浙江农业学报 ›› 2025, Vol. 37 ›› Issue (1): 90-102.DOI: 10.3969/j.issn.1004-1524.20240082
收稿日期:
2024-01-18
出版日期:
2025-01-25
发布日期:
2025-02-14
作者简介:
李杏(1999—),女,湖南益阳人,硕士研究生,主要从事野生芍药引种生长发育及其FT基因表达差异研究。E-mail: m15011578276@163.com
通讯作者:
*高健洲,E-mail:noplenhill@163.com
基金资助:
LI Xing(), LIU Yan, GAO Jianzhou*(
)
Received:
2024-01-18
Online:
2025-01-25
Published:
2025-02-14
摘要: 为探究FT基因在芍药属植物开花和种子下胚轴休眠解除中是否具有多效性,克隆得到川赤芍(Paeonia veitchii)、新疆芍药(P. anomala)和芍药凤凰涅槃(P. lactiflora ‘Fenghuangniepan’)的FT同源基因(依次命名为PvFT、PaFT和PlFT1)的编码(coding sequence, CDS)序列,对它们进行生物信息学分析,并通过qRT-PCR技术分析3种芍药种子休眠解除和成花阶段FT基因的表达模式。结果表明,3种芍药属植物FT基因序列高度保守,CDS全长均为522 bp,编码173个氨基酸。系统进化分析显示,3个FT基因编码的蛋白质序列与牡丹的PsFT蛋白亲缘关系最近。时空特异性表达分析显示,3种芍药属植物种子中FT基因在种子下胚轴伸长时均上调表达,没有与下胚轴休眠期的长短表现出一致性;相应成株中PvFT和PlFT1基因分别在能开花的川赤芍的花期和凤凰涅槃的蕾期上调表达,而在不开花的川赤芍和新疆芍药中,PvFT和PaFT基因维持低水平表达。PaFT、PlFT1和PvFT基因在芍药属植物开花和种子下胚轴休眠解除中具有多效性,在成花和种子下胚轴伸长过程中起正调控作用。
中图分类号:
李杏, 刘燕, 高健洲. 三种芍药属植物FLOWERING LOCUS T(FT)同源基因的克隆与表达分析[J]. 浙江农业学报, 2025, 37(1): 90-102.
LI Xing, LIU Yan, GAO Jianzhou. Cloning and expression analysis of homologous FLOWERING LOCUS T(FT) genes from three species of Paeonia spp.[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 90-102.
引物名称 Primer name | 上游引物序列 Forward primer sequence(5’→3’) | 下游引物序列 Reverse primer sequence(5’→3’) | 退火温度 Annealing temperature/℃ | 用途 Function |
---|---|---|---|---|
F01 | ATGCCTAGAAATAGGGATCC | TTATCTTCTTCCGCCTGATC | 52 | 基因克隆Gene cloning |
F02 | AGAGTCCACGCCCAACTGCT | GCCACTGGTGAGCCAAGATTA | 57 | 实时荧光定量PCR qRT-PCR |
A01 | CATGGTATAGTCAGCAACTGGGATG | GGCTTTGGGGTTAAGGGGTG | 57 | 实时荧光定量PCR qRT-PCR |
表1 本研究所用引物
Table 1 Primers used in this study
引物名称 Primer name | 上游引物序列 Forward primer sequence(5’→3’) | 下游引物序列 Reverse primer sequence(5’→3’) | 退火温度 Annealing temperature/℃ | 用途 Function |
---|---|---|---|---|
F01 | ATGCCTAGAAATAGGGATCC | TTATCTTCTTCCGCCTGATC | 52 | 基因克隆Gene cloning |
F02 | AGAGTCCACGCCCAACTGCT | GCCACTGGTGAGCCAAGATTA | 57 | 实时荧光定量PCR qRT-PCR |
A01 | CATGGTATAGTCAGCAACTGGGATG | GGCTTTGGGGTTAAGGGGTG | 57 | 实时荧光定量PCR qRT-PCR |
图1 三种芍药属植物FT基因的克隆 M,DL 2 000 DNA marker;PaFT、PlFT1和PvFT分别表示新疆芍药、凤凰涅槃和川赤芍FT基因的PCR产物。
Fig.1 Cloning of FT genes from three species of Paeonia M, DL 2 000 marker; PaFT, PlFT1, and PvFT represent PCR products of the FT genes of P. anomala, P. lactiflora ‘Fenghuangnipan’ and P. veitchii, respectively.
图2 三种芍药属植物FT基因与芍药大富贵PlFT基因的核苷酸序列比对 黑色区域,相似性=100%;红色区域,相似性≥75%;蓝色区域,相似性≥50%;红色方框表示差异碱基位点。
Fig.2 Nucleotide sequence alignment of FT genes in three species of Paeonia and PlFT gene in P. lactiflora ‘Dafugui’ Black blocks, Similarity=100%; Red blocks, Similarity≥75%; Blue blocks, Similarity≥50%; Red boxes represent differential base sites.
图3 三种芍药属植物FT氨基酸序列与其他植物FT蛋白的多序列比对 黑色区域,相似性=100%的氨基酸;红色区域,相似性≥75%的氨基酸;蓝色区域,相似性≥50%的氨基酸。CmFT,板栗, No.OL411873.1;CsFT1,山茶,No.AB741571.1;FcFT,日本山毛榉,No.AB775532.1;HmFT,绣球,No.MF374627.1;PnFT2b 黑杨,No.AB161108.1;PsFT,牡丹,No.KF113360.1;ZjFT,枣,No.KR8728441。
Fig.3 Multiple sequence alignment of FT amino acid sequence from three species of Paeonia with FT proteins from other plants Black blocks, Amino acids with similarity=100%; Red blocks, Amino acids with similarity ≥ 75%; Blue blocks, Amino acids with similarity ≥ 50%. CmFT, Castanea mollissima, No.OL411873.1; CsFT1, Camellia japonica, No.AB741571.1; FcFT, Fagus crenata, No.AB775532.1; HmFT, Hydrangea macrophylla, No.MF374627.1; PnFT2b, Populus nigra, No.AB161108.1; PsFT, P. suffruticosa, No.KF113360.1; ZjFT, Ziziphus jujuba, No.KR8728441.
基因 Gene | 基因ID Gene ID | 分子量 Molecular mass/u | 总原子个数 Total number of atoms | 等电点 Isoelectric point | 分子式 Molecular formula | 亲水性总平均值 Total average hydrophilicity | 不稳定指数 Instability index |
---|---|---|---|---|---|---|---|
PaFT | OQ079526 | 19 599.15 | 2 729 | 8.42 | C868H1347N253O255S6 | -0.41 | 37.16 |
PlFT1 | OQ079527 | 19 613.17 | 2 732 | 8.42 | C869H1349N253O255S6 | -0.394 | 37.22 |
PvFT | OQ079529 | 19 599.15 | 2 729 | 8.42 | C868H1347N253O255S6 | -0.41 | 37.16 |
表2 三种芍药属植物FT蛋白的理化性质
Table 2 Physical and chemical properties of FT proteins in three species of Paeonia
基因 Gene | 基因ID Gene ID | 分子量 Molecular mass/u | 总原子个数 Total number of atoms | 等电点 Isoelectric point | 分子式 Molecular formula | 亲水性总平均值 Total average hydrophilicity | 不稳定指数 Instability index |
---|---|---|---|---|---|---|---|
PaFT | OQ079526 | 19 599.15 | 2 729 | 8.42 | C868H1347N253O255S6 | -0.41 | 37.16 |
PlFT1 | OQ079527 | 19 613.17 | 2 732 | 8.42 | C869H1349N253O255S6 | -0.394 | 37.22 |
PvFT | OQ079529 | 19 599.15 | 2 729 | 8.42 | C868H1347N253O255S6 | -0.41 | 37.16 |
氨基酸种类 Types of amino acid | PaFT/PvFT | PlFT1 | ||
---|---|---|---|---|
氨基酸数量 Number of amino acids | 占氨基酸总量的百分比 Percentage of total amino acids/% | 氨基酸数量 Number of amino acids | 占氨基酸总量的百分比 Percentage of total amino acids/% | |
丙氨酸Ala(A) | 7 | 4.0 | 6 | 3.5 |
精氨酸Arg(R) | 19 | 11.0 | 19 | 11.0 |
天冬酰胺Asn(N) | 9 | 5.2 | 9 | 5.2 |
天冬氨酸Asp(D) | 11 | 6.4 | 11 | 6.4 |
半胱氨酸Cys(C) | 4 | 2.3 | 4 | 2.3 |
谷氨酰胺Gln(Q) | 7 | 4.0 | 7 | 4.0 |
谷氨酸Glu(E) | 7 | 4.0 | 7 | 4.0 |
甘氨酸Gly(G) | 14 | 8.1 | 14 | 8.1 |
组氨酸His(H) | 2 | 1.2 | 2 | 1.2 |
异亮氨酸lle(I) | 6 | 3.5 | 6 | 3.5 |
亮氨酸Leu(L) | 14 | 8.1 | 13 | 7.5 |
赖氨酸Lys(K) | 1 | 0.6 | 1 | 0.6 |
蛋氨酸Met(M) | 2 | 1.2 | 2 | 1.2 |
苯丙氨酸Phe(F) | 9 | 5.2 | 9 | 5.2 |
脯氨酸Pro(P) | 14 | 8.1 | 14 | 8.1 |
丝氨酸Ser(S) | 9 | 5.2 | 9 | 5.2 |
苏氨酸Thr(T) | 13 | 7.5 | 13 | 7.5 |
色氨酸Trp(W) | 2 | 1.2 | 2 | 1.2 |
酪氨酸Tyr(Y) | 7 | 4.0 | 7 | 4.0 |
缬氨酸Val(V) | 16 | 9.2 | 18 | 10.4 |
表3 三种芍药属植物FT蛋白的氨基酸组成差异
Table 3 Differences in amino acid composition of FT proteins in three species of Paeonia
氨基酸种类 Types of amino acid | PaFT/PvFT | PlFT1 | ||
---|---|---|---|---|
氨基酸数量 Number of amino acids | 占氨基酸总量的百分比 Percentage of total amino acids/% | 氨基酸数量 Number of amino acids | 占氨基酸总量的百分比 Percentage of total amino acids/% | |
丙氨酸Ala(A) | 7 | 4.0 | 6 | 3.5 |
精氨酸Arg(R) | 19 | 11.0 | 19 | 11.0 |
天冬酰胺Asn(N) | 9 | 5.2 | 9 | 5.2 |
天冬氨酸Asp(D) | 11 | 6.4 | 11 | 6.4 |
半胱氨酸Cys(C) | 4 | 2.3 | 4 | 2.3 |
谷氨酰胺Gln(Q) | 7 | 4.0 | 7 | 4.0 |
谷氨酸Glu(E) | 7 | 4.0 | 7 | 4.0 |
甘氨酸Gly(G) | 14 | 8.1 | 14 | 8.1 |
组氨酸His(H) | 2 | 1.2 | 2 | 1.2 |
异亮氨酸lle(I) | 6 | 3.5 | 6 | 3.5 |
亮氨酸Leu(L) | 14 | 8.1 | 13 | 7.5 |
赖氨酸Lys(K) | 1 | 0.6 | 1 | 0.6 |
蛋氨酸Met(M) | 2 | 1.2 | 2 | 1.2 |
苯丙氨酸Phe(F) | 9 | 5.2 | 9 | 5.2 |
脯氨酸Pro(P) | 14 | 8.1 | 14 | 8.1 |
丝氨酸Ser(S) | 9 | 5.2 | 9 | 5.2 |
苏氨酸Thr(T) | 13 | 7.5 | 13 | 7.5 |
色氨酸Trp(W) | 2 | 1.2 | 2 | 1.2 |
酪氨酸Tyr(Y) | 7 | 4.0 | 7 | 4.0 |
缬氨酸Val(V) | 16 | 9.2 | 18 | 10.4 |
图4 三种芍药属植物FT蛋白的二级和三级结构预测 A,PlFT1蛋白二级结构预测;B,PaFT和PvFT蛋白二级结构预测;C,3种FT蛋白的三级结构预测模板。图A和B中粉色直线为无规卷曲,蓝色箭头为β折叠,橘色波浪线为α螺旋,黑色方框为二者差异区域。
Fig.4 Prediction of the secondary and tertiary structure of FT proteins in three species of Paeonia A, Prediction of the secondary structure of PlFT1; B, Prediction of the secondary structure of PaFT and PvFT proteins; C, Prediction template of the tertiary structure of FT proteins in three species of Paeonia. The pink straight lines represent random coil, the blue arrows represent β-sheet, orange wavy lines represent α-helix, black box represent the difference area in figures A and B.
图5 三种芍药属植物FT蛋白与其他物种FT同源蛋白系统进化分析 数值表示1 000次重复抽样所得40%以上的置信度。图中使用的PEBP家族成员为:At,拟南芥;Bj,芥菜;Ca,杜鹃叶山茶;Ed,台湾枇杷;Ej,枇杷;Gh,陆地棉;Hs,木槿;Md,苹果;Ms,森林苹果;Pb,白梨;Pc,西洋梨;Pf,火棘;Pp,沙梨;Ps,牡丹;Rc,月季;Rr,玫瑰;Vu,豇豆;Vv,葡萄;Zj,枣。
Fig.5 Phylogenetic relationship among FT proteins in three species of Paeonia and other FT-like proteins The number represents the percentage of 1 000 bootstrap replications, only above 40% is showed. The family members of the PEBPs used in the tree are as follows: At, Arabidopsis thaliana; Bj, Brassica juncea; Ca, Camellia azalea; Ed, Eriobotrya deflexa; Ej, Eriobotrya japonica; Gh, Gossypium hirsutum; Hs, Hibiscus syriacus; Md, Malus domestica; Ms, Malus sylvestris; Pb, Pyrus x bretschneideri; Pc, Pyrus communis; Pf, Pyracantha fortuneana; Pp, Pyrus pyrifolia; Ps, P. suffruticosa; Rc, Rosa chinensis; Rr, Rosa rugosa; Vu, Vigna unguiculata; Vv, Vitis vinifera; Zj, Ziziphus jujuba.
图6 三种芍药属植物层积沙藏时种子下胚轴休眠解除过程的解剖结构观察(×10) A、B、C分别为川赤芍、新疆芍药和凤凰涅槃下胚轴解除过程中的解剖结构;Ⅰ代表球形胚时期,Ⅱ代表心形胚时期,Ⅲ代表鱼雷胚时期,Ⅳ代表子叶胚时期;EM,胚;EN,胚乳;CP,子叶原基;时间轴表示3种芍药属植物种子发育至对应时期所需的沙藏层积时间。
Fig.6 Observation on the anatomical structure of seed hypocotyl dormancy release process during sand storage in three species of Paeonia(×10) A, B, C represent the anatomical structures during the process of releasing the hypocotyl of P. veitchii, P. anomala and P. lactiflora ‘Fenghuangnipan’, respectively; Ⅰ represent the spherical embryo stage, Ⅱ represent the heart-shaped embryo stage, Ⅲ represent the torpedo embryo stage, and Ⅳ represent the cotyledon embryo stage; EM, Embryo; EN, Endosperml; CP, Cotyledon primordia; The timelines represent the sand accumulation time required for the seed development of three species of Paeonia to reach their corresponding stages.
图7 三种芍药属植物在种子下胚轴休眠打破阶段FT基因的相对表达量 柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.7 The relative expression levels of FT genes in three species of Paeonia during the dormancy breaking stage of seed hypocotyls The bars marked without the same lowercase letter indicat significant differences at P<0.05. The same as below.
图8 引种北京后开花的川赤芍和凤凰涅槃生长发育过程观察 A、B分别为开花的川赤芍和凤凰涅槃的4个生长发育阶段;Ⅰ,展叶期;Ⅱ,显蕾期;Ⅲ,开花期;Ⅳ,花谢期。
Fig.8 Observation on the growth and development process of flowering P. veitchii and P. lactiflora ‘Fenghuangniepan’ introduced to Beijing A and B are the four growth and development stages of flowering P. veitchii and P. lactiflora ‘Fenghuangniepan’, respectively; I, Leaf spreading period; Ⅱ, Budding stage; Ⅲ, Flowering period; Ⅳ, Flower and withering period.
图9 不开花川赤芍、开花川赤芍、新疆芍药和凤凰涅槃在不同发育阶段FT基因的相对表达量
Fig.9 Relative expression levels of FT genes in different developmental stages of non-flowering P. veitchii, flowering P. veitchii, P. anomala and P. lactiflora ‘Fenghuangniepan’
[1] | HONG D Y, PAN K Y, TURLAND N J. Flora of China(Vol.6)[M]. Beijing: Science Press & St. Louis:Missouri Botanical Garden Press, 2001: 127-132. |
[2] | 张逸璇. 中国野生芍药耐荫性评价及应用于耐荫品种培育初步研究[D]. 北京: 北京林业大学, 2019. |
ZHANG Y X. Shade tolerance evaluation of Chinese wild paeonia and preliminary study of cultivation of shade-tolerant varieties[D]. Beijing: Beijing Forestry University, 2019. (in Chinese with English abstract) | |
[3] | 于娇, 陈娜, 龚欢, 等. 芍药属植物种子和花器官研究进展[J]. 现代农业科技, 2020(21): 73-75, 78. |
YU J, CHEN N, GONG H, et al. Progress in research on seeds and flower organs of Paeonia plants[J]. Modern Agricultural Science and Technology, 2020(21): 73-75, 78. (in Chinese) | |
[4] | 孟家松, 朱梦圆, 孙静, 等. 芍药属植物种子研究进展[J]. 种子, 2017, 36(6): 50-54. |
MENG J S, ZHU M Y, SUN J, et al. Research progress in the seeds of Paeonia ssp[J]. Seed, 2017, 36(6): 50-54. (in Chinese with English abstract) | |
[5] | 张慜. 多花芍药种子上胚轴休眠解除过程中形态和生理的低温响应研究[D]. 北京: 北京林业大学, 2021. |
ZHANG M. Study of morphological and physiological responses of Paeonia emodi seeds to cold in the process of epicotyl dormancy breaking[D]. Beijing: Beijing Forestry University, 2021. (in Chinese with English abstract) | |
[6] | 王桐霖, 吕梦雯, 徐金光, 等. 芍药鳞芽年发育进程及生理机制的研究[J]. 植物生理学报, 2019, 55(8): 1178-1190. |
WANG T L, LÜ M W, XU J G, et al. Study on the developmental process and physiological mechanism of the bulbils of Paeonia lactiflora[J]. Plant Physiology Journal, 2019, 55(8): 1178-1190. (in Chinese with English abstract) | |
[7] | LI X T, FEI R W, CHEN Z J, et al. Plant hormonal changes and differential expression profiling reveal seed dormancy removal process in double dormant plant-herbaceous peony[J]. PLoS One, 2020, 15(4): e0231117. |
[8] | 陆沁怡, 沈永宝, 史锋厚. 芍药种胚发育及物质代谢的探究[J/OL]. (2022-05-18) [2024-12-03]. 分子植物育种. http://kns.cnki.net/kcms/detail/46.1068.S.20220518.1139.006.html. |
LU Q Y, SHEN Y B, SHI F H. Exploration on the development and material metabolism of Paeonia lactiflora seed embryo[J/OL]. (2022-05-18) [2024-12-03]. Molecular Plant Breeding. http://kns.cnki.net/kcms/detail/46.1068.S.20220518.1139.006.html. (in Chinese with English abstract) | |
[9] | 穆赢通. 芍药种子休眠解除过程生理变化及分子机理研究[D]. 呼和浩特: 内蒙古农业大学, 2022. |
MU Y T. Study on the physiological changes and molecular mechanisms in Paeonia lactiflora pall seeds during dormancy releasing[D]. Hohhot: Inner Mongolia Agricultural University, 2022. (in Chinese with English abstract) | |
[10] | 吴彦庆, 葛金涛, 陶俊. 芍药花分生组织决定基因(AP1)克隆、序列分析及其在不同发育时期花瓣中的表达变化规律[J]. 农业生物技术学报, 2015, 23(12): 1559-1567. |
WU Y Q, GE J T, TAO J. cDNA cloning, sequence analysis and tissue expression detection of apetala 1 gene(AP 1) in Paeonia lactiflora Pall. petals of different development stages[J]. Journal of Agricultural Biotechnology, 2015, 23(12): 1559-1567. (in Chinese with English abstract) | |
[11] | 杨小凤, 李小蒙, 廖万金. 植物开花时间的遗传调控通路研究进展[J]. 生物多样性, 2021, 29(6): 825-842. |
YANG X F, LI X M, LIAO W J. Advances in the genetic regulating pathways of plant flowering time[J]. Biodiversity Science, 2021, 29(6): 825-842. (in Chinese with English abstract) | |
[12] | FAN H J, ZHUO R Y, WANG H Y, et al. A comprehensive analysis of the floral transition in ma bamboo (Dendrocalamus latiflorus) reveals the roles of DlFTs involved in flowering[J]. Tree Physiology, 2022, 42(9): 1899-1911. |
[13] | 孙庆锋. 赪桐FLOWERING LOCUS T(FT)同源基因的克隆与鉴定[D]. 广州: 仲恺农业工程学院, 2022. |
SUN Q F. Cloning and identification of FLOWERING LOCUS T(FT) homologous genes from Clerodendrum japonicumon[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2022. (in Chinese with English abstract) | |
[14] | 李铮, 潘根, 陶杰, 等. 大麻FT同源基因CsHd3a的克隆及表达谱分析[J]. 华北农学报, 2021, 36(3): 41-49. |
LI Z, PAN G, TAO J, et al. Cloning and expression profile analysis of FT homologous gene CsHd3a in Cannabis[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(3): 41-49. (in Chinese with English abstract) | |
[15] | KIYAK A, MUTLU A G. Molecular cloning, characterization and expression profile of FLOWERING LOCUS T (FT) gene from Prunus armeniaca L[J]. South African Journal of Botany, 2023, 155: 330-339. |
[16] | NAKAMURA Y, ANDRÉS F, KANEHARA K, et al. Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering[J]. Nature Communications, 2014, 5: 3553. |
[17] | 李敏. 北柴胡成花基因克隆及时空表达模式分析[D]. 济南: 山东中医药大学, 2021. |
LI M. Cloning and spatio-temporal expression pattern analysis of flowering genes of Bupleurum chinense DC[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2021. (in Chinese with English abstract) | |
[18] | ADEYEMO O S, CHAVARRIAGA P, TOHME J, et al. Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz)[J]. PLoS One, 2017, 12(7): e0181460. |
[19] | CHEN M, PENFIELD S. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time[J]. Science, 2018, 360(6392): 1014-1017. |
[20] | VERGARA R, NORIEGA X, PARADA F, et al. Relationship between endodormancy, FLOWERING LOCUS T and cell cycle genes in Vitis vinifera[J]. Planta, 2016, 243(2): 411-419. |
[21] | ZARETSKAYA M V, LEBEDEVA O N, FEDORENKO O M. Role of DOG1 and FT, key regulators of seed dormancy, in adaptation of Arabidopsis thaliana from the northern natural populations[J]. Russian Journal of Genetics, 2022, 58(7): 783-790. |
[22] | CHEN F Y, LI Y, LI X Y, et al. Ectopic expression of the Arabidopsis florigen gene FLOWERING LOCUS T in seeds enhances seed dormancy via the GA and DOG1 pathways[J]. The Plant Journal, 2021, 107(3): 909-924. |
[23] | 范志毅, 罗聪, 余海霞, 等. 园艺植物FT基因研究进展[J]. 分子植物育种, 2020, 18(24): 8099-8108. |
FAN Z Y, LUO C, YU H X, et al. Research progress of horticulture plants FLOWERING LOCUS T gene[J]. Molecular Plant Breeding, 2020, 18(24): 8099-8108. (in Chinese with English abstract) | |
[24] | 姚彦林, 马骊, 刘丽君, 等. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. |
YAO Y L, MA L, LIU L J, et al. Bioinformatics and expression analysis of flowering regulation gene BrFT in Brassica rapa L[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 992-1000. (in Chinese with English abstract) | |
[25] | DENG Y T, YARUR-THYS A, BAULCOMBE D C. Virus-induced overexpression of heterologous FLOWERING LOCUS T for efficient speed breeding in tomato[J]. Journal of Experimental Botany, 2024, 75(1): 36-44. |
[26] | SHENG X Y, MAHENDRA R A, WANG C T, et al. CRISPR/Cas9 mutants delineate roles of Populus FT and TFL1/CEN/BFT family members in growth, dormancy release and flowering[J]. Tree Physiology, 2023, 43(6): 1042-1054. |
[27] | WANG L H, XIE J Y, MOU C H, et al. Transcriptomic analysis of the interaction between FLOWERING LOCUS T induction and photoperiodic signaling in response to spaceflight[J]. Frontiers in Cell and Developmental Biology, 2022, 9: 813246. |
[28] | 吴燕. 芍药开花转录组分析及PlFT基因功能验证[D]. 扬州: 扬州大学, 2020. |
WU Y. Analysis of flowering transcriptome of Paeonia lactiflora and functional verification of PlFT gene[D]. Yangzhou: Yangzhou University, 2020. (in Chinese with English abstract) | |
[29] | 于晓南, 张建军, 陈莉祺, 等. 一种芍药地下根茎的石蜡切片制作方法: CN201910026196.4[P]. 2019-04-16. |
[30] | 刘丽, 陈骄羽, 邵明侠, 等. 毛竹PheFT6和PheFT17基因对外界环境的应答及蛋白互作分析[J]. 农业生物技术学报, 2021, 29(3): 506-520. |
LIU L, CHEN J Y, SHAO M X, et al. Responses of PheFT6 and PheFT17 genes in Phyllostachys pubescens to external environment and protein interaction analysis[J]. Journal of Agricultural Biotechnology, 2021, 29(3): 506-520. (in Chinese with English abstract) | |
[31] | 王云梦, 宋贺云, 刘娟, 等. FT和TFL1基因调控植物开花的分子机理[J]. 植物生理学报, 2022, 58(1): 77-90. |
WANG Y M, SONG H Y, LIU J, et al. Molecular mechanism of FT and TFL1 genes on regulation of plant flowering[J]. Plant Physiology Journal, 2022, 58(1): 77-90. (in Chinese with English abstract) | |
[32] | SONG C, LI G H, DAI J, et al. Genome-wide analysis of PEBP genes in Dendrobium huoshanense: unveiling the antagonistic functions of FT/TFL1 in flowering time[J]. Frontiers in Genetics, 2021, 12: 687689. |
[33] | ZHANG L M, CHENG F Y, HUANG H, et al. PsFT, PsTFL1, and PsFD are involved in regulating the continuous flowering of tree peony (Paeonia×lemoinei ‘high noon’)[J]. Agronomy, 2023, 13(8): 2071. |
[34] | 李玲达. 牡丹胚发育过程观察及转录组分析[D]. 郑州: 河南农业大学, 2019. |
LI L D. Observation of embryo development and transcriptomeanalysis of peony[D]. Zhengzhou: Henan Agricultural University, 2019. (in Chinese with English abstract) | |
[35] | 陈洁. 水稻FT-Like基因OsFTL4的功能研究[D]. 扬州: 扬州大学, 2020. |
CHENG J. Functional research of FT-Like gene OsFTL4 in rice[D]. Yangzhou: Yangzhou University, 2020. (in Chinese with English abstract) | |
[36] | DIXON L E, FARRÉ A, FINNEGAN E J, et al. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1[J]. Plant, Cell & Environment, 2018, 41(7): 1715-1725. |
[37] | 陈磊. 毛竹FLOWERING LOCUS T(FT)成花基因的鉴定与功能分析[D]. 福州: 福建农林大学, 2017. |
CHEN L. Identification and functional analysis of FLOWERING LOCUS T(FT) genes in Phyllostachys heterocycla[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese with English abstract) | |
[38] | 郑小一, 王三红, 张计育, 等. 苹果FT同源基因MdFT的表达特性[J]. 江苏农业学报, 2011, 27(2): 390-395. |
ZHENG X Y, WANG S H, ZHANG J Y, et al. Expression characteristics of FT homologue MdFT in apple(Malus×domestica Fuji)[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(2): 390-395. (in Chinese with English abstract) | |
[39] | 吕波. 植物开花基因FT的遗传转化及其参与开花调控的研究[D]. 泰安: 山东农业大学, 2014. |
LÜ/LV/LU/LYU) B. Genetic transformation of plant flowering gene FT and its involvement in flowering control[D]. Tai’an: Shandong Agricultural University, 2014. (in Chinese with English abstract) | |
[40] | 何静. 茎瘤芥CRISPR/Cas9技术的建立及BjFT基因的功能研究[D]. 重庆: 重庆邮电大学, 2022. |
HE J. The establishment of CRISPR/Cas9 technology and the function study of BjFT gene in Brassica juncea var. tumida[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2022. (in Chinese with English abstract) |
[1] | 沈峥嵘, 戴远兴, 郭留明, 汪芷瑶, 张恒木. 中国小麦花叶病毒(CWMV)外壳蛋白(CP)特异性抗体的制备与应用[J]. 浙江农业学报, 2024, 36(9): 2042-2050. |
[2] | 孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718. |
[3] | 朱贵爽, 李艳肖, 张安宁, 孙浩楠, 徐兴源, 李志刚, 向殿军. 蓖麻GeBP转录因子的全基因组鉴定与GeBP2基因的克隆、表达分析[J]. 浙江农业学报, 2024, 36(8): 1731-1740. |
[4] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
[5] | 邓利君, 王铁, 胡娟, 姚远, 孙国超, 熊博, 廖玲, 汪志辉. 蜂糖李开花授粉生物学特性[J]. 浙江农业学报, 2024, 36(6): 1320-1328. |
[6] | 李菊, 毕冬琳, 杨晓莉, 杨东亮, 张潇文, 刘方程, 李琼毅, 柏家林. 小反刍兽疫病毒非结构蛋白C单克隆抗体的制备与鉴定[J]. 浙江农业学报, 2024, 36(5): 1047-1054. |
[7] | 孔德, 叶自然, 谭向峰, 代梦迪, 赵先亮, 孔德栋. 生菜种子物理接触参数测定与离散元仿真标定[J]. 浙江农业学报, 2024, 36(4): 932-942. |
[8] | 李天恩, 周思含, 孙洪超, 付媛, 石团员, 闫文朝. 鸡柔嫩艾美耳球虫2种假定致密颗粒蛋白基因的克隆与表达[J]. 浙江农业学报, 2024, 36(3): 503-514. |
[9] | 刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357. |
[10] | 张余, 金明伟, 任丽, 章毅颖, 赵洪, 刘昆, 邓姗, 褚云霞, 李寿国, 张靖立, 黄静艳, 陈海荣. 辣椒CaERF70的表达特征和转录自激活活性分析[J]. 浙江农业学报, 2024, 36(10): 2247-2256. |
[11] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
[12] | 张丽, 王媛媛, 王瑞, 刘丽霞. 牦牛DRA基因克隆测序及生物信息学分析[J]. 浙江农业学报, 2023, 35(7): 1564-1570. |
[13] | 陈国户, 李广, 温宏伟, 尹倩, 吴思文, 王英, 刘雪晴, 赵龙龙, 桂尚枝, 唐小燕, 汪承刚. 萝卜春化响应相关基因鉴定及表达模式分析[J]. 浙江农业学报, 2023, 35(7): 1626-1637. |
[14] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[15] | 莘晓月, 刘鹏. 激素调控种子休眠与萌发分子机制研究进展[J]. 浙江农业学报, 2023, 35(6): 1485-1496. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||