浙江农业学报 ›› 2024, Vol. 36 ›› Issue (12): 2803-2811.DOI: 10.3969/j.issn.1004-1524.20231177
卢昕博1(), 袁颖2, 王骏1, 汪华文1, 夏骏1, 吴丹2, 田金虎2, 叶兴乾2, 尹洁1, 蒋健1,*(
)
收稿日期:
2023-10-08
出版日期:
2024-12-25
发布日期:
2024-12-27
作者简介:
卢昕博(1981—),女,吉林通化人,博士,高级工程师,研究方向为新型烟草研发。E-mail:luxb@zjtobacco.com
通讯作者:
*蒋健,E-mail:jiangj@zjtobacco.com
基金资助:
LU Xinbo1(), YUAN Ying2, WANG Jun1, WANG Huawen1, XIA Jun1, WU Dan2, TIAN Jinhu2, YE Xingqian2, YIN Jie1, JIANG Jian1,*(
)
Received:
2023-10-08
Online:
2024-12-25
Published:
2024-12-27
摘要:
为探究不同挤压处理条件对加热卷烟用烤烟烟叶化学组分和主要香气成分的影响,以下部烤烟叶为原材料,采用连续流动分析法、高效液相色谱法、气相色谱-离子迁移谱(GC-IMS)等方法,分析不同挤压处理条件下烤烟烟叶化学组分和主要香气成分的差异。结果表明: 不同温度挤压处理显著(P<0.05)影响烤烟烟叶的水溶性糖、还原糖、总氮等常规化学组分的含量。140 ℃挤压处理后的烤烟烟叶的总酚含量[(116.30±1.24) mg·g-1]较烤烟原叶[(109.25±0.93) mg·g-1]显著增加。不同挤压处理组的烤烟烟叶与烤烟原叶的风味物质含量存在差异,特别是140 ℃、160 ℃挤压处理下烟叶的苯乙酸乙酯、2-糠醛等组分的含量升高,而异丁酸、异戊醇等的含量降低,这些变化增强了烤烟中的焦糖味甜香,可起到丰满烟气风味的作用。
中图分类号:
卢昕博, 袁颖, 王骏, 汪华文, 夏骏, 吴丹, 田金虎, 叶兴乾, 尹洁, 蒋健. 挤压处理对加热卷烟用烤烟烟叶化学组分和香气的影响[J]. 浙江农业学报, 2024, 36(12): 2803-2811.
LU Xinbo, YUAN Ying, WANG Jun, WANG Huawen, XIA Jun, WU Dan, TIAN Jinhu, YE Xingqian, YIN Jie, JIANG Jian. Effect of extrusion treatment on chemical composition and aroma of flue-cured tobacco leaves for heat-not-burn cigarettes[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2803-2811.
处理 Treatment | 温度Temperature/℃ | 模头压力 Die pressure/ MPa | 模头转速 Die speed/ (r·min-1) | |||||
---|---|---|---|---|---|---|---|---|
料筒1区 Barrel zone 1 | 料筒2区 Barrel zone 2 | 料筒3区 Barrel zone 3 | 料筒4区 Barrel zone 4 | 过渡1区 Transition Zone 1 | 模头1区 Diezone 1 | |||
P80 | 60 | 60 | 70 | 70 | 80 | 80 | 1.3 | 80 |
P100 | 80 | 80 | 90 | 90 | 100 | 100 | 1.2 | 80 |
P120 | 100 | 100 | 110 | 110 | 120 | 120 | 0.6 | 80 |
P140 | 120 | 120 | 130 | 130 | 140 | 140 | 0.4 | 80 |
P160 | 80 | 80 | 100 | 120 | 160 | 160 | 0.6 | 80 |
表1 挤压处理的参数设置
Table 1 Parameter settings of extrusion processing for treatments
处理 Treatment | 温度Temperature/℃ | 模头压力 Die pressure/ MPa | 模头转速 Die speed/ (r·min-1) | |||||
---|---|---|---|---|---|---|---|---|
料筒1区 Barrel zone 1 | 料筒2区 Barrel zone 2 | 料筒3区 Barrel zone 3 | 料筒4区 Barrel zone 4 | 过渡1区 Transition Zone 1 | 模头1区 Diezone 1 | |||
P80 | 60 | 60 | 70 | 70 | 80 | 80 | 1.3 | 80 |
P100 | 80 | 80 | 90 | 90 | 100 | 100 | 1.2 | 80 |
P120 | 100 | 100 | 110 | 110 | 120 | 120 | 0.6 | 80 |
P140 | 120 | 120 | 130 | 130 | 140 | 140 | 0.4 | 80 |
P160 | 80 | 80 | 100 | 120 | 160 | 160 | 0.6 | 80 |
处理 Treatment | 水溶性糖 含量 Water-soluble sugar content/% | 总植物碱 含量 Total plant alkaloids content/% | 还原糖 含量 Reducing sugar content/% | 氯含量 Chlorine content/% | 钾含量 Potassium content/% | 总氮含量 Total nitrogen content/% | 水溶性糖与总 植物碱的比值 Ratio of water- soluble sugar to total plant alkaloids | 还原糖与水溶性 糖的比值 Ratio of reducing sugar to water- soluble sugar | 总氮与总植物 碱的比值 Ratio of total nitrogen to total plant alkaloids |
---|---|---|---|---|---|---|---|---|---|
CK | 25.48± 0.19 a | 2.48± 0.01 c | 23.05± 0.03 a | 0.44± 0.01 a | 1.55± 0.02 a | 1.89± 0.01 b | 9.30± 0.01 a | 0.90± 0.01 a | 0.76± 0.01 d |
P80 | 22.65± 0.04 d | 2.47± 0.01 c | 19.84± 0.03 d | 0.43± 0.01 a | 1.56± 0.01 a | 2.01± 0.01 a | 8.04± 0.01 d | 0.88± 0.01 b | 0.81± 0.01 ab |
P100 | 23.15± 0.03 c | 2.48± 0.01 c | 20.46± 0.06 c | 0.44± 0.01 a | 1.56± 0.01 a | 2.04± 0.01 a | 8.26± 0.05 c | 0.88± 0.01 b | 0.83± 0.01 a |
P120 | 23.74± 0.13 b | 2.51± 0.02 b | 21.00± 0.02 b | 0.43± 0.01 a | 1.56± 0.01 a | 2.01± 0.02 a | 8.38± 0.04 b | 0.88± 0.01 b | 0.80± 0.01 bc |
P140 | 18.03± 0.03 f | 2.55± 0.01 a | 15.33± 0.05 f | 0.44± 0.01 a | 1.58± 0.01 a | 2.03± 0.01 a | 6.01± 0.03 f | 0.85± 0.01 d | 0.79± 0.01 c |
P160 | 21.17± 0.12 e | 2.48± 0.02 c | 18.30± 0.24 e | 0.44± 0.01 a | 1.56± 0.02 a | 2.02± 0.01 a | 7.38± 0.04 e | 0.86± 0.01 c | 0.81± 0.01 ab |
表2 不同处理对烟叶常规化学成分含量的影响
Table 2 Effects of treatments on contents of conventional chemical components in flue-cured tobacco
处理 Treatment | 水溶性糖 含量 Water-soluble sugar content/% | 总植物碱 含量 Total plant alkaloids content/% | 还原糖 含量 Reducing sugar content/% | 氯含量 Chlorine content/% | 钾含量 Potassium content/% | 总氮含量 Total nitrogen content/% | 水溶性糖与总 植物碱的比值 Ratio of water- soluble sugar to total plant alkaloids | 还原糖与水溶性 糖的比值 Ratio of reducing sugar to water- soluble sugar | 总氮与总植物 碱的比值 Ratio of total nitrogen to total plant alkaloids |
---|---|---|---|---|---|---|---|---|---|
CK | 25.48± 0.19 a | 2.48± 0.01 c | 23.05± 0.03 a | 0.44± 0.01 a | 1.55± 0.02 a | 1.89± 0.01 b | 9.30± 0.01 a | 0.90± 0.01 a | 0.76± 0.01 d |
P80 | 22.65± 0.04 d | 2.47± 0.01 c | 19.84± 0.03 d | 0.43± 0.01 a | 1.56± 0.01 a | 2.01± 0.01 a | 8.04± 0.01 d | 0.88± 0.01 b | 0.81± 0.01 ab |
P100 | 23.15± 0.03 c | 2.48± 0.01 c | 20.46± 0.06 c | 0.44± 0.01 a | 1.56± 0.01 a | 2.04± 0.01 a | 8.26± 0.05 c | 0.88± 0.01 b | 0.83± 0.01 a |
P120 | 23.74± 0.13 b | 2.51± 0.02 b | 21.00± 0.02 b | 0.43± 0.01 a | 1.56± 0.01 a | 2.01± 0.02 a | 8.38± 0.04 b | 0.88± 0.01 b | 0.80± 0.01 bc |
P140 | 18.03± 0.03 f | 2.55± 0.01 a | 15.33± 0.05 f | 0.44± 0.01 a | 1.58± 0.01 a | 2.03± 0.01 a | 6.01± 0.03 f | 0.85± 0.01 d | 0.79± 0.01 c |
P160 | 21.17± 0.12 e | 2.48± 0.02 c | 18.30± 0.24 e | 0.44± 0.01 a | 1.56± 0.02 a | 2.02± 0.01 a | 7.38± 0.04 e | 0.86± 0.01 c | 0.81± 0.01 ab |
图1 不同处理烟叶的石油醚提取物和挥发碱含量 柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.1 Contents of petroleum ether extract and volatile bases in flue-cured tobacco under treatments Bars marked without the same letters indicate signfiicant difference at P<0.05. The same as below.
处理 Treatment | 总酚含量 Total phenols content | 新绿原酸含量 Neochlorogenic acid content | 绿原酸含量 Chlorogenic acid content | 隐绿原酸含量 Cryptochlorogenic acid content | 莨菪亭含量 Scopoletin content | 芸香苷含量 Rutin content |
---|---|---|---|---|---|---|
CK | 109.25±0.93 b | 6.34±0.01 a | 16.93±0.10 a | 9.64±0.04 a | 0.48±0.01 a | 4.62±0.02 a |
P80 | 104.70±6.18 b | 6.19±0.01 e | 16.42±0.01 d | 9.48±0.02 c | 0.47±0.01 ab | 3.94±0.02 d |
P100 | 105.64±1.35 b | 6.26±0.01 c | 16.59±0.02 c | 9.56±0.03 b | 0.48±0.01 a | 4.03±0.02 b |
P120 | 105.19±1.49 b | 6.22±0.01 d | 16.59±0.01 c | 9.48±0.03 c | 0.47±0.01 ab | 3.99±0.01 c |
P140 | 116.30±1.24 a | 6.33±0.01 ab | 16.14±0.01 e | 9.63±0.03 a | 0.46±0.01 b | 3.02±0.02 f |
P160 | 107.28±2.82 b | 6.32±0.01 b | 16.71±0.01 b | 9.62±0.03 a | 0.47±0.01 ab | 3.74±0.02 e |
表3 不同处理对烟叶总酚及酚类物质含量的影响
Table 3 Effects of treatments on total phenols and phenolic substances in flue-cured tobacco mg·g-1
处理 Treatment | 总酚含量 Total phenols content | 新绿原酸含量 Neochlorogenic acid content | 绿原酸含量 Chlorogenic acid content | 隐绿原酸含量 Cryptochlorogenic acid content | 莨菪亭含量 Scopoletin content | 芸香苷含量 Rutin content |
---|---|---|---|---|---|---|
CK | 109.25±0.93 b | 6.34±0.01 a | 16.93±0.10 a | 9.64±0.04 a | 0.48±0.01 a | 4.62±0.02 a |
P80 | 104.70±6.18 b | 6.19±0.01 e | 16.42±0.01 d | 9.48±0.02 c | 0.47±0.01 ab | 3.94±0.02 d |
P100 | 105.64±1.35 b | 6.26±0.01 c | 16.59±0.02 c | 9.56±0.03 b | 0.48±0.01 a | 4.03±0.02 b |
P120 | 105.19±1.49 b | 6.22±0.01 d | 16.59±0.01 c | 9.48±0.03 c | 0.47±0.01 ab | 3.99±0.01 c |
P140 | 116.30±1.24 a | 6.33±0.01 ab | 16.14±0.01 e | 9.63±0.03 a | 0.46±0.01 b | 3.02±0.02 f |
P160 | 107.28±2.82 b | 6.32±0.01 b | 16.71±0.01 b | 9.62±0.03 a | 0.47±0.01 ab | 3.74±0.02 e |
图2 不同处理的气相色谱-离子迁移谱(GC-IMS)差异谱图(a)和指纹图谱(b) 1,苯乙酸乙酯;2,异丁酸二聚体;3,异丁酸单聚体;4,2-羟苯甲醛;5,1-丁酸单聚体;6,1-丁酸二聚体;7,γ-丁内酯二聚体;8,γ-丁内酯单聚体;9,反式-2-癸烯醛;10,未知-1;11,未知-2;12,未知-3;13,丙二醇二聚体;14,丙二醇单聚体;15,2-糠醛;16,(E, E)-2, 4-庚二烯醛二聚体;17,(E, E)-2, 4-庚二烯醛单聚体;18,2, 4-庚二烯醛单聚体;19,2, 4-庚二烯醛二聚体;20,未知-4;21,未知-5;22,未知-6;23,未知-7;24,苯甲醛单聚体;25,苯甲醛二聚体;26,2-乙酰基呋喃二聚体;27,2-乙酰基呋喃单聚体;28,未知-8;29,2-巯甲基呋喃二聚体;30,2-巯甲基呋喃单聚体;31,未知-9;32,未知-10;33,未知-11;34,未知-12;35,二甲基三硫;36,未知-13;37,未知-14;38,甲基庚烯酮;39,未知-15;40,2-甲基-3-巯基呋喃;41,未知-16;42,未知-17;43,2, 6-二甲基吡啶二聚体;44,2, 6-二甲基吡啶单聚体;45,2-正戊基呋喃;46,未知-18;47,未知-19;48,未知-20;49,反式-2-己烯醛二聚体;50,反式-2-己烯醛单聚体;51,未知-21;52,未知-22;53,未知-23;54,3-甲基-2-丁烯醛二聚体;55,3-甲基-2-丁烯醛单聚体;56,异戊醇单聚体;57,异戊醇二聚体;58,未知-24;59,未知-25;60,庚醛单聚体;61,庚醛二聚体;62,未知-26;63,吡啶;64,未知-27;65,未知-28;66,未知-29;67,未知-30;68,未知-31;69,环戊酮单聚体;70,环戊酮二聚体;71,反式-2-戊烯醛二聚体;72,反式-2-戊烯醛单聚体;73,未知-32;74,未知-33;75,异丁醇单聚体;76,异丁醇二聚体;77,未知-34;78,未知-35;79,未知-36;80,二甲基二硫;81,未知-37;82,邻甲酚;83,未知-38;84,1-戊烯-3-酮二聚体;85,1-戊烯-3-酮单聚体;86,未知-39;87,未知-40;88,未知-41;89,4-甲基-2-戊酮单聚体;90,4-甲基-2-戊酮二聚体;91,未知-42;92,未知-43;93,2, 3-丁二酮;94,未知-44;95,未知-45;96,乙酸乙酯;97,2-乙基呋喃;98,未知-46;99,未知-47;Ⅰ,未知-48;Ⅱ,未知-49;Ⅲ,未知-50;Ⅳ,2-甲基吡嗪单聚体;Ⅴ,2-甲基吡嗪二聚体;Ⅵ,未知-51;Ⅶ,未知-52;Ⅷ,2-甲基丙烯醛二聚体;Ⅸ,2-甲基丙烯醛单聚体;Ⅹ,未知-53;Ⅺ,未知-54。
Fig.2 Differential spectrum of gas chromatography-ion mobility spectrometry GC-IMS (a) and fingerprints (b) under treatments 1, Ethyl 2-phenylacetate; 2, 2-Methylpropanoic (D); 3, 2-Methylpropanoic (M); 4, 2-Hydroxybenzal dehyde; 5, 1-Butanoic acid (M); 6, 1-Butanoic acid (D); 7, γ-Butyrolactone (D); 8, γ-Butyrolactone (M); 9, (E)-2-deceal; 10, Unknown-1; 11, Unknown-2; 12, Unknown-3; 13, Propanediol (D); 14, Propanediol (M); 15, 2-Furaldehyde; 16, (E, E)-2, 4-Heptadienal (D); 17, (E, E)-2, 4-Heptadienal (M); 18, 2, 4-Heptadienal (M); 19, 2, 4-Heptadienal (D); 20, Unknown-4; 21, Unknown-5; 22, Unknown-6; 23, Unknown-7; 24, Benzaldehyde (M); 25, Benzaldehyde (D); 26, 2-Acetylfuran (D); 27, 2-Acetylfuran (M); 28, Unknown-8; 29, 2-Furanmethanethiol (D); 30, 2-Furanmethanethiol (M); 31, Unknown-9; 32, Unknown-10; 33, Unknown-11; 34, Unknown-12; 35, Dimethy trisulfide; 36, Unknown-13; 37, Unknown-14; 38, Methyl heptenone; 39, Unknown-15; 40, 2-Methyl-3-furanthiol; 41, Unknown-16; 42, Unknown-17; 43, 2,6-Dimethylpyridine (D); 44, 2,6-Dimethylpyridine (M); 45, 2-2-Pentyl furan; 46, Unknown-18; 47, Unknown-19; 48, Unknown-20; 49, (E)-2-Hexenal (D); 50, (E)-2-Hexenal (M); 51, Unknown-21; 52, Unknown-22; 53, Unknown-23; 54, 3-Methyl-2-butenal (D); 55, 3-Methyl-2-butenal (M); 56, 1-Butanol, 3-methyl (M); 57, 1-Butanol, 3-methyl (D); 58, Unknown-24; 59, Unknown-25; 60, Heptaldehyde (M); 61, Heptaldehyde (D); 62, Unknown-26; 63, Pyridine; 64, Unknown-27; 65, Unknown-28; 66, Unknown-29; 67, Unknown-30; 68, Unknown-31; 69, Cyclopentanone (M); 70, Cyclopentanone (D); 71, (E)-2-Pentenal (D); 72, (E)-2-Pentenal (M); 73, Unknown-32; 74, Unknown-33; 75, 2-Methylpropanol (M); 76, 2-Methylpropanol (D); 77, Unknown-34; 78, Unknown-35; 79, Unknown-36; 80, Dimethyl disulfide; 81, Unknown-37; 82, o-Cresol; 83, Unknown-38; 84, 1-Penten-3-one (D); 85, 1-Penten-3-one (M); 86, Unknown-39; 87, Unknown-40; 88, Unknown-41; 89, 4-Methyl-2-pentanone (M); 90, 4-Methyl-2-pentanone (D); 91, Unknown-42; 92, Unknown-43; 93, 2, 3-Butanedione; 94, Unknown-44; 95, Unknown-45; 96, Ethyl acetate; 97, 2-Ethyl furan; 98, Unknown-46; 99, Unknown-47; Ⅰ, Unknown-48; Ⅱ, Unknown-49; Ⅲ, Unknown-50; Ⅳ, 2-Methylpyrazine (M); Ⅴ, 2-Methylpyrazine (D); Ⅵ, Unknown-51; Ⅶ, Unknown-52; Ⅷ, 2-Methyl-2-propenal (D); Ⅸ, 2-Methyl-2-propenal (M); Ⅹ, Unknown-53; Ⅺ, Unknown-54.
[1] | 吴键, 张贾宝, 周国俊, 等. 加热状态下云南烤烟的热失重特性及动力学分析[J]. 河南农业科学, 2022, 51(10):151-160. |
WU J, ZHANG J B, ZHOU G J, et al. Thermogravimetric characteristics and kinetic analysis of Yunnan flue-cured tobacco materials under heating[J]. Journal of Henan Agricultural Sciences, 2022, 51(10):151-160. (in Chinese with English abstract) | |
[2] | 张博, 杜文, 王志国, 等. 滤嘴通风率对加热卷烟气溶胶主要成分释放量的影响[J]. 烟草科技, 2023, 56(8):54-62. |
ZHANG B, DU W, WANG Z G, et al. Effects of filter ventilation rate on releases of main aerosol components from heated tobacco products[J]. Tobacco Science & Technology, 2023, 56(8):54-62. (in Chinese with English abstract) | |
[3] | 郑峰洋, 尹献忠, 李耀光, 等. 加热卷烟中6种烤甜香单体香料的逐口转移行为[J]. 烟草科技, 2021, 54(12):46-52. |
ZHENG F Y, YIN X Z, LI Y G, et al. Puff-by-puff transfer behaviors of six single flavors with roasted sweet aroma in heated tobacco products[J]. Tobacco Science & Technology, 2021, 54(12):46-52. (in Chinese with English abstract) | |
[4] | 朱龙杰, 曹毅, 秦艳华, 等. 甘油施加比例对加热卷烟薄片热性能及热解产物的影响[J]. 中国烟草学报, 2022, 28(5):8-16. |
ZHU L J, CAO Y, QIN Y H, et al. Effect of glycerol addition ratio on thermal properties and pyrolysis products of tobacco sheet of heated cigarette[J]. Acta Tabacaria Sinica, 2022, 28(5):8-16. (in Chinese with English abstract) | |
[5] | 陈芝飞, 蔡莉莉, 郑峰洋, 等. 加热卷烟中6种酮类单体香料的转移行为[J]. 中国烟草学报, 2022, 28(4):1-7. |
CHEN Z F, CAI L L, ZHENG F Y, et al. Transfer behavior of 6 ketone flavor components in heated tobacco products[J]. Acta Tabacaria Sinica, 2022, 28(4):1-7. (in Chinese with English abstract) | |
[6] | 邓其馨, 陈辉, 林艳, 等. 温度对加热卷烟酸性成分释放的影响[J]. 烟草科技, 2022, 55(8):49-56. |
DENG Q X, CHEN H, LIN Y, et al. Effects of heating temperature on releases of acidic aerosol components from heated tobacco products[J]. Tobacco Science & Technology, 2022, 55(8):49-56. (in Chinese with English abstract) | |
[7] | 任举, 谢焰, 张锁慧, 等. 加热模式对薄荷型加热卷烟中主要成分的转移率及逐口释放行为的影响[J]. 中国烟草学报, 2022, 28(6):1-10. |
REN J, XIE Y, ZHANG S H, et al. Effects of heating mode on the transfer rate and puff-by-puff release of main components in mentholated heated tobacco products[J]. Acta Tabacaria Sinica, 2022, 28(6):1-10. (in Chinese with English abstract) | |
[8] | 朱红琴, 崔洪亮, 胡世龙, 等. 再造烟叶浆料中添加负载颗粒工艺参数优化[J]. 西南农业学报, 2022, 35(3):685-691. |
ZHU H Q, CUI H L, HU S L, et al. Optimization of processing parameters for adding loaded granules in reconstituted tobacco pulp[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(3):685-691. (in Chinese with English abstract) | |
[9] | ZHANG Y Y, HE Z J, XU M J, et al. Physicochemical properties and protein structure of extruded corn gluten meal: implication of temperature[J]. Food Chemistry, 2023, 399:133985. |
[10] | 张文刚, 兰永丽, 党斌. 不同加工方式对藜麦挥发性风味物质的影响[J]. 中国粮油学报, 2022, 37(12):51-58. |
ZHANG W G, LAN Y L, DANG B. Effects of different processing methods on volatile flavor substances of quinoa[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(12):51-58. (in Chinese with English abstract) | |
[11] | 陈焱芳, 张雁, 邓媛元, 等. 挤压膨化糙米香气物质的顶空固相微萃取条件优化[J]. 食品研究与开发, 2020, 41(12):117-125. |
CHEN Y F, ZHANG Y, DENG Y Y, et al. Optimization of extraction conditions of compounds of extruded brown rice aroma by HS-SPME[J]. Food Research and Development, 2020, 41(12):117-125. (in Chinese with English abstract) | |
[12] | FEITOSA B S, FERREIRA O O, MALI S N, et al. Chemical composition, preliminary toxicity, and antioxidant potential of Piper marginatum sensu lato essential oils and molecular modeling study[J]. Molecules, 2023, 28(15):5814. |
[13] | 张献忠. 废次烟末中烟草香味物质提取、应用及生物活性[D]. 杭州: 浙江大学, 2013. |
ZHANG X Z. Extraction of tobacco flavor compounds from discarded tobacco leaves and their application in cigarettes and in vitro bioactivities[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract) | |
[14] | 季舜华, 苏明亮, 张烨, 等. 不同叶片结构烤烟化学成分的差异[J]. 烟草科技, 2022, 55(9):57-64. |
JI S H, SU M L, ZHANG Y, et al. Chemical compositions in flue-cured tobacco of different leaf structures[J]. Tobacco Science & Technology, 2022, 55(9):57-64. (in Chinese with English abstract) | |
[15] | 王瑞新. 烟草化学[M]. 北京: 中国农业出版社, 2003. |
[16] | 貊志杰, 邓帅军, 史素娟, 等. 烤烟品种中烟特香301烤后烟叶石油醚提取物分析[J]. 中国烟草科学, 2022, 43(3):71-77. |
MO Z J, DENG S J, SHI S J, et al. Analysis of petroleum ether extracts from the characteristic fragrant fluecured tobacco variety Zhongyantexiang301[J]. Chinese Tobacco Science, 2022, 43(3):71-77. (in Chinese with English abstract) | |
[17] | 李晓. 山东烤烟烟叶石油醚提取物的对比分析[J]. 烟草科技, 2006, 39(6):35-38. |
LI X. Petroleum ether extract of flue-cured tobacco grown in Shandong Province[J]. Tobacco Science & Technology, 2006, 39(6):35-38. (in Chinese with English abstract) | |
[18] | 张友杰, 王以慧, 胡延奇, 等. 雪茄烟叶pH、总挥发酸和总挥发碱含量及相关性分析[J]. 农业科技通讯, 2022(2):124-127. |
ZHANG Y J, WANG Y H, HU Y Q, et al. Analysis of pH, total volatile acid and total volatile base contents and correlation analysis in cigar tobacco leaves[J]. Bulletin of Agricultural Science and Technology, 2022(2):124-127. (in Chinese) | |
[19] | 金明珂. 变色期温湿度对雪茄晾制过程中主要氮素转化及晾后品质的影响[D]. 郑州: 河南农业大学, 2022. |
JIN M K. Effects of temperature and humidity during color change stage on the transformation of main nitrogen during the airing process of cigars and the quality of cigars after airing[D]. Zhengzhou: Henan Agricultural University, 2022. (in Chinese with English abstract) | |
[20] | 席元肖, 宋纪真, 杨军, 等. 不同颜色及成熟度烤烟香气前体物及降解产物含量的差异分析[J]. 中国烟草学报, 2011, 17(4):23-30. |
XI Y X, SONG J Z, YANG J, et al. Analysis of flavor precursors and degradation products content in flue-cured tobacco of different color and maturity[J]. Acta Tabacaria Sinica, 2011, 17(4):23-30. (in Chinese with English abstract) | |
[21] | 过伟民, 蔡宪杰, 魏春阳, 等. 豫中浓香型烤烟感官质量与部分质量指标的关系[J]. 烟草科技, 2010, 43(6):22-27. |
GUO W M, CAI X J, WEI C Y, et al. Relationship between smoking quality and some quality indexes of full flavor flue-cured tobacco grown in central Henan[J]. Tobacco Science & Technology, 2010, 43(6):22-27. (in Chinese with English abstract) | |
[22] | 穆童. 烤烟香气特性的变异及与烟叶化学成分的关系[D]. 郑州: 河南农业大学, 2018. |
MU T. Variation of aroma characteristics of flue-cured tobacco and its relationship with chemical components of tobacco leaves[D]. Zhengzhou: Henan Agricultural University, 2018. (in Chinese with English abstract) | |
[23] | YANG Y, WANG B, FU Y, et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu[J]. Food Chemistry, 2021,346:128880. |
[24] | 李经伟, 张小飞, 周宇宁, 等. 烘烤、挤压膨化对苦荞全粉挥发性物质的影响[J]. 粮食与油脂, 2023, 36(12):48-53. |
LI J W, ZHANG X F, ZHOU Y N, et al. Effects of baking and extrusion on volatile substances of whole Tartary buckwheat flour[J]. Cereals & Oils, 2023, 36(12):48-53. (in Chinese with English abstract) | |
[25] | 朱秀清, 张宾洋, 孙冰玉, 等. 大豆蛋白素肉风味影响研究进展[J]. 食品科学, 2023, 44(5):18-28. |
ZHU X Q, ZHANG B Y, SUN B Y, et al. Research progress on flavor formation in soy protein-based meat analogs[J]. Food Science, 2023, 44(5):18-28. (in Chinese with English abstract) | |
[26] | 王玉华, 褚建忠, 徐丙升, 等. 烤烟自然醇化过程美拉德反应产物变化及与感官质量的关系[J]. 中国烟草科学, 2015, 36(4):85-90. |
WANG Y H, CHU J Z, XU B S, et al. Study on changes of Maillard reaction compounds during natural aging of flue-cured tobacco and their impact on smoking quality[J]. Chinese Tobacco Science, 2015, 36(4):85-90. (in Chinese with English abstract) | |
[27] | POISSON L, AUZANNEAU N, MESTDAGH F, et al. New insight into the role of sucrose in the generation of α-diketones upon coffee roasting[J]. Journal of Agricultural and Food Chemistry, 2018, 66(10):2422-2431. |
[1] | 刘春奎, 李紫琳, 韦小玲, 贾琳, 夏阳, 龙李进, 贺远, 李波, 闫洪洋, 张博莹. 不同时期叶面喷施钼肥对烤烟香味成分的影响[J]. 浙江农业学报, 2024, 36(3): 481-493. |
[2] | 孙健, 任江剑, 王海阁, 江建铭, 王志安, 俞旭平. 台湾独蒜兰组培繁育及其假鳞茎的化学组成分析[J]. 浙江农业学报, 2024, 36(2): 358-364. |
[3] | 陈闺, 周杰文, 李海平, 张发明, 李春顺, 柳立, 张毅. 土壤调理剂施用对植烟酸化土壤pH值和烤烟根系特性的影响[J]. 浙江农业学报, 2021, 33(7): 1275-1282. |
[4] | 鲁黎明, 曾孝敏, 顾会战, 张启莉, 喻晓, 王栋, 何佶弦, 李立芹. 施氮量对烤烟氮代谢关键酶基因表达及代谢产物的影响[J]. 浙江农业学报, 2018, 30(3): 454-460. |
[5] | 卫强,王燕红. 棕榈花、叶、茎挥发油成分及抑菌活性研究[J]. 浙江农业学报, 2016, 28(5): 875-. |
[6] | 李静静,丁松爽,李艳平,云菲,阎海涛,王志萌,刘国顺*. 生物炭与氮肥配施对烤烟干物质积累及土壤生物学特性的影响[J]. 浙江农业学报, 2016, 28(1): 96-. |
[7] | 敖金成1,罗华元2,张晓龙1,陈初2,毛春堂1,吕凯1,李卫保3,资文华1,*. 玉米秸秆还田方式对初烤烟叶品质及土壤肥力的影响[J]. 浙江农业学报, 2015, 27(8): 1456-. |
[8] | 刘智炫1,周清明2,黎娟2,*,陈佳亮1,陈焘2,王建波2,刘卉2. 湖南烟区不同年份烤烟化学成分的变化[J]. 浙江农业学报, 2015, 27(11): 1877-. |
[9] | 代晓燕;郭春燕;刘国顺;*;曹晓涛;李佳. 钾肥不同追施时期对烤烟品质和产量的影响[J]. , 2014, 26(2): 0-421426. |
[10] | 肖明礼;杨庆;林锐峰;普元柱;*;包秀萍;李仙. 风味蛋白酶提升烟叶抽吸品质的研究[J]. , 2014, 26(1): 0-185. |
[11] | 蔡雪姣;陈建军;吕永华;邓世媛;陈泽鹏;陈永明;王 维;*. 不同土壤类型烟叶组织结构及化学成分的差异比较[J]. , 2013, 25(6): 0-1182. |
[12] | 闫洪洋;刘春奎;闫洪喜;贾琳;闫克玉;*;孔旭. 河南主产烟区烤烟感官质量比较及其聚类分析[J]. , 2013, 25(4): 0-700. |
[13] | 何景福;段卫东;张大纯;赵云飞;胡战军;孙曙光;叶协锋;*. 河南植烟土壤与烟叶矿质元素关系分析[J]. , 2013, 25(1): 0-146. |
[14] | 齐飞;刘国顺;*;杜绍明;王建安;史宏志;张蕊;高卫锴. 临沧市不同基因型烤烟品种的适应性研究[J]. , 2011, 23(4): 0-675. |
[15] | 李中民;杨铁钊*;段旺军;李亚培. 不同基因型烤烟苗期氮代谢对相关酶活性的影响[J]. , 2011, 23(3): 0-474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||