[1] |
REN Y L, GENG Y, DU Y, et al. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota[J]. The Journal of Nutritional Biochemistry, 2018, 57:67-76.
|
[2] |
LUO J M, ZHANG C, LIU R, et al. Ganoderma lucidum polysaccharide alleviating colorectal cancer by alteration of special gut bacteria and regulation of gene expression of colonic epithelial cells[J]. Journal of Functional Foods, 2018, 47:127-135.
|
[3] |
SANG T T, GUO C J, GUO D D, et al. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation[J]. Carbohydrate Polymers, 2021, 256:117594.
|
[4] |
CHEN Y Q, LIU D, WANG D Y, et al. Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice[J]. Food and Chemical Toxicology, 2019, 126:295-302.
|
[5] |
YANG M Y, BELWAL T, DEVKOTA H P, et al. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine:a comprehensive review[J]. Trends in Food Science & Technology, 2019, 92:94-110.
|
[6] |
YIN C M, NORATTO G D, FAN X Z, et al. The impact of mushroom polysaccharides on gut microbiota and its beneficial effects to host:a review[J]. Carbohydrate Polymers, 2020, 250:116942.
|
[7] |
KHAN I, HUANG G X, LI X A, et al. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions[J]. Journal of Functional Foods, 2018, 41:191-201.
|
[8] |
YING M X, YU Q, ZHENG B, et al. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice[J]. Carbohydrate Polymers, 2020, 235:115957.
|
[9] |
PAN Y Y, WAN X Z, ZENG F, et al. Regulatory effect of Grifola frondosa extract rich in polysaccharides and organic acids on glycolipid metabolism and gut microbiota in rats[J]. International Journal of Biological Macromolecules, 2020, 155:1030-1039.
|
[10] |
KAWAGISHI H. Chemical studies on bioactive compounds related to higher fungi[J]. Bioscience, Biotechnology, and Biochemistry, 2021, 85(1):1-7.
|
[11] |
HE X R, WANG X X, FANG J C, et al. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus(lion’s mane) mushroom:a review[J]. International Journal of Biological Macromolecules, 2017, 97:228-237.
|
[12] |
雍康, 罗正中, 骆巧, 等. 基于16S rDNA扩增子测序技术揭示真胃左方变位对奶牛粪便微生物的影响[J]. 微生物学报, 2021, 61(3):750-763.
|
|
YONG K, LUO Z Z, LUO Q, et al. Revealing the impact of left displacement of the abomasum on fecal microbes of dairy cows by 16S rDNA amplicon sequencing technology[J]. Acta Microbiologica Sinica, 2021, 61(3):750-763. (in Chinese with English abstract)
|
[13] |
LIU X P, REN Z, YU R H, et al. Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity[J]. International Journal of Biological Macromolecules, 2021, 166:1396-1408.
|
[14] |
YAN J K, DING Z C, GAO X L, et al. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions[J]. Carbohydrate Polymers, 2018, 193:373-382.
|
[15] |
刘昭曦, 王禄山, 陈敏. 肠道菌群多糖利用及代谢[J]. 微生物学报, 2021, 61(7):1816-1828.
|
|
LIU Z X, WANG L S, CHEN M. Glycan utilization and metabolism by gut microbiota[J]. Acta Microbiologica Sinica, 2021, 61(7):1816-1828. (in Chinese with English abstract)
|
[16] |
朱佳敏, 武艺, 赵琳静, 等. 猴头菇多糖结构及调节肠道菌群作用研究进展[J]. 食品与发酵工业, 2023, 49(14):311-320.
|
|
ZHU J M, WU Y, ZHAO L J, et al. Structures and effects of Hericium erinaceus polysaccharide on regulating gut microbiota:a review[J]. Food and Fermentation Industries, 2023, 49(14):311-320. (in Chinese with English abstract)
|
[17] |
SHAO S, WANG D D, ZHENG W, et al. A unique polysaccharide from Hericium erinaceus mycelium ameliorates acetic acid-induced ulcerative colitis rats by modulating the composition of the gut microbiota, short chain fatty acids levels and GPR41/43 respectors[J]. International Immunopharmacology, 2019, 71:411-422.
|
[18] |
ZHAO C, SUN C, YUAN J, et al. Hericium caput-medusae (Bull.:FR.) Pers. fermentation concentrate polysaccharides improves intestinal bacteria by activating chloride channels and mucus secretion[J]. Journal of Ethnopharmacology, 2023, 300:115721.
|
[19] |
王海松, 任鹏飞. 不同单糖组成的低聚糖对人肠道菌群的调节作用[J]. 中国食品学报, 2020, 20(7):44-52.
|
|
WANG H S, REN P F. Modulation of oligosaccharides with different monosaccharide composition on the human gut microbiota[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(7):44-52. (in Chinese with English abstract)
|
[20] |
WRIGHT R S, ANDERSON J W, BRIDGES S R. Propionate inhibits hepatocyte lipid synthesis[J]. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine, 1990, 195(1):26-29.
|
[21] |
TRAN N T, LI Z Z, WANG S Q, et al. Progress and perspectives of short-chain fatty acids in aquaculture[J]. Reviews in Aquaculture, 2020, 12(1):283-298.
|
[22] |
CANFORA E E, JOCKEN J W, BLAAK E E. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nature Reviews Endocrinology, 2015, 11(10):577-591.
|
[23] |
FAN P X, LI L S, REZAEI A, et al. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut[J]. Current Protein & Peptide Science, 2015, 16(7):646-654.
|
[24] |
YAO C K, MUIR J G, GIBSON P R. Review article:insights into colonic protein fermentation, its modulation and potential health implications[J]. Alimentary Pharmacology & Therapeutics, 2016, 43(2):181-196.
|
[25] |
ZHAO L P, ZHANG F, DING X Y, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380):1151-1156.
|