浙江农业学报 ›› 2025, Vol. 37 ›› Issue (1): 78-89.DOI: 10.3969/j.issn.1004-1524.20240378
秦斗文1,2(), 刘伟强1,2, 田吉婷1,2, 巨秀婷1,2,*(
)
收稿日期:
2024-04-26
出版日期:
2025-01-25
发布日期:
2025-02-14
作者简介:
秦斗文(1996—),女,河南信阳人,硕士,研究方向为观赏植物遗传育种。E-mail:qindouwen@163.com
通讯作者:
*巨秀婷,E-mail:juxiuting@163.com
基金资助:
QIN Douwen1,2(), LIU Weiqiang1,2, TIAN Jiting1,2, JU Xiuting1,2,*(
)
Received:
2024-04-26
Online:
2025-01-25
Published:
2025-02-14
摘要: 为明确伊犁郁金香(Tulipa iliensis)的遗传背景,在叶绿体基因组水平开展遗传多样性研究。本研究以伊犁郁金香为研究对象,对cpDNA-PCR反应体系中的Mg2+、dNTPs、引物浓度、Taq DNA酶和模板DNA浓度在L16(45)正交试验设计的基础上结合单因素优化筛选试验构建伊犁郁金香cpDNA-PCR反应体系,在最优体系的基础上进行引物筛选并通过引物筛选完成cpDNA-PCR扩增,以验证cpDNA-PCR反应体系的稳定性,并对伊犁郁金香野生群体进行遗传多样性分析。结果表明,构建的伊犁郁金香最佳cpDNA-PCR反应体系(25 μL)为Mg2+ 2.00 mmol·L-1,dNTPs 0.20 mmol·L-1,引物浓度0.40 μmol·L-1,Taq DNA酶0.50 U,模板DNA浓度110 ng。利用最佳扩增体系,从16对候选引物组合中筛选出可用于后续伊犁郁金香cpDNA-PCR扩增的14对引物(trnK-rps16, M3-M4, F71-R1516, trnD-trnE, psbB-psbH, trnL-trnF, atpB-rbcL, a1-b1, 1F-1R, rps8-rp116, atpI-atpH, accD-psaI, petG-trnP, 2F-2R)。建立的伊犁郁金香cpDNA-PCR反应体系扩增稳定,条带清晰,对54个伊犁郁金香个体进行遗传多样性分析,引物psbB-psbH扩增片段平均长度为582 bp,其中多态性位点数284个,核苷酸多态性Pi为0.055、平均核苷酸差异数K为30.261,基因流(Nm=1.21>1),表明伊犁郁金香居群遗传多样性高,不同居群间基因交流频繁。该研究建立的cpDNA-PCR反应体系可用于伊犁郁金香遗传多样性和种群遗传结构研究,研究结果可以为野生郁金香种质资源的合理保护、可持续利用提供理论依据和技术支撑,为科学保护伊犁郁金香种质资源提供依据。
中图分类号:
秦斗文, 刘伟强, 田吉婷, 巨秀婷. 伊犁郁金香cpDNA-PCR体系构建与遗传多样性分析[J]. 浙江农业学报, 2025, 37(1): 78-89.
QIN Douwen, LIU Weiqiang, TIAN Jiting, JU Xiuting. Establishment of cpDNA-PCR reaction system and genetic diversity analysis of Tulipa iliensis[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 78-89.
序号 Number | 居群 Population | 居群个体数 Individual number of population | 采样地 Sample location |
---|---|---|---|
1 | 1 300 | 4 | 巩留县吉尔格郎乡Jilgelang Township, Gongliu County, China |
2 | 1 400 | 4 | 巩留县吉尔格郎乡Jilgelang Township, Gongliu County, China |
3 | 1 600 | 29 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
4 | 1 700 | 5 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
5 | 1 800 | 2 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
6 | 1 900 | 5 | 昭苏县乌尊布拉克镇Uzunbulak Township, Zhaosu County, China |
7 | 2 000 | 5 | 昭苏县乌尊布拉克镇Uzunbulak Township, Zhaosu County, China |
合计Total | 54 |
表1 伊犁郁金香供试材料
Table 1 The tested materials of Tulipa iliensis
序号 Number | 居群 Population | 居群个体数 Individual number of population | 采样地 Sample location |
---|---|---|---|
1 | 1 300 | 4 | 巩留县吉尔格郎乡Jilgelang Township, Gongliu County, China |
2 | 1 400 | 4 | 巩留县吉尔格郎乡Jilgelang Township, Gongliu County, China |
3 | 1 600 | 29 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
4 | 1 700 | 5 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
5 | 1 800 | 2 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
6 | 1 900 | 5 | 昭苏县乌尊布拉克镇Uzunbulak Township, Zhaosu County, China |
7 | 2 000 | 5 | 昭苏县乌尊布拉克镇Uzunbulak Township, Zhaosu County, China |
合计Total | 54 |
编号 Number | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTP/(mmol·L-1) | 引物 Primer/(μmol·L-1) | DNA DNA/ng |
---|---|---|---|---|---|
1 | 0.25 | 1.0 | 0.05 | 0.2 | 30 |
2 | 0.50 | 1.0 | 0.10 | 0.3 | 50 |
3 | 0.75 | 1.0 | 0.15 | 0.4 | 80 |
4 | 1.00 | 1.0 | 0.20 | 0.5 | 110 |
5 | 0.75 | 1.5 | 0.05 | 0.3 | 110 |
6 | 1.00 | 1.5 | 0.10 | 0.2 | 80 |
7 | 0.25 | 1.5 | 0.15 | 0.5 | 50 |
8 | 0.50 | 1.5 | 0.20 | 0.4 | 30 |
9 | 1.00 | 2.0 | 0.05 | 0.4 | 50 |
10 | 0.75 | 2.0 | 0.10 | 0.5 | 30 |
11 | 0.50 | 2.0 | 0.15 | 0.2 | 110 |
12 | 0.25 | 2.0 | 0.20 | 0.3 | 80 |
13 | 0.50 | 2.5 | 0.05 | 0.5 | 80 |
14 | 0.25 | 2.5 | 0.10 | 0.4 | 110 |
15 | 1.00 | 2.5 | 0.15 | 0.3 | 30 |
16 | 0.75 | 2.5 | 0.20 | 0.2 | 50 |
表2 伊犁郁金香cpDNA-PCR反应体系正交试验设计
Table 2 Orthogonal design of cpDNA-PCR reaction system for Tulipa iliensis
编号 Number | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTP/(mmol·L-1) | 引物 Primer/(μmol·L-1) | DNA DNA/ng |
---|---|---|---|---|---|
1 | 0.25 | 1.0 | 0.05 | 0.2 | 30 |
2 | 0.50 | 1.0 | 0.10 | 0.3 | 50 |
3 | 0.75 | 1.0 | 0.15 | 0.4 | 80 |
4 | 1.00 | 1.0 | 0.20 | 0.5 | 110 |
5 | 0.75 | 1.5 | 0.05 | 0.3 | 110 |
6 | 1.00 | 1.5 | 0.10 | 0.2 | 80 |
7 | 0.25 | 1.5 | 0.15 | 0.5 | 50 |
8 | 0.50 | 1.5 | 0.20 | 0.4 | 30 |
9 | 1.00 | 2.0 | 0.05 | 0.4 | 50 |
10 | 0.75 | 2.0 | 0.10 | 0.5 | 30 |
11 | 0.50 | 2.0 | 0.15 | 0.2 | 110 |
12 | 0.25 | 2.0 | 0.20 | 0.3 | 80 |
13 | 0.50 | 2.5 | 0.05 | 0.5 | 80 |
14 | 0.25 | 2.5 | 0.10 | 0.4 | 110 |
15 | 1.00 | 2.5 | 0.15 | 0.3 | 30 |
16 | 0.75 | 2.5 | 0.20 | 0.2 | 50 |
水平 Level | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTPs/(mmol·L-1) | 引物 Primer/(μmol·L-1) | DNA/ng |
---|---|---|---|---|---|
1 | 0.25 | 1.0 | 0.05 | 0.2 | 30 |
2 | 0.50 | 1.5 | 0.10 | 0.3 | 50 |
3 | 0.75 | 2.0 | 0.15 | 0.4 | 80 |
4 | 1.00 | 2.5 | 0.20 | 0.5 | 110 |
表3 伊犁郁金香cpDNA-PCR反应体系的单因素试验设计
Table 3 Single-factor experimental design of Tulipa iliensis cpDNA-PCR reaction system
水平 Level | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTPs/(mmol·L-1) | 引物 Primer/(μmol·L-1) | DNA/ng |
---|---|---|---|---|---|
1 | 0.25 | 1.0 | 0.05 | 0.2 | 30 |
2 | 0.50 | 1.5 | 0.10 | 0.3 | 50 |
3 | 0.75 | 2.0 | 0.15 | 0.4 | 80 |
4 | 1.00 | 2.5 | 0.20 | 0.5 | 110 |
编号No. | 引物Primer | 序列Sequence | 参考文献Reference | 退火温度Annealing temperature/℃ |
---|---|---|---|---|
1 | trnK | 5'-TACTCTACCATTGAGTTAGCAAC-3' | [ | 51.3 |
rps16 | 5'-AAAGGTGCTCAACCTACAAGAAC-3' | [ | 55.0 | |
2 | AtpI | 5'-TATTTACAAGYGGTATTCAAGCT-3' | [ | 49.8 |
AtpH | 5'-CCAAYCCAGCAGCAATAAC-3' | [ | 52.9 | |
3 | rps8 | 5'-TGAACAATATTTTCGGTAAT-3' | [ | 42.7 |
rpl16 | 5'-AACCAGATTTCGTAAACAAC-3' | [ | 47.3 | |
4 | PetB | 5'-CTGCCGTATTTATGTTATG-3' | [ | 44.7 |
PetD | 5'-GTCTAGCCCCTGTTCTTCCT-3' | [ | 56.4 | |
5 | M3 | 5'-GCAACAATACTTCCTATATCCGCTTCT-3' | [ | 56.2 |
M4 | 5'-GAACTCTTCTAATAATCCCGAACCTAA-3' | [ | 53.4 | |
6 | F71 | 5'-GCTATGCTTAGTGTGTGACTCGTTG-3' | [ | 57.9 |
R1516 | 5'-CCCTTCATTCTTCCTCTATGTTG-3' | [ | 52.7 | |
7 | accD | 5'-AATYGTACCACGTAATCYTTTAAA-3' | [ | 49.0 |
psaI | 5'-AGAAGCCATTGCAATTGCCGGAAA-3' | [ | 60.2 | |
8 | trnV | 5'-GTCTACGGTTCGARTCCGTA-3' | [ | 55.0 |
ndhC | 5'-TATTATTAGAAATGYCCARAAAATATCATAT-3' | [ | 47.7 | |
9 | petG | 5'-GGTCTAATTCCTATAACTTTGGC-3' | [ | 50.4 |
trnP | 5'-GGGATGTGGCGCAGCTTGG-3' | [ | 63.5 | |
10 | trnD | 5'-ACCAATTGAACTACAATCCC-3' | [ | 49.3 |
trnE | 5'-AGGACATCTCTCTTTCAAGGAG-3' | [ | 53.4 | |
11 | psbH | 5'-TCAAYRGTYTGTGTAGCCAT-3' | [ | 52.1 |
psbB | 5'-TCCAAAAANKKGGAGATCCAAC-3' | [ | 53.9 | |
12 | trnL | 5'-CGAAATCGGTAGACGCTACG-3' | [ | 55.8 |
trnF | 5'-ATTTGAACTGGTGACACGAG-3' | [ | 52.4 | |
13 | atpB | 5'-ACATCKARTACKGGACCAATAA-3' | [ | 51.2 |
rbcL | 5'-AACACCAGCTTTRAATCCAA-3' | [ | 50.3 | |
14 | a1 | 5'-CATTACAAATGCGATGCTCT-3' | [ | 50.2 |
b1 | 5'-TCTACCGATTTCGCCATATC-3' | [ | 51.3 | |
15 | 1F | 5'-TGCCTCTTGTCCTATGTCTC-3' | [ | 53.6 |
1R | 5'-TTTCCAAATGGATAGGATGGGGT-3' | [ | 55.8 | |
16 | 2F | 5'-TGGACTCCGTGGGCACATCAA-3' | [ | 61.9 |
2R | 5'-ATGCATCCTGTACGGTTGAGACC-3' | [ | 59.4 |
表4 伊犁郁金香PCR扩增的引物筛选信息
Table 4 Primer used in selection
编号No. | 引物Primer | 序列Sequence | 参考文献Reference | 退火温度Annealing temperature/℃ |
---|---|---|---|---|
1 | trnK | 5'-TACTCTACCATTGAGTTAGCAAC-3' | [ | 51.3 |
rps16 | 5'-AAAGGTGCTCAACCTACAAGAAC-3' | [ | 55.0 | |
2 | AtpI | 5'-TATTTACAAGYGGTATTCAAGCT-3' | [ | 49.8 |
AtpH | 5'-CCAAYCCAGCAGCAATAAC-3' | [ | 52.9 | |
3 | rps8 | 5'-TGAACAATATTTTCGGTAAT-3' | [ | 42.7 |
rpl16 | 5'-AACCAGATTTCGTAAACAAC-3' | [ | 47.3 | |
4 | PetB | 5'-CTGCCGTATTTATGTTATG-3' | [ | 44.7 |
PetD | 5'-GTCTAGCCCCTGTTCTTCCT-3' | [ | 56.4 | |
5 | M3 | 5'-GCAACAATACTTCCTATATCCGCTTCT-3' | [ | 56.2 |
M4 | 5'-GAACTCTTCTAATAATCCCGAACCTAA-3' | [ | 53.4 | |
6 | F71 | 5'-GCTATGCTTAGTGTGTGACTCGTTG-3' | [ | 57.9 |
R1516 | 5'-CCCTTCATTCTTCCTCTATGTTG-3' | [ | 52.7 | |
7 | accD | 5'-AATYGTACCACGTAATCYTTTAAA-3' | [ | 49.0 |
psaI | 5'-AGAAGCCATTGCAATTGCCGGAAA-3' | [ | 60.2 | |
8 | trnV | 5'-GTCTACGGTTCGARTCCGTA-3' | [ | 55.0 |
ndhC | 5'-TATTATTAGAAATGYCCARAAAATATCATAT-3' | [ | 47.7 | |
9 | petG | 5'-GGTCTAATTCCTATAACTTTGGC-3' | [ | 50.4 |
trnP | 5'-GGGATGTGGCGCAGCTTGG-3' | [ | 63.5 | |
10 | trnD | 5'-ACCAATTGAACTACAATCCC-3' | [ | 49.3 |
trnE | 5'-AGGACATCTCTCTTTCAAGGAG-3' | [ | 53.4 | |
11 | psbH | 5'-TCAAYRGTYTGTGTAGCCAT-3' | [ | 52.1 |
psbB | 5'-TCCAAAAANKKGGAGATCCAAC-3' | [ | 53.9 | |
12 | trnL | 5'-CGAAATCGGTAGACGCTACG-3' | [ | 55.8 |
trnF | 5'-ATTTGAACTGGTGACACGAG-3' | [ | 52.4 | |
13 | atpB | 5'-ACATCKARTACKGGACCAATAA-3' | [ | 51.2 |
rbcL | 5'-AACACCAGCTTTRAATCCAA-3' | [ | 50.3 | |
14 | a1 | 5'-CATTACAAATGCGATGCTCT-3' | [ | 50.2 |
b1 | 5'-TCTACCGATTTCGCCATATC-3' | [ | 51.3 | |
15 | 1F | 5'-TGCCTCTTGTCCTATGTCTC-3' | [ | 53.6 |
1R | 5'-TTTCCAAATGGATAGGATGGGGT-3' | [ | 55.8 | |
16 | 2F | 5'-TGGACTCCGTGGGCACATCAA-3' | [ | 61.9 |
2R | 5'-ATGCATCCTGTACGGTTGAGACC-3' | [ | 59.4 |
图1 伊犁郁金香DNA琼脂糖凝胶电泳图 M, DL2 000 DNA marker;1-24, 伊犁郁金香DNA。
Fig.1 Agarose gel electrophoresis of Tulipa iliensis DNA M, DL2 000 DNA marker; 1-24, DNA of Tulipa iliensis.
图2 伊犁郁金香正交试验设计电泳图 M, DL2 000 DNA marker;1~16,16个正交试验设计组合。
Fig.2 Electropherogram of orthogonal test of Tulipa iliensis M, DL2 000 DNAmarker;1-16, 16 combinations of orthogonal design.
参数 Parameter | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTPs/(mmol·L-1) | 引物 Primer/(μmol·L-1) | 模板DNA Template DNA/ng |
---|---|---|---|---|---|
K1 | 35.00 | 26.00 | 35.00 | 35.00 | 37.00 |
K2 | 36.00 | 57.00 | 31.00 | 36.00 | 39.00 |
K3 | 50.00 | 40.00 | 43.00 | 43.00 | 38.00 |
K4 | 43.00 | 13.00 | 55.00 | 50.00 | 50.00 |
k1 | 8.75 | 6.50 | 8.75 | 8.75 | 9.25 |
k2 | 9.00 | 14.25 | 7.75 | 9.00 | 9.75 |
k3 | 12.50 | 10.00 | 10.75 | 10.75 | 9.50 |
k4 | 10.75 | 10.25 | 13.75 | 12.50 | 12.50 |
R | 3.75 | 7.75 | 6.00 | 3.75 | 3.25 |
表5 伊犁郁金香正交试验设计极差分析
Table 5 Range analysis of orthogonal test of Tulipa iliensis
参数 Parameter | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTPs/(mmol·L-1) | 引物 Primer/(μmol·L-1) | 模板DNA Template DNA/ng |
---|---|---|---|---|---|
K1 | 35.00 | 26.00 | 35.00 | 35.00 | 37.00 |
K2 | 36.00 | 57.00 | 31.00 | 36.00 | 39.00 |
K3 | 50.00 | 40.00 | 43.00 | 43.00 | 38.00 |
K4 | 43.00 | 13.00 | 55.00 | 50.00 | 50.00 |
k1 | 8.75 | 6.50 | 8.75 | 8.75 | 9.25 |
k2 | 9.00 | 14.25 | 7.75 | 9.00 | 9.75 |
k3 | 12.50 | 10.00 | 10.75 | 10.75 | 9.50 |
k4 | 10.75 | 10.25 | 13.75 | 12.50 | 12.50 |
R | 3.75 | 7.75 | 6.00 | 3.75 | 3.25 |
图3 单因素试验结果 M, DL2 000 DNA marker; A, dNTPs 浓度:0.05、0.10、0.15、0.20 mmol·L-1;B,Mg2+ 浓度:1.00、1.50、2.00、2.50 mmol·L-1;C,Template DNA 浓度:30、50、80、110 ng;D,Primer 浓度:0.20、0.30、0.40、0.50 mmol·L-1;E,Taq DNA 酶含量:0.25、0.50、0.75、1.00 U。
Fig.3 Single-factor experiment results M, DL2 000 DNA marker;A, dNTPs concentration:0.05, 0.10, 0.15, 0.20 mmol·L-1; B, Mg2+ concentration:1.00,1.50,2.00,2.50 mmol·L-1; C, Template DNA concentration:30, 50, 80、110 ng; D, Primer concentration:0.20, 0.30, 0.40, 0.50 mmol·L-1; E, Taq DNA polymerase contents:0.25, 0.50, 0.75, 1.00 U.
图4 引物在不同退火温度下的cpDNA-PCR电泳结果 M, DL2 000 DNA marker; 1~3, 引物分别为accD-psaI、petG-trnP、2F-2R。
Fig.4 The cpDNA-PCR electrophoresis results of primers under different annealing temperature value conditions M, DL2 000 DNA marker; 1-3, The primers are respectively accD-psaI, petG-trnP, 2F-2R.
图5 伊犁郁金香psbB-psbH扩增产物凝胶电泳 M, DL2 000 DNA marker;1~21, 伊犁郁金香部分个体。
Fig.5 The gel electrophoresis image of psbB-psbH amplification result of Tulipa iliensis M, DL2 000 DNA marker; 1-21, Some individuals of Tulipa iliensis.
图6 10个郁金香栽培品种psbB-psbH扩增产物凝胶电泳 M, DL2 000 DNA marker;1~10, 供试郁金香栽培品种。
Fig.6 The gel electrophoresis image of psbB-psbH amplification result of ten tulip cultivar varieties M, DL2 000 DNA marker;1-10, The tested of tulip cultivar varieties.
图7 伊犁郁金香54个个体系统发育进化树 A, 基于12个cpDNA片段构建的系统发育树;B, 54个伊犁郁金香个体系统发育进化树。
Fig.7 Phylogenetic tree of 54 samples of Tulipa iliensis A, Phylogenetic tree constructed based on 12 cpDNA fragments; B, Phylogenetic phylogenetic tree of 54 samples of Tulipa iliensis.
[1] | NERIYA Y, MORIKAWA T, HAMAMOTO K, et al. Characterization of tulip streak virus, a novel virus associated with the family Phenuiviridae[J]. The Journal of General Virology, 2021, 102(2). |
[2] | 蒋丹青. 5℃郁金香日光温室栽培技术[J]. 安徽农学通报, 2021, 27(17): 69-70. |
JIANG D Q. 5℃ Celsius tulip daylight greenhouse cultivation technology[J]. Anhui Agricultural Science Bulletin, 2021, 27(17): 69-70. (in Chinese) | |
[3] | 张晓妍, 黄贤敏, 王世苗, 等. 野生郁金香总黄酮提取及抗氧化活性研究[J]. 伊犁师范大学学报(自然科学版), 2023, 17(1): 29-37. |
ZHANG X Y, HUANG X M, WANG S M, et al. Study on extraction and antioxidant activity of total flavonoids from wild tulip[J]. Journal of Yili Normal University(Natural Science Edition), 2023, 17(1): 29-37. (in Chinese with English abstract) | |
[4] | 王世苗. 郁金香属植物内生真菌分离、鉴定及其次生代谢产物的初步研究[D]. 伊犁: 伊犁师范大学, 2023. |
WANG S M. Preliminary studies on the isolation and identification of endophytic fungi and their secondary metabolites in Tulipa sp.[D]. Xinjiang: YiLi Normal University, 2023. (in Chinese with English abstract) | |
[5] | 李国强, 庄重, 杨平. 药用植物伊犁郁金香结构植物学研究[J]. 新疆农业科学, 1997, 34(1): 18-20. |
LI G Q, ZHUANG Z, YANG P. Study on the structure botany of medicinal plant Tulipa iliensis[J]. Xinjiang Agricultural Sciences, 1997, 34(1): 18-20. (in Chinese) | |
[6] | 王玉荣. 新疆郁金香属植物生物学特性及资源评价研究[D]. 乌鲁木齐: 新疆农业大学, 2001. |
WANG Y R. Studies on the biological characters and resources evaluation of Tulipa from xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2001. (in Chinese with English abstract) | |
[7] | 梅莉娟, 谭敦炎. 伊犁郁金香和阿尔泰郁金香不同居群的物候特点[J]. 新疆农业大学学报, 2006, 29(4): 18-21. |
MEI L J, TAN D Y. Phenological characteristics in different populations of Tulipa iliensis regel and Tulipa altaica pall ex spreng.[J]. Journal of Xinjiang Agricultural University, 2006, 29(4): 18-21. (in Chinese with English abstract) | |
[8] | 聂小霞, 林雪凤, 陆婷, 等. 伊犁郁金香休眠习性初步研究[J]. 江苏农业科学, 2017, 45(6): 121-123. |
NIE X X, LIN X F, LU T, et al. Preliminary study on the Hibernation of Tulipa iliensis[J]. Jiangsu Agricultural Sciences, 2017, 45(6): 121-123. (in Chinese) | |
[9] | 张阳, 马子兰, 徐珊珊, 等. 青藏高原东北部黄缨菊的谱系地理学[J]. 植物研究, 2022, 42(4): 565-573. |
ZHANG Y, MA Z L, XU S S, et al. Phylogeography of Xanthopappus Subacaulis(Asteraceae), an endemic species from the northeastern of the Qinghai-Tibet Plateau[J]. Bulletin of Botanical Research, 2022, 42(4): 565-573. (in Chinese with English abstract) | |
[10] | XU S J, TENG K, ZHANG H, et al. Chloroplast genomes of four Carex species: long repetitive sequences trigger dramatic changes in chloroplast genome structure[J]. Frontiers in Plant Science, 2023, 14: 1100876. |
[11] | ZHAI Y F, YU X Q, ZHOU J G, et al. Complete chloroplast genome sequencing and comparative analysis reveals changes to the chloroplast genome after allopolyploidization in Cucumis[J]. Genome, 2021, 64(6): 627-638. |
[12] | SEVINDIK E, MURATHAN Z T. DNA barcoding and sequence analysis of the cpDNA rbcL region in some Pyrus communis L. (Rosaceae) genotypes from ardahan/türkiye[J]. Erwerbs-Obstbau, 2023, 65(5): 1315-1320. |
[13] | CHEN X, TIAN L, TIAN J Y, et al. Extensive sampling provides new insights into phylogenetic relationships between wild and domesticated Zanthoxylum species in China[J]. Horticulturae, 2022, 8(5): 440. |
[14] | 杨宏. 迎春樱桃的谱系地理学研究[D]. 南京: 南京林业大学, 2023. |
YANG H. Phylogeography of Prunus discoidea Yü et Li[D]. Nanjing: Nanjing Forestry University, 2023. (in Chinese with English abstract) | |
[15] | 宛甜. 中国毛樱桃野生种群遗传多样性及谱系地理学研究[D]. 杨凌: 西北农林科技大学, 2023. |
WAN T. Genetic diversity and phylogeography of wild Prunus tomentosa in China[D]. Yangling: Northwest A & F University, 2023. (in Chinese with English abstract) | |
[16] | 张婕妤. 中国西南山地冰缘带特有植物丽江棱子芹的谱系地理学研究[D]. 昆明: 云南师范大学, 2023. |
ZHANG J Y. Phylogeographic study of the subnival endemic plant Pleurospermum foetens in the mountains of SW China[D]. Kunming: Yunnan Normal University, 2023. (in Chinese with English abstract) | |
[17] | 潘凤. 刺梨的遗传多样性及谱系地理学研究[D]. 贵阳: 贵州大学, 2022. |
PAN F. Genetic diversity and phylogeography of Rosa roxburghii Tratt[D]. Guiyang: Guizhou University, 2022. (in Chinese with English abstract) | |
[18] | LI L, WANG S J, CHEN Y P, et al. Climate change in the eastern Xinjiang of China and its connection to northwestern warm humidification[J]. Atmosphere, 2023, 14(9): 1421. |
[19] | 马秀花, 唐楠, 唐道城, 等. 郁金香的表型遗传多样性及观赏价值综合评价[J]. 分子植物育种, 2021, 19(4): 1320-1336. |
MA X H, TANG N, TANG D C, et al. Phenotypic genetic diversity and ornamental value comprehensive evaluation in tulip resources[J]. Molecular Plant Breeding, 2021, 19(4): 1320-1336. (in Chinese with English abstract) | |
[20] | 陈芳, 刘彤, 周玲玲. 新疆野生郁金香生物学特性及种子发芽特性的研究[J]. 石河子大学学报(自然科学版), 2001, 19(3): 197-200. |
CHEN F, LIU T, ZHOU L L. Research on the biological and germinating characters of wild Tulipa[J]. Journal of Shihezi University(Natural Science), 2001, 19(3): 197-200. (in Chinese with English abstract) | |
[21] | 朱新霞, 孙黎, 乐锦华. 野生郁金香的室内萌发研究[J]. 种子, 2005, 24(11): 63-64. |
ZHU X X, SUN L, LE J H. Studies on the indoor germination of wild tulips[J]. Seed, 2005, 24(11): 63-64. (in Chinese) | |
[22] | 聂小霞, 康晓珊, 陆婷, 等. 伊犁郁金香(Tulipa iliensis)种子萌发特性研究[J]. 种子, 2016, 35(12): 70-73. |
NIE X X, KANG X S, LU T, et al. Study on the seed germination characteristics of Tulipa iliensis[J]. Seed, 2016, 35(12): 70-73. (in Chinese with English abstract) | |
[23] | 陈娟娟. 两种野生郁金香种子萌发特性及多倍体诱导研究[D]. 沈阳: 沈阳农业大学, 2018. |
CHEN J J. Studies on seed germination and polyploid induction of two Tulipa species[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese with English abstract) | |
[24] | 黄钦华. 郁金香组织培养技术优化与干旱诱导蛋白TgDi19应用研究[D]. 武汉: 华中农业大学, 2022. |
HUANG Q H. Optimization of tulip tissue culture technology and application of drought inducible protein TgDi19[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract) | |
[25] | JU X T, SHI G M, HOU Z Q, et al. Characterization of the complete chloroplast genome of Tulipa iliensis(Liliaceae)[J]. Mitochondrial DNA Part B, Resources, 2020, 5(3): 2362-2363. |
[26] | 栾启福, 欧阳彤, 姜彦成, 等. 新疆野生郁金香和栽培种的RAPD分析[J]. 江西农业大学学报, 2008, 30(4): 656-660. |
LUAN Q F, OUYANG T, JIANG Y C, et al. Tulip RAPD analysis of cultivars and wild species in Xinjiang[J]. Acta Agriculturae Universitatis Jiangxiensis, 2008, 30(4): 656-660. (in Chinese with English abstract) | |
[27] | 巨秀婷, 潘阿青, 蒋福娟, 等. 郁金香种质资源遗传多样性的ISSR分析[J]. 基因组学与应用生物学, 2019, 38(8): 3667-3674. |
JU X T, PAN A Q, JIANG F J, et al. Genetic diversity of tulip germplasm resource revealed by ISSR markers[J]. Genomics and Applied Biology, 2019, 38(8): 3667-3674. (in Chinese with English abstract) | |
[28] | 唐楠. 郁金香遗传连锁图谱构建及主要真菌病害抗性QTL定位[D]. 杨凌: 西北农林科技大学, 2014. |
TANG N. Construction of genetic linkage map for tulip and identification of QTLs for resistance to major fungal diseases[D]. Yangling: Northwest A & F University, 2014. (in Chinese with English abstract) | |
[29] | 周雨晴, 莫锦萍, 韦金梅, 等. 利用正交设计优化露兜簕的ISSR-PCR反应体系[J/OL]. 分子植物育种, 2022: 1-24. (2022-09-16) [2024-04-25]. https://kns.cnki.net/kcms/detail/46.1068.S.20220915.1354.002.html. |
ZHOU Y Q, MO J P, WEI J M, et al. Optimizing the ISSR-PCR system of Pandanus tectorius(L.) parkinson by orthogonal design[J/OL]. Molecular Plant Breeding, 2022: 1-24. (2022-09-16) [2024-04-25]. https://kns.cnki.net/kcms/detail/46.1068.S.20220915.1354.002.html. (in Chinese with English abstract) | |
[30] | HAJDARI A, PULAJ B, SCHMIDERER C, et al. Erratum: a phylogenetic analysis of the wild Tulipa species (Liliaceae) of Kosovo based on plastid and nuclear DNA sequence[J]. Advanced Genetics, 2021, 2(4): 2100057. |
[31] | SHAW J, LICKEY E B, SCHILLING E E, et al. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III[J]. American Journal of Botany, 2007, 94(3): 275-288. |
[32] | GRIVET D, HEINZE B, VENDRAMIN G G, et al. Genome walking with consensus primers: application to the large single copy region of chloroplast DNA[J]. Molecular Ecology Notes, 2001, 1(4):345-349. |
[33] | 李恩香. 黄精叶钩吻属的亲缘地理学及其近缘类群的系统进化研究[D]. 杭州: 浙江大学, 2006. |
LI E X. Studies on phylogeography of Croomia and phylogeny of Croomia and its Allies[D]. Hangzhou: Zhejiang University, 2006. (in Chinese with English abstract) | |
[34] | SMALL R L, Lickey E B, SHAW J, et al. Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae[J]. Molecular Phylogenetics and Evolution, 2005, 36, 3: 509-522. |
[35] | HWANG L H, HWANG S Y, LIN T P. Low chloroplast DNA variation and population differentiation of Chamaecyparis formosensis and Chamaecyparis taiwanensis[J]. Taiwan Journal of Forest Science, 2000, 15: 229-236. |
[36] | HAMILTON M B. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation[J]. Molecular Ecology, 1999, 8(3):521-523. |
[37] | TABERLET P, GIELLY L, PAUTOU G, et al. Universal primers for amplification of three non-coding regions of chloroplast DNA[J]. Plant Molecular Biology, 1991, 17: 1105-1109. |
[38] | GOLENBERG E M, CLEGG M T, DURBIN M L. Evolution of a noncoding region of the chloroplast genome[J]. Molecular Phylogenetics and Evolution, 1993, 2(1): 52-64. |
[39] | 马秀花, 唐楠, 唐道城. 郁金香SSR-PCR反应体系的建立与优化[J]. 分子植物育种, 2020, 18(12): 3961-3970. |
MA X H, TANG N, TANG D C. Establishment and optimization of SSR-PCR amplification system for tulip[J]. Molecular Plant Breeding, 2020, 18(12): 3961-3970. (in Chinese with English abstract) | |
[40] | 陈兰艳, 马秀花, 唐楠, 等. 郁金香SRAP-PCR体系建立与优化[J]. 分子植物育种, 2019, 17(20): 6711-6717. |
CHEN L Y, MA X H, TANG N, et al. Establishment and optimization of SRAP-PCR system for tulip[J]. Molecular Plant Breeding, 2019, 17(20): 6711-6717. (in Chinese with English abstract) | |
[41] | 巨秀婷, 阿啟兰. 郁金香ISSR-PCR体系建立与优化[J]. 分子植物育种, 2016, 14(4): 973-979. |
JU X T, A Q L. Establishment and optimization of ISSR-PCR system for tulip[J]. Molecular Plant Breeding, 2016, 14(4): 973-979. (in Chinese with English abstract) | |
[42] | 高曼熔, 杨天为, 黄诗宇, 等. 广西野生铁皮石斛SCoT体系优化及遗传多样性分析[J/OL]. 分子植物育种, 2023: 1-19. (2023-08-30) [2024-04-25]. https://kns.cnki.net/kcms/detail/46.1068.s.20230830.0912.002.html. |
GAO M R, YANG T W, HUANG S Y, et al. Optimization of SCoT system of Dendrobium officinale and analysis of genetic diversity of wild germplasm in Guangxi[J/OL]. Molecular Plant Breeding, 2023: 1-19. (2023-08-30) [2024-04-25]. https://kns.cnki.net/kcms/detail/46.1068.s.20230830.0912.002.html. (in Chinese with English abstract) | |
[43] | 袁柳娇, 余如凤, 钟军弟, 等. 红树植物木榄SCoT-PCR体系优化及遗传多样性分析[J]. 基因组学与应用生物学, 2017, 36(1): 352-361. |
YUAN L J, YU R F, ZHONG J D, et al. System optimization of SCoT-PCR and genetic diversity analysis of a mangrove plant: Bruguiera gymnorrhiza[J]. Genomics and Applied Biology, 2017, 36(1): 352-361. (in Chinese with English abstract) | |
[44] | 余智城, 何雪娇, 林秀香, 等. 基于SSR标记的琯溪蜜柚种质资源遗传多样性分析[J]. 福建热作科技, 2024, 49 (01):40-43. |
YU Z C, HE X J, LIN X X, et al. Analysis of genetic diversity of germplasm resources of Guanxi pomelo based on SSR markers[J]. Fujian Science & Technology of Tropical Crops, 2024, 49 (1):40-43. (in Chinese with English abstract) | |
[45] | 丁海麦, 白羽, 周红兵, 等. 不同居群蒙古扁桃的遗传多样性SRAP分析[J]. 分子植物育种, 2024, 22(8): 2583-2589. |
DING H M, BAI Y, ZHOU H B, et al. SRAP analysis of genetic diversity in different populations of Amygdalus mongolica[J]. Molecular Plant Breeding, 2024, 22(8): 2583-2589. (in Chinese with English abstract) | |
[46] | 郭丽, 吴玲, 王绍明, 等. 破碎化生境中伊犁郁金香种群种子形态特征和萌发特性的适应性演化[J]. 种子, 2015, 34(9): 1-5. |
GUO L, WU L, WANG S M, et al. Adaptive evolutions of Tulipa iliensis Regel.Seed characteristics and germination in habitat fragmentation[J]. Seed, 2015, 34(9): 1-5. (in Chinese with English abstract) | |
[47] | 艾沙江·阿不都沙拉木. 伊犁郁金香的繁殖生物学特性及其生态适应对策[D]. 乌鲁木齐: 新疆农业大学, 2013. |
AYSAJAN A. Reproductive biology of Tulipa iliensis and its adaptive strategies to the early spring environment[D]. Urumqi: Xinjiang Agricultural University, 2013. (in Chinese with English abstract) | |
[48] | 汪自松, 李兆佳, 罗厚仟, 等. 苦瓜种质资源农艺和品质性状遗传多样性分析[J]. 中国蔬菜, 2024(3): 104-110. |
WANG Z S, LI Z J, LUO H Q, et al. Genetic diversity analysis of agronomic and quality traits in bitter gourd germplasm resourcs[J]. China Vegetables, 2024(3): 104-110. (in Chinese with English abstract) | |
[49] | 张芳, 陆瑞华, 傅焕哲, 等. 基于AFLP分子标记的我国不同生态栽培产区枸杞资源遗传多样性分析[J]. 中草药, 2023, 54(18): 6074-6083. |
ZHANG F, LU R H, FU H Z, et al. Genetic diversity analysis of Lycium chinense samples from different cultivation areas based on AFLP molecular markers[J]. Chinese Traditional and Herbal Drugs, 2023, 54(18): 6074-6083. (in Chinese with English abstract) | |
[50] | 邢桂梅, 张艳秋, 张惠华, 等. 我国野生郁金香资源的鉴定及评价研究[C]// 中国球宿根花卉研究进展2022. 辽宁省农业科学院花卉研究所,辽宁省花卉科学重点实验室, 2022:39. |
[1] | 张元元, 冯举伶, 肖婧凤, 关宇, 龙楚儿, 姚立蓉, 孟亚雄, 司二静, 李葆春, 马小乐, 王化俊, 周喜荣, 刘梅金, 汪军成. 青稞遗传多样性及其农艺性状与SSR标记的关联分析[J]. 浙江农业学报, 2024, 36(9): 1977-1989. |
[2] | 董莉莉, 徐志浩, 严灿龙, 范小平, 金泽兰, 王忠华. 基于表型与分子标记对浙贝母不同育种群体的分子鉴定与亲缘关系研究[J]. 浙江农业学报, 2024, 36(8): 1719-1730. |
[3] | 黄辉, 储忝江, 谢楠, 刘凯. 基于线粒体COI序列片段研究华鳈不同地理群体及其他鳈属鱼类的遗传多样性[J]. 浙江农业学报, 2024, 36(8): 1779-1788. |
[4] | 马黎, 兰艺, 谢冰心, 周春露, 罗舒元, 许文坤, 董新星, 严达伟. 杜撒×大长撒VRTN基因多态及其与生产性状的关联研究[J]. 浙江农业学报, 2024, 36(7): 1502-1510. |
[5] | 汪宝根, 陈小央, 吴健, 李潇, 汪颖, 王尖, 吴晓花, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴新义. 浙江豇豆地方品种的遗传多样性[J]. 浙江农业学报, 2024, 36(7): 1569-1582. |
[6] | 朱艳宇, 于文涛, 高水练, 吕水源, 王攀, 靳宛旻, 贵文静, 林浥, 叶乃兴. 福建安溪茶树种质资源遗传多样性与铁观音衍生品种遗传关系[J]. 浙江农业学报, 2024, 36(7): 1591-1601. |
[7] | 张婷, 王雪艳, 郭勤卫, 李朝森, 刘慧琴, 项小敏, 韦静, 赵东风, 万红建. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
[8] | 杨天文, 王静, 李炯, 徐彬其, 程蛟文, 洪宇, 曹毅, 崔竣杰. 大顶苦瓜种质资源的遗传多样性分析与指纹图谱构建[J]. 浙江农业学报, 2024, 36(1): 103-114. |
[9] | 吴倩, 汤紫依, 田盛野, 何海叶, 潘伟伟, 王军峰, 鲍洪华, 张慧娟, 蒋明. 基于SRAP分子标记的华顶杜鹃遗传多样性[J]. 浙江农业学报, 2024, 36(1): 127-133. |
[10] | 张小利, 朱灵龙, 李付振, 唐秀梅, 夏友霖, 游宇, 钟瑞春. 115份花生种质资源农艺与品质性状鉴评及分析[J]. 浙江农业学报, 2023, 35(9): 2033-2044. |
[11] | 袁晔, 刘睿, 王凌云, 沈盟, 叶雪莲, 权新华, 王瑞森, 姚祥坦. 江浙地区菱品种遗传多样性的SLAF-seq分析[J]. 浙江农业学报, 2023, 35(8): 1773-1781. |
[12] | 孟羽莎, 王寅, 赖齐贤, 刘雷, 项超, 吴永华, 郑嫣然, 顾兴国, 方豪, 苗苗, 吴列洪, 汤勇. 甘薯近缘野生种ISBP分子标记的开发及其在遗传多样性分析和品种鉴定中的应用[J]. 浙江农业学报, 2023, 35(3): 489-498. |
[13] | 杨秋蕾, 魏旭东, 马志杰, 陈生梅, 晁生玉, 乌兰巴特尔. 基于mtDNA Cyt b序列变异探究柴达木黄牛的母系遗传多样性及遗传背景[J]. 浙江农业学报, 2023, 35(2): 285-292. |
[14] | 刘士力, 练青平, 贾永义, 迟美丽, 李飞, 姜建湖, 刘一诺, 郑建波, 程顺, 顾志敏. 基于线粒体Cyt b基因序列的浙江省3个马口鱼群体遗传多样性分析[J]. 浙江农业学报, 2023, 35(2): 293-300. |
[15] | 李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋, 任延靖. 基于转录组序列的芜菁SSR标记开发及应用[J]. 浙江农业学报, 2023, 35(2): 319-328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||