浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 568-578.DOI: 10.3969/j.issn.1004-1524.20240197
吴兴凤1,2(), 肖英平2, 吕文涛2, 马灵燕2, 陈渠2, 温洋2, 徐娥1,*(
)
收稿日期:
2024-02-29
出版日期:
2025-03-25
发布日期:
2025-04-02
作者简介:
吴兴凤(1998—),女,布依族,贵州都匀人,硕士研究生,研究方向为动物营养与饲料科学。E-mail:wxf18826@163.com
通讯作者:
* 徐娥,E-mail:exu@gzu.edu.cn
基金资助:
WU Xingfeng1,2(), XIAO Yingping2, LYU Wentao2, MA Lingyan2, CHEN Qu2, WEN Yang2, XU E1,*(
)
Received:
2024-02-29
Online:
2025-03-25
Published:
2025-04-02
摘要:
为探究丁酸梭菌对小鼠肌纤维类型、结肠微生物结构和短链脂肪酸含量的影响,选取14只C57BL/6J雄性小鼠分为CB组和NC组,每组7只,CB组小鼠连续8周灌胃200 μL丁酸梭菌悬液(108 CFU·mL-1),NC组小鼠则给予等量生理盐水。分别采用实时荧光定量PCR、16S rRNA基因测序和气相色谱法测定小鼠腓肠肌肌纤维类型基因表达、肠道菌群和短链脂肪酸含量的变化。结果显示,NC组和CB组小鼠的肌纤维直径差异不显著,但CB组腓肠肌肌纤维的横截面面积较NC组显著(P<0.05)增加。CB组小鼠腓肠肌MyHC I和MyHC IIa的mRNA水平较NC组显著升高,MyHC IIb的mRNA水平显著降低。相较于NC组,CB组小鼠肠道中拟杆菌门(Bacteroidota)和变形菌门(Proteobacteria)的丰度显著升高,厚壁菌门(Firmicutes)的丰度显著降低;罗氏菌属(Roseburia)、拟杆菌属(Bacteroides)、副拟杆菌属(Parabacteroides)的丰度显著升高。CB组小鼠肠道菌群间的互作关系比NC组更为密切。CB组小鼠肠道菌群的柠檬酸循环、泛酸和辅酶A生物合成、脂肪酸生物合成、脂肪酸代谢等代谢通路较NC组被显著激活。CB组小鼠结肠中的总短链脂肪酸、乙酸和丁酸含量显著高于NC组。综上,丁酸梭菌可能通过调节肠道菌群和短链脂肪酸影响小鼠肌纤维类型相关基因的表达,促使肌纤维类型发生转化。
中图分类号:
吴兴凤, 肖英平, 吕文涛, 马灵燕, 陈渠, 温洋, 徐娥. 丁酸梭菌通过调节结肠微生物结构和短链脂肪酸含量影响小鼠肌纤维类型[J]. 浙江农业学报, 2025, 37(3): 568-578.
WU Xingfeng, XIAO Yingping, LYU Wentao, MA Lingyan, CHEN Qu, WEN Yang, XU E. Clostridium butyricum affects muscle fiber type in mice by modulating colonic microbial structure and short-chain fatty acids content[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 568-578.
基因名Gene name | 正向引物序列Sequence of forward primer | 反向引物序列Sequence of reverse primer |
---|---|---|
MyHC I | 5'-ATATACAGCCCCTGAGACCAG-3' | 5'-GAACCTGGAGCCCCTTATCC-3' |
MyHC IIa | 5'-GAACATGGAGCAGACCGTGA-3' | 5'-GCGCATGACCAAAGGTTTCA-3' |
MyHC IIx | 5'-GAAGTTGCATCCCTAAAGGCAG-3' | 5'-CCCCTGCATTTTGCCAGAAG-3' |
MyHC IIb | 5'-TCACCTACCAGACCGAGGAG-3' | 5'-TCTCCTGTCACCTCTCAACAGA-3' |
GAPDH | 5'-TTCACCACCATGGAGAAGGC-3' | 5'-TGAAGTCGCAGGAGACAACC-3' |
表1 用于实时荧光定量PCR的引物序列
Table 1 Primers sequences used for real-time fluorescent quantitative PCR
基因名Gene name | 正向引物序列Sequence of forward primer | 反向引物序列Sequence of reverse primer |
---|---|---|
MyHC I | 5'-ATATACAGCCCCTGAGACCAG-3' | 5'-GAACCTGGAGCCCCTTATCC-3' |
MyHC IIa | 5'-GAACATGGAGCAGACCGTGA-3' | 5'-GCGCATGACCAAAGGTTTCA-3' |
MyHC IIx | 5'-GAAGTTGCATCCCTAAAGGCAG-3' | 5'-CCCCTGCATTTTGCCAGAAG-3' |
MyHC IIb | 5'-TCACCTACCAGACCGAGGAG-3' | 5'-TCTCCTGTCACCTCTCAACAGA-3' |
GAPDH | 5'-TTCACCACCATGGAGAAGGC-3' | 5'-TGAAGTCGCAGGAGACAACC-3' |
处理 Treatment | 初始体重 Initial body weight/g | 结束体重 Final body weight/g | 腓肠肌质量 Gastrocnemius muscle weight/g | 腓肠肌质量分数 Mass fraction of gastrocnemius muscle/% |
---|---|---|---|---|
NC | 22.01 | 25.25 | 0.36 | 1.42 |
CB | 21.94 | 24.99 | 0.37 | 1.49 |
表2 小鼠体重和腓肠肌质量
Table 2 Body weight and gastrocnemius muscle weight of mice
处理 Treatment | 初始体重 Initial body weight/g | 结束体重 Final body weight/g | 腓肠肌质量 Gastrocnemius muscle weight/g | 腓肠肌质量分数 Mass fraction of gastrocnemius muscle/% |
---|---|---|---|---|
NC | 22.01 | 25.25 | 0.36 | 1.42 |
CB | 21.94 | 24.99 | 0.37 | 1.49 |
图1 小鼠腓肠肌的HE染色切片(A)与肌纤维直径(B)和横截面面积(C) “*”表示差异显著(P<0.05)。下同。
Fig.1 HE staining sections (A), fiber diameter (B) and cross-sectional area (c) of gastrocnemius muscle in mice “*” indicates significant difference at P<0.05. The same as below.
处理 Treatment | ASV数量 ASV number | 香农指数 Shannon index | 辛普森指数 Simpson index | Chao1指数 Chao1 index |
---|---|---|---|---|
NC | 430±20 | 4.29±0.11 | 0.04±0.01 | 431.0±19.7 |
CB | 432±23 | 4.47±0.05 | 0.03±0.01 | 433.3±22.2 |
表3 肠道菌群的α多样性
Table 3 Alpha diversity of intestinal microflora
处理 Treatment | ASV数量 ASV number | 香农指数 Shannon index | 辛普森指数 Simpson index | Chao1指数 Chao1 index |
---|---|---|---|---|
NC | 430±20 | 4.29±0.11 | 0.04±0.01 | 431.0±19.7 |
CB | 432±23 | 4.47±0.05 | 0.03±0.01 | 433.3±22.2 |
图3 小鼠肠道菌群的主坐标分析(A)和结构组成(B) Firmicutes,厚壁菌门;Bacteroidetes,拟杆菌门;Proteobacteria,变形菌门;Deferribacteres,脱铁杆菌门;Cyanobacteria,蓝藻门;Others,其他。Bacteroidales S24-7 group_norank,拟杆菌门S24-7群未分类属;Erysipelotrichaceae_uncultured,丹毒丝菌科未纯培养菌株;Lactobacillus,乳杆菌属;Prevotellaceae UCG-001,普雷沃氏菌科UCG-001;Lachnospiraceae_uncultured,毛螺菌科未纯化菌株;Lachnospiraceae NK4A136 group,毛螺菌科NK4A136群;Erysipelotrichaceae_unclassified,丹毒丝菌科未知分类属;Parabacteroides,副拟杆菌属;Roseburia,罗氏菌属;Bacteroides,拟杆菌属。图4同。
Fig.3 Principal coordinate analysis (A) and structural composition (B) of intestinal microflora in mice
图4 小鼠肠道菌群的线性判别分析(A)、功能预测(B)与网络互作分析(C) Faecalibaculum,肠杆菌属;Turicibacter,苏黎世杆菌属;Coriobacteriaceae UCG_002,红蝽菌科UCG_002;Adlercreutzia,阿德勒克伊茨菌属;Paraprevotella,普雷沃氏菌属;Acetitomaculum,聚乙酸菌属;Rhodospirillaceae_uncultured,红螺菌科未纯培养菌株;Anaerotruncus,厌氧棍状菌属;Clostridiales vadinBB60 group_norank,梭菌目vadinBB60群未知分类;Oscillibacter,颤杆菌克属;Rikenellaceae RC9 gut group,理研菌科RC9群;Streptococcus,链球菌属。网络图中节点的大小与肠道菌群丰度比例呈正相关;菌群间的连接线越多,表示菌群间的联系关系越密切。
Fig.4 Linear discriminant analysis effect size (LEfSe) analysis (A), functional prediction (B) and network interaction analysis (C) of mouse intestinal microflora The size of the nodes in the figure is positively correlated with the proportion of intestinal microflora abundance. The more the connection lines between the microflora, the closer the relationship between the microflora.
处理 Treatment | 乙酸含量 Acetic acid content | 丙酸含量 Propionic acid content | 异丁酸含量 Isobutyric acid content | 丁酸含量 Butyric acid content | 异戊酸含量 Isovaleric acid content | 戊酸含量 Valeric acid content | 总短链脂肪酸含量 Total short chain fatty acids content |
---|---|---|---|---|---|---|---|
NC | 2.23±0.32 | 0.41±0.17 | 0.08±0.07 | 0.62±0.11 | 0.05±0.01 | 0.07±0.01 | 3.47±0.49 |
CB | 3.35±0.35* | 0.56±0.24 | 0.46±0.19 | 1.15±0.14* | 0.11±0.03* | 0.14±0.03* | 5.77±0.60* |
表4 小鼠结肠的短链脂肪酸含量
Table 4 Short chain fatty acids content in colon of mice mg·g-1
处理 Treatment | 乙酸含量 Acetic acid content | 丙酸含量 Propionic acid content | 异丁酸含量 Isobutyric acid content | 丁酸含量 Butyric acid content | 异戊酸含量 Isovaleric acid content | 戊酸含量 Valeric acid content | 总短链脂肪酸含量 Total short chain fatty acids content |
---|---|---|---|---|---|---|---|
NC | 2.23±0.32 | 0.41±0.17 | 0.08±0.07 | 0.62±0.11 | 0.05±0.01 | 0.07±0.01 | 3.47±0.49 |
CB | 3.35±0.35* | 0.56±0.24 | 0.46±0.19 | 1.15±0.14* | 0.11±0.03* | 0.14±0.03* | 5.77±0.60* |
图5 小鼠肠道差异菌属、SCFA含量和肌纤维类型相关基因的关联分析 “*”和“**”分别表示显著(P<0.05)与极显著(P<0.01)相关。
Fig.5 Correlation analysis within intestinal differential microflora, SCFA content and muscle fiber types of mice “*” and “**”indicate significant correlation at P<0.05 and P<0.01 level, respectively.
[1] | KIM G D, YANG H S, JEONG J Y. Intramuscular variations of proteome and muscle fiber type distribution in semimembranosus and semitendinosus muscles associated with pork quality[J]. Food Chemistry, 2018, 244: 143-152. |
[2] | WANG L N, WANG Z, YANG K L, et al. Epigallocatechin gallate reduces slow-twitch muscle fiber formation and mitochondrial biosynthesis in C2C12 cells by repressing AMPK activity and PGC-1α expression[J]. Journal of Agricultural and Food Chemistry, 2016, 64(34): 6517-6523. |
[3] | YAN E F, WANG Y B, HE L J, et al. Effects of dietary L-malic acid supplementation on meat quality, antioxidant capacity and muscle fiber characteristics of finishing pigs[J]. Foods, 2022, 11(21): 3335. |
[4] | ZHOU X H, LIU Y H, ZHANG L Y, et al. Serine-to-glycine ratios in low-protein diets regulate intramuscular fat by affecting lipid metabolism and myofiber type transition in the skeletal muscle of growing-finishing pigs[J]. Animal Nutrition, 2021, 7(2): 384-392. |
[5] | 孙燕勇, 付绍印, 祁云霞, 等. 绵羊骨骼肌生长发育调控基因研究进展[J]. 中国畜牧兽医, 2019, 46(5): 1429-1438. |
SUN Y Y, FU S Y, QI Y X, et al. Research advances on regulation genes of growth and development of skeletal muscle in sheep[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(5): 1429-1438. (in Chinese with English abstract) | |
[6] | LAHIRI S, KIM H, GARCIA-PEREZ I, et al. The gut microbiota influences skeletal muscle mass and function in mice[J]. Science Translational Medicine, 2019, 11(502): eaan5662. |
[7] | RESZKA P, CYGAN-SZCZEGIELNIAK D, JANKOWIAK H, et al. Effects of effective microorganisms on meat quality, microstructure of the Longissimus lumborum muscle, and electrophoretic protein separation in pigs fed on different diets[J]. Animals, 2020, 10(10): 1755. |
[8] | LIU T, BAI Y P, WANG C L, et al. Effects of probiotics supplementation on the intestinal metabolites, muscle fiber properties, and meat quality of sunit lamb[J]. Animals, 2023, 13(4): 762. |
[9] | 白艳苹. 乳酸菌对苏尼特羊线粒体生物发生、肌纤维特性及肉品质的影响[D]. 呼和浩特: 内蒙古农业大学, 2021. |
BAI Y P. Effects of lactic acid bacteria on mitochondrial biogenesis, muscle fiber characteristics and meat quality of Sunit sheep[D]. Hohhot: Inner Mongolia Agricultural University, 2021. (in Chinese with English abstract) | |
[10] | HAN Q, HUANG X G, YAN F Y, et al. The role of gut microbiota in the skeletal muscle development and fat deposition in pigs[J]. Antibiotics, 2022, 11(6): 793. |
[11] | HENAGAN T M, STEFANSKA B, FANG Z D, et al. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning[J]. British Journal of Pharmacology, 2015, 172(11): 2782-2798. |
[12] | WELLMANN K B, BAGGERMAN J O, BURSON W C, et al. Effects of zinc propionate supplementation on growth performance, skeletal muscle fiber, and receptor characteristics in beef steers[J]. Journal of Animal Science, 2020, 98(7): skaa210. |
[13] | CHANG S, CHEN X L, HUANG Z Q, et al. Dietary sodium butyrate supplementation promotes oxidative fiber formation in mice[J]. Animal Biotechnology, 2018, 29(3): 212-215. |
[14] | MA L Y, LYU W T, SONG Y Y, et al. Anti-inflammatory effect of Clostridium butyricum-derived extracellular vesicles in ulcerative colitis: impact on host microRNAs expressions and gut microbiome profiles[J]. Molecular Nutrition & Food Research, 2023, 67(13): e2200884. |
[15] | MA L Y, SHEN Q C, LYU W T, et al. Clostridium butyricum and its derived extracellular vesicles modulate gut homeostasis and ameliorate acute experimental colitis[J]. Microbiology Spectrum, 2022, 10(4): e0136822. |
[16] | ZHANG L, CAO G T, ZENG X F, et al. Effects of Clostridium butyricum on growth performance, immune function, and cecal microflora in broiler chickens challenged with Escherichia coli K88[J]. Poultry Science, 2014, 93(1): 46-53. |
[17] | 吴杨, 黄倩倩, 虞为, 等. 饲料中添加丁酸梭菌对卵形鲳鲹幼鱼生长性能、血清生化指标及肠道菌群和短链脂肪酸含量的影响[J]. 动物营养学报, 2023, 35(9): 5904-5918. |
WU Y, HUANG Q Q, YU W, et al. Effects of dietary supplementation of Clostridium butyricum on growth performance, serum biochemical indexes and intestinal flora and short-chain fatty acid contents of juvenile Trachinotus ovatus[J]. Chinese Journal of Animal Nutrition, 2023, 35(9): 5904-5918. (in Chinese with English abstract) | |
[18] | DOU L, LIU C, CHEN X Y, et al. Supplemental Clostridium butyricum modulates skeletal muscle development and meat quality by shaping the gut microbiota of lambs[J]. Meat Science, 2023, 204: 109235. |
[19] | MA L Y, NI L Y, YANG T Q, et al. Preventive and therapeutic spermidine treatment attenuates acute colitis in mice[J]. Journal of Agricultural and Food Chemistry, 2021, 69(6): 1864-1876. |
[20] | MA L Y, TAO S Y, SONG T X, et al. Clostridium butyricum and carbohydrate active enzymes contribute to the reduced fat deposition in pigs[J]. iMeta, 2024, 3(1): e160. |
[21] | XIAO Y P, LI K F, XIANG Y, et al. The fecal microbiota composition of boar Duroc, Yorkshire, Landrace and Hampshire pigs[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(10): 1456-1463. |
[22] | LEE K, KIM J, PARK S D, et al. Lactobacillus plantarum HY7715 ameliorates sarcopenia by improving skeletal muscle mass and function in aged balb/c mice[J]. International Journal of Molecular Sciences, 2021, 22(18): 10023. |
[23] | CHENG Y F, CHEN Y P, LI X H, et al. Effects of synbiotic supplementation on growth performance, carcass characteristics, meat quality and muscular antioxidant capacity and mineral contents in broilers[J]. Journal of the Science of Food and Agriculture, 2017, 97(11): 3699-3705. |
[24] | VALDES A M, WALTER J, SEGAL E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018, 361: k2179. |
[25] | LIU Z Z, JIANG Z Y, ZHANG Z T, et al. Bacillus coagulans in combination with chitooligosaccharides regulates gut microbiota and ameliorates the DSS-induced colitis in mice[J]. Microbiology Spectrum, 2022, 10(4): e0064122. |
[26] | ZHANG Y, MA C, ZHAO J, et al. Lactobacillus casei Zhang and vitamin K2 prevent intestinal tumorigenesis in mice via adiponectin-elevated different signaling pathways[J]. Oncotarget, 2017, 8(15): 24719-24727. |
[27] | ZHANG X Y, PAN Z, WANG Y X, et al. Taraxacum officinale-derived exosome-like nanovesicles modulate gut metabolites to prevent intermittent hypoxia-induced hypertension[J]. Biomedicine & Pharmacotherapy, 2023, 161: 114572. |
[28] | LOUIS P, YOUNG P, HOLTROP G, et al. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene[J]. Environmental Microbiology, 2010, 12(2): 304-314. |
[29] | LOUIS P, FLINT H J. Formation of propionate and butyrate by the human colonic microbiota[J]. Environmental Microbiology, 2017, 19(1): 29-41. |
[30] | LOUIS P, DUNCAN S H, MCCRAE S I, et al. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon[J]. Journal of Bacteriology, 2004, 186(7): 2099-2106. |
[31] | LI H F, JIA Y X, WENG D, et al. Clostridium butyricum inhibits fat deposition via increasing the frequency of adipose tissue-resident regulatory T cells[J]. Molecular Nutrition & Food Research, 2022, 66(12): e2100884. |
[32] | 戴颖. 乳酸菌干预对大鼠营养物质代谢及消化吸收的影响[D]. 扬州: 扬州大学, 2017. |
DAI Y. Effects of lactic acid bacteria intervention on nutrient metabolism and digestion and absorption in rats[D]. Yangzhou: Yangzhou University, 2017. (in Chinese with English abstract) | |
[33] | 胡晓冰, 林标声, 王振伟, 等. 1株利用乳酸的猪源丁酸梭菌的分离鉴定及基因组序列分析[J]. 中国畜牧兽医, 2022, 49(2): 569-578. |
HU X B, LIN B S, WANG Z W, et al. Isolation, identification and genomic sequence analysis of a strain of Clostridium butyricum from pigs utilizing lactic acid[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(2): 569-578. (in Chinese with English abstract) | |
[34] | PICCA A, PONZIANI F R, CALVANI R, et al. Gut microbial, inflammatory and metabolic signatures in older people with physical frailty and sarcopenia: results from the BIOSPHERE study[J]. Nutrients, 2019, 12(1): 65. |
[35] | BINDELS L B, BECK R, SCHAKMAN O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J]. PLoS One, 2012, 7(6): e37971. |
[36] | NICHOLSON J K, HOLMES E, KINROSS J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086): 1262-1267. |
[37] | YAMAMOTO K, ISHIZU Y, HONDA T, et al. Patients with low muscle mass have characteristic microbiome with low potential for amino acid synthesis in chronic liver disease[J]. Scientific Reports, 2022, 12(1): 3674. |
[1] | 齐天鹏, 刘莉, 夏美文, 吕孙建, 徐海圣. 乳酸菌和噬菌体对中华鳖生理生化与肠道菌群的影响[J]. 浙江农业学报, 2025, 37(1): 39-48. |
[2] | 张妮, 陶文扬, 罗梦帆, 周万怡, 郑晓杰, 李彦坡, 金火喜, 杨颖. 酶解辅助提取对铁皮石斛多糖结构和菌群调节功能的影响[J]. 浙江农业学报, 2024, 36(9): 2099-2109. |
[3] | 张红芳, 钱涛, 金婷, 谢小玲, 吴酬飞, 肖英平, 马灵燕. 草鱼肠道微生物谱及其发育性变化[J]. 浙江农业学报, 2024, 36(4): 780-789. |
[4] | 温婉宁, 王晨, 胡连花, 房志家, 邓旗, 孙力军. 海蛾水提取物对小鼠系统低度炎症的干预作用[J]. 浙江农业学报, 2024, 36(12): 2784-2793. |
[5] | 吕国英, 王梦雨, 张作法. 猴头菇多糖对小鼠肠道菌群的影响[J]. 浙江农业学报, 2024, 36(12): 2794-2802. |
[6] | 吴兴凤, 章啸君, 朱江, 余敏洁, 徐娥, 马灵燕, 肖英平. 腹泻仔猪肠道菌群结构特征及肠道炎症因子、腺苷酸环化酶和鸟苷酸环化酶mRNA表达变化研究[J]. 浙江农业学报, 2024, 36(11): 2465-2475. |
[7] | 陈诗雨, 徐美余, 邓征宇, 王峰, 张麒麟, 邓先余, 林连兵. 志贺氏菌噬菌体ΦDS8对患病肉鸡的治疗及其肠道菌群的影响[J]. 浙江农业学报, 2022, 34(7): 1386-1395. |
[8] | 林雨晴, 陆胜民, 周万怡, 邢建荣, 杨颖. 铁皮石斛叶多糖结构及其益生性质初探[J]. 浙江农业学报, 2022, 34(11): 2504-2511. |
[9] | 肖英平, 杨彩梅, 代兵, 李开锋, 陈镜刚, 杨华. 基于高通量测序的丁酸梭菌对肉鸡盲肠菌群结构的影响[J]. 浙江农业学报, 2017, 29(3): 373-379. |
[10] | 刘红露,范磊,戴茜茜, 张飞燕,潘康成*. 面包酵母硒与酪酸梭菌制剂对肉鸡生长、抗氧化和肠道菌群的影响[J]. 浙江农业学报, 2015, 27(9): 1529-. |
[11] | 朱凝瑜,贝亦江,郑天伦,孔蕾,陈健舜. 中华鳖肠道及其养殖水体菌群比较 [J]. 浙江农业学报, 2014, 26(5): 1176-. |
[12] | 李春慧;孟晓琴;刘博涛;陈国顺;吴润;蒲万霞;*. 活化卵白蛋白对断奶仔猪结肠内SCFA的影响[J]. , 2014, 26(2): 0-297302. |
[13] | 杨会玲;柳永;许少春;李艳丽;许尧兴;* . PCRDGGE技术分析合生素对肉仔鸡盲肠菌群结构的影响[J]. , 2012, 24(1): 0-31. |
[14] | 蔡丽萍;徐海圣*;何琳;舒妙安. PCR-DGGE技术分析不同地区野生锯缘青蟹肠道菌群多样性[J]. , 2011, 23(2): 0-282. |
[15] | 陈晓明;李肖梁;汤丽萍;尹兆正;余东游;方维焕. 中草药渣对断奶仔猪生长、肠道菌群和免疫的影响[J]. , 2007, 19(1): 0-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||