四川地区猪流行性腹泻病毒流行病学调查与ORF3、S1部分基因序列分析[J]. 浙江农业学报, 2019, 31(9): 1423-1428. |
[7] | 刘正奎, 吴瑗, 陈琳, 王磊, 牟泓烨, 祝徐航, 王晓杜. 猪流行性腹泻病毒Nsp5基因的原核表达及生物信息学分析[J]. 浙江农业学报, 2019, 31(4): 532-538. |
[8] | 麻勇棋, 徐伟, 王越珉, 胡松华. 对猪流行性腹泻病毒灭活疫苗的佐剂作用[J]. 浙江农业学报, 2019, 31(1): 56-61. |
[9] | 董波, 安永帅, 戴爱玲, 李晓华, 杨小燕. 闽西地区猪流行性腹泻病毒M基因遗传进化及分子结构特征分析[J]. 浙江农业学报, 2018, 30(6): 939-945. |
[10] | 肖英平, 杨彩梅, 代兵, 李开锋, 陈镜刚, 杨华. 基于高通量测序的丁酸梭菌对肉鸡盲肠菌群结构的影响[J]. 浙江农业学报, 2017, 29(3): 373-379. |
[11] | 吴旺霞, 王一成, 吴润, 袁秀芳, 徐丽华, 李军星, 苏菲. 2011—2016年浙江省猪流行性腹泻病毒S基因与ORF3基因遗传进化分析[J]. 浙江农业学报, 2017, 29(3): 380-388. |
[12] | 徐毓琴1,戴茜茜1,唐慧琴1,谷笑笑1,潘康成1,2,*. 产γ氨基丁酸益生菌的筛选及其生物活性研究[J]. 浙江农业学报, 2016, 28(3): 502-. |
[13] | 刘苏君,段松焕,胡景炎,金俊杰,涂宜强,白宇*. 抗猪流行性腹泻病毒N蛋白单克隆抗体的制备与鉴定[J]. 浙江农业学报, 2015, 27(6): 950-. |
[14] | 贾凤;刘燕;韦强;肖琛闻;季权安;李科;鲍国连;*. 包膜丁酸钠对肉鸭肠道黏膜形态和消化酶活性的影响[J]. , 2014, 26(3): 0-570575. |
[15] | 蒋冬花;李杰;后家衡;徐晓波. 水果表面高产γ-氨基丁酸酵母菌菌株的筛选、鉴定和发酵条件优化[J]. , 2008, 20(6): 0-401. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||