浙江农业学报 ›› 2023, Vol. 35 ›› Issue (3): 489-498.DOI: 10.3969/j.issn.1004-1524.2023.03.01
孟羽莎1,2(), 王寅1,2, 赖齐贤1,2, 刘雷1,2, 项超3, 吴永华1,2, 郑嫣然1,2, 顾兴国1,2, 方豪1,2, 苗苗1,2, 吴列洪3, 汤勇1,2,*(
)
收稿日期:
2021-12-15
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
*汤勇,E-mail:作者简介:
孟羽莎(1989—),女,河北保定人,博士,助理研究员,主要从事甘薯育种和分子生物学研究。E-mail: mengyusha200@163.com
基金资助:
MENG Yusha1,2(), WANG Yin1,2, LAI Qixian1,2, LIU Lei1,2, XIANG Chao3, WU Yonghua1,2, ZHENG Yanran1,2, GU Xingguo1,2, FANG Hao1,2, MIAO Miao1,2, WU Liehong3, TANG Yong1,2,*(
)
Received:
2021-12-15
Online:
2023-03-25
Published:
2023-04-07
摘要:
从甘薯近缘野生种Ipomoea triloba和Ipomoea trifida的基因组测序序列中鉴定出2 360条长末端重复反转座子(long terminal repeat retrotransposons, LTR-RT)序列,在此基础上开发了100对基于插入位点的多态性(insertion-site-based polymorphisms,ISBP)引物,并利用4份甘薯种质资源对开发的ISBP引物进行多态性评估,发现24对ISBP引物具有较高的多态性,随后将其应用于浙江省收集的56份甘薯种质资源的遗传多样性分析和品种鉴定。结果显示, 24对ISBP引物在56份种质资源中共产生182条多态性条带,且每份种质资源都有独特的指纹信息。NTsys遗传分析结果显示,群体内不同种质资源之间的遗传距离从0.027 5至0.653 8,平均为0.373 2,引物多态性信息含量(polymorphic information content,PIC)平均为0.289 6,UPGMA和PCA结果显示,这些群体共被分为两个大群,分别包含11和45份种质资源。以上研究表明,该群体的遗传变异较小,不同种质资源之间的遗传背景狭窄。本研究开发的ISBP引物一方面增加了甘薯中逆转座子分子标记的数量,填补了ISBP标记在甘薯遗传分析中应用的空白,另一方面为甘薯品种资源鉴定、保护与利用提供了有力工具。
中图分类号:
孟羽莎, 王寅, 赖齐贤, 刘雷, 项超, 吴永华, 郑嫣然, 顾兴国, 方豪, 苗苗, 吴列洪, 汤勇. 甘薯近缘野生种ISBP分子标记的开发及其在遗传多样性分析和品种鉴定中的应用[J]. 浙江农业学报, 2023, 35(3): 489-498.
MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498.
亚家族中LTR 的个数 LTR No. of subfamily | Ipomoea triloba | Ipomoea trifida | ||||||
---|---|---|---|---|---|---|---|---|
Copia家族 Copia family | Gypsy家族 Gypsy family | Copia家族 Gypsy family | Gypsy家族 Gypsy family | |||||
亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | |
1 | 128 | 128 | 1 102 | 1 102 | 126 | 126 | 826 | 826 |
2 | 6 | 12 | 13 | 26 | 4 | 8 | 12 | 24 |
≥3 | 6 | 22 | 9 | 49 | 5 | 22 | 3 | 15 |
共计Total | 149 | 162 | 1 124 | 1 177 | 135 | 156 | 841 | 865 |
表1 LTR-RT分类结果
Table 1 LTR-RT classification summary
亚家族中LTR 的个数 LTR No. of subfamily | Ipomoea triloba | Ipomoea trifida | ||||||
---|---|---|---|---|---|---|---|---|
Copia家族 Copia family | Gypsy家族 Gypsy family | Copia家族 Gypsy family | Gypsy家族 Gypsy family | |||||
亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | |
1 | 128 | 128 | 1 102 | 1 102 | 126 | 126 | 826 | 826 |
2 | 6 | 12 | 13 | 26 | 4 | 8 | 12 | 24 |
≥3 | 6 | 22 | 9 | 49 | 5 | 22 | 3 | 15 |
共计Total | 149 | 162 | 1 124 | 1 177 | 135 | 156 | 841 | 865 |
图1 M,100 bp DNA ladder;1~16,分别对应17~32号引物。
Fig.1 Amplifications of partial ISBP primers M, 100 bp DNA ladder; 1-16, Respectively corresponding to primers of No.17-32.
图2 引物ISBP31在部分种质资源中扩增结果 M,100 bp DNA ladder;1~21,分别对应1~21份种质份资源编号。
Fig.2 Amplifications of partial sweet-potato varieties based on ISBP31 primer pairs M, 100 bp DNA ladder; 1-21, Respectively corresponding to 1-21 germplasm resources.
引物名称 Primer name | Ne* | H* | I* | PIC |
---|---|---|---|---|
IbISBP4 | 1.300 5 | 0.204 4 | 0.342 1 | 0.257 8 |
IbISBP14 | 1.563 0 | 0.335 8 | 0.503 4 | 0.326 4 |
IbISBP17 | 1.266 8 | 0.185 6 | 0.309 8 | 0.250 0 |
IbISBP18 | 1.490 8 | 0.288 4 | 0.433 7 | 0.281 5 |
IbISBP19 | 1.595 8 | 0.349 9 | 0.521 4 | 0.339 6 |
IbISBP26 | 1.620 2 | 0.356 5 | 0.527 8 | 0.319 2 |
IbISBP30 | 1.677 8 | 0.379 0 | 0.552 5 | 0.260 4 |
IbISBP31 | 1.448 1 | 0.286 3 | 0.445 0 | 0.314 5 |
IbISBP32 | 1.359 7 | 0.224 3 | 0.356 6 | 0.266 8 |
IbISBP57 | 1.557 2 | 0.323 0 | 0.479 4 | 0.318 4 |
IbISBP60 | 1.801 4 | 0.436 8 | 0.626 0 | 0.271 2 |
IbISBP67 | 1.604 5 | 0.345 7 | 0.511 6 | 0.288 7 |
IbISBP69 | 1.593 6 | 0.341 5 | 0.506 1 | 0.305 0 |
IbISBP70 | 1.619 2 | 0.345 3 | 0.508 9 | 0.294 4 |
IbISBP71 | 1.559 8 | 0.335 6 | 0.508 5 | 0.338 8 |
IbISBP72 | 1.670 8 | 0.377 7 | 0.555 0 | 0.326 6 |
IbISBP74 | 1.526 4 | 0.301 6 | 0.448 2 | 0.278 8 |
IbISBP79 | 1.582 3 | 0.320 5 | 0.459 9 | 0.200 8 |
IbISBP80 | 1.707 6 | 0.399 4 | 0.581 4 | 0.296 5 |
IbISBP107 | 1.523 4 | 0.314 5 | 0.476 9 | 0.314 5 |
IbISBP112 | 1.558 1 | 0.324 3 | 0.479 0 | 0.240 5 |
IbISBP120 | 1.251 4 | 0.172 6 | 0.283 8 | 0.233 7 |
IbISBP129 | 1.823 9 | 0.445 0 | 0.635 2 | 0.334 0 |
IbISBP135 | 1.531 9 | 0.314 8 | 0.474 2 | 0.291 2 |
表2 二十四对ISBP引物在56份资源中的多态性特征
Table 2 The characters of the 24 ISBP primer pairs based on 56 sweet potato germplasm resources
引物名称 Primer name | Ne* | H* | I* | PIC |
---|---|---|---|---|
IbISBP4 | 1.300 5 | 0.204 4 | 0.342 1 | 0.257 8 |
IbISBP14 | 1.563 0 | 0.335 8 | 0.503 4 | 0.326 4 |
IbISBP17 | 1.266 8 | 0.185 6 | 0.309 8 | 0.250 0 |
IbISBP18 | 1.490 8 | 0.288 4 | 0.433 7 | 0.281 5 |
IbISBP19 | 1.595 8 | 0.349 9 | 0.521 4 | 0.339 6 |
IbISBP26 | 1.620 2 | 0.356 5 | 0.527 8 | 0.319 2 |
IbISBP30 | 1.677 8 | 0.379 0 | 0.552 5 | 0.260 4 |
IbISBP31 | 1.448 1 | 0.286 3 | 0.445 0 | 0.314 5 |
IbISBP32 | 1.359 7 | 0.224 3 | 0.356 6 | 0.266 8 |
IbISBP57 | 1.557 2 | 0.323 0 | 0.479 4 | 0.318 4 |
IbISBP60 | 1.801 4 | 0.436 8 | 0.626 0 | 0.271 2 |
IbISBP67 | 1.604 5 | 0.345 7 | 0.511 6 | 0.288 7 |
IbISBP69 | 1.593 6 | 0.341 5 | 0.506 1 | 0.305 0 |
IbISBP70 | 1.619 2 | 0.345 3 | 0.508 9 | 0.294 4 |
IbISBP71 | 1.559 8 | 0.335 6 | 0.508 5 | 0.338 8 |
IbISBP72 | 1.670 8 | 0.377 7 | 0.555 0 | 0.326 6 |
IbISBP74 | 1.526 4 | 0.301 6 | 0.448 2 | 0.278 8 |
IbISBP79 | 1.582 3 | 0.320 5 | 0.459 9 | 0.200 8 |
IbISBP80 | 1.707 6 | 0.399 4 | 0.581 4 | 0.296 5 |
IbISBP107 | 1.523 4 | 0.314 5 | 0.476 9 | 0.314 5 |
IbISBP112 | 1.558 1 | 0.324 3 | 0.479 0 | 0.240 5 |
IbISBP120 | 1.251 4 | 0.172 6 | 0.283 8 | 0.233 7 |
IbISBP129 | 1.823 9 | 0.445 0 | 0.635 2 | 0.334 0 |
IbISBP135 | 1.531 9 | 0.314 8 | 0.474 2 | 0.291 2 |
图3 二十四对特异性引物对56份种质资源的聚类分析 红色代表第一个大群,蓝色、紫色、青色和绿色分别代表第二个大群中不同的亚群。紫色圆形、青色的方形、青色的三角形、绿色的菱形和圆形分别代表来自淳安县、莲都区、建德市、缙云县和黄岩区且聚集在同一分支上的种质资源。
Fig.3 UPGMA analysis of 56 sweetpotato germplasm resources based on the 24 pairs of specific primers Red represents the first population, and bule, purple, cyan and green represent different subpopulations in the second population. Purple circle, cyan square, cyan triangle, green diamond and circle represent germplasm resources from Chun’an county, Liandu district, Jiande city, Jinyun county and Huangyan district, which are clustered in the same branch respectively.
[1] |
ZHANG H, WANG Z, LI X, et al. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato[J]. New Phytologist, 2022, 233(3): 1133-1152.
DOI URL |
[2] |
ZHANG H, GAO X R, ZHI Y H, et al. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato[J]. New Phytologist, 2019, 223(4): 1918-1936.
DOI PMID |
[3] |
ARUMUGANATHAN K, EARLE E D. Nuclear DNA content of some important plant species[J]. Plant Molecular Biology Reporter, 1991, 9(3): 208-218.
DOI URL |
[4] |
SI Z Z, DU B, HUO J X, et al. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas(L.) Lam.) genome composition[J]. BMC Genomics, 2016, 17(1): 945.
DOI URL |
[5] | 何畅, 杨锦昌, 余纽, 等. 基于油楠(Sindora glabra)转录组测序的SSR分子标记的开发[J]. 分子植物育种, 2020, 18(7): 2280-2289. |
HE C, YANG J C, YU N, et al. Development of SSR molecular markers based on transcriptome sequencing of Sindora glabra[J]. Molecular Plant Breeding, 2020, 18(7): 2280-2289. (in Chinese with English abstract) | |
[6] |
MONDEN Y, HARA T, OKADA Y, et al. Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing[J]. Breeding Science, 2015, 65(2): 145-153.
DOI PMID |
[7] |
MENG Y S, ZHAO N, LI H, et al. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas(L.) Lam.) varieties[J]. Journal of Integrative Agriculture, 2018, 17(1): 86-93.
DOI URL |
[8] |
SASAI R M, TABUCHI H, SHIRASAWA K, et al. Development of molecular markers associated with resistance to Meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato[J]. DNA Research, 2019, 26(5): 399-409.
DOI URL |
[9] |
FENG J Y, ZHAO S, LI M, et al. Genome-wide genetic diversity detection and population structure analysis in sweetpotato (Ipomoea batatas) using RAD-seq[J]. Genomics, 2020, 112(2): 1978-1987.
DOI PMID |
[10] |
MENG Y, SU W, MA Y, et al. Assessment of genetic diversity and variety identification based on developed retrotransposon-based insertion polymorphism (RBIP) markers in sweet potato (Ipomoea batatas(L.) Lam.)[J]. Scientific Reports, 2021, 11: 17116.
DOI |
[11] |
MENG Y S, ZHENG C X, LI H, et al. Development of a high-density SSR genetic linkage map in sweet potato[J]. The Crop Journal, 2021, 9(6): 1367-1374.
DOI URL |
[12] |
YANG J, MOEINZADEH M H, KUHL H, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history[J]. Nature Plants, 2017, 3 (9): 696-703.
DOI PMID |
[13] |
JIANG S, CAI D Y, SUN Y W, et al. Isolation and characterization of putative functional long terminal repeat retrotransposons in the Pyrus genome[J]. Mobile DNA, 2016, 7: 1.
DOI URL |
[14] |
GALINDO-GONZÁLEZ L, MHIRI C, DEYHOLOS M K, et al. LTR-retrotransposons in plants: engines of evolution[J]. Gene, 2017, 626: 14-25.
DOI URL |
[15] |
OROZCO-ARIAS S, ISAZA G, GUYOT R. Retrotransposons in plant genomes: structure, identification, and classification through bioinformatics and machine learning[J]. International Journal of Molecular Sciences, 2019, 20(15): 3837.
DOI URL |
[16] |
HUANG Y J, CHEN H, HAN J L, et al. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars[J]. Chromosoma, 2020, 129(1): 45-55.
DOI PMID |
[17] |
NADEEM M A. Deciphering the genetic diversity and population structure of Turkish bread wheat germplasm using iPBS-retrotransposons markers[J]. Molecular Biology Reports, 2021, 48(10): 6739-6748.
DOI PMID |
[18] | WAUGH R, MCLEAN K, FLAVELL A J, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP)[J]. Molecular & General Genetics: MGG, 1997, 253(6): 687-694. |
[19] |
KALENDAR R, GROB T, REGINA M, et al. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques[J]. Theoretical and Applied Genetics, 1999, 98(5): 704-711.
DOI URL |
[20] |
SMýKAL P, BAČOVÁ-KERTESZOVÁ N, KALENDAR R, et al. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers[J]. Theoretical and Applied Genetics, 2011, 122(7): 1385-1397.
DOI URL |
[21] | MELNIKOVA N V, KUDRYAVTSEVA A V, SPERANSKAYA A S, et al. The FaRE1 LTR-retrotransposon based SSAP markers reveal genetic polymorphism of strawberry (Fragaria×ananassa) cultivars[J]. Journal of Agricultural Science, 2012, 4(11): 111. |
[22] |
NASRI S, ABDOLLAHI MANDOULAKANI B, DARVISHZADEH R, et al. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers[J]. Biochemical Genetics, 2013, 51(11/12): 927-943.
DOI URL |
[23] |
PAUX E, FAURE S, CHOULET F, et al. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat[J]. Plant Biotechnology Journal, 2010, 8(2): 196-210.
DOI PMID |
[24] |
LIU J, ZHOU R J, WANG W X, et al. A copia-like retrotransposon insertion in the upstream region of the SHATTERPROOF1 gene, BnSHP1.A9, is associated with quantitative variation in pod shattering resistance in oilseed rape[J]. Journal of Experimental Botany, 2020, 71(18): 5402-5413.
DOI PMID |
[25] |
GHONAIM M, KALENDAR R, BARAKAT H, et al. High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis[J]. Molecular Biology Reports, 2020, 47(3): 1589-1603.
DOI PMID |
[26] |
GHONAIM M M, MOHAMED H I, OMRAN A A A. Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers[J]. Genetic Resources and Crop Evolution, 2021, 68(1): 227-242.
DOI |
[27] |
BUTELLI E, LICCIARDELLO C, ZHANG Y, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges[J]. The Plant Cell, 2012, 24(3): 1242-1255.
DOI PMID |
[28] |
KASHINO-FUJII M, YOKOSHO K, YAMAJI N, et al. Retrotransposon insertion and DNA methylation regulate aluminum tolerance in European barley accessions[J]. Plant Physiology, 2018, 178(2): 716-727.
DOI URL |
[29] | ROY N S, LEE S I, NKONGOLO K, et al. Retrotransposons in Betula nana, and interspecific relationships in the Betuloideae, based on inter-retrotransposon amplified polymorphism (IRAP) markers[J]. Genes & Genomics, 2018, 40(5): 511-519. |
[30] |
WU S, LAU K H, CAO Q, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement[J]. Nature Communications, 2018, 9: 4580.
DOI PMID |
[31] |
VOS P, HOGERS R, BLEEKER M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Research, 1995, 23(21): 4407-4414.
DOI PMID |
[32] | 李慧. 甘薯SSR分子连锁图谱的构建和块根产量相关QTL的定位[D]. 北京: 中国农业大学, 2014. |
LI H. Development of SSR genetic linkage maps and mapping of QTLs for storage root yield in sweetpotato, Ipomoea batatas(L.) Lam[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract) | |
[33] |
WU J, WANG Z W, SHI Z B, et al. The genome of the pear (Pyrus bretschneideri Rehd.)[J]. Genome Research, 2013, 23(2): 396-408.
DOI URL |
[34] |
SCHNABLE P S, WARE D, FULTON R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115.
DOI PMID |
[35] |
PIEGU B, GUYOT R, PICAULT N, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice[J]. Genome Research, 2006, 16(10): 1262-1269.
DOI URL |
[1] | 杨秋蕾, 魏旭东, 马志杰, 陈生梅, 晁生玉, 乌兰巴特尔. 基于mtDNA Cyt b序列变异探究柴达木黄牛的母系遗传多样性及遗传背景[J]. 浙江农业学报, 2023, 35(2): 285-292. |
[2] | 刘士力, 练青平, 贾永义, 迟美丽, 李飞, 姜建湖, 刘一诺, 郑建波, 程顺, 顾志敏. 基于线粒体Cyt b基因序列的浙江省3个马口鱼群体遗传多样性分析[J]. 浙江农业学报, 2023, 35(2): 293-300. |
[3] | 李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋, 任延靖. 基于转录组序列的芜菁SSR标记开发及应用[J]. 浙江农业学报, 2023, 35(2): 319-328. |
[4] | 郭丹丹, 刘峰, 牛宝龙, 楼宝. 基于线粒体Cytb基因和D-loop区的野生与养殖小黄鱼群体遗传多样性[J]. 浙江农业学报, 2022, 34(9): 1856-1865. |
[5] | 姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590. |
[6] | 刘苡含, 牟青山, 陈珊宇, 阮关海, 胡晋, 关亚静. 基于SSR-HRM技术的向日葵DNA指纹图谱构建[J]. 浙江农业学报, 2022, 34(4): 678-686. |
[7] | 裴芸, 徐秀红, 陆锦彪, 陈阿敏, 张万萍. 151份贵州地方樱桃番茄资源的遗传多样性分析[J]. 浙江农业学报, 2022, 34(2): 310-316. |
[8] | 谌婕, 左之才, 才冬杰, 付星鑫, 刘玲利, 张义琳, 苟丽萍, 王娅, 任志华, 邓俊良. 牛病毒性腹泻病毒全球基因型与亚型流行情况[J]. 浙江农业学报, 2022, 34(12): 2622-2628. |
[9] | 曹联飞, 施金虎, 徐雅岚, 苏晓玲, 胡福良, 郑火青. 基于线粒体DNA tRNAleu-COⅡ序列的浙江省东方蜜蜂遗传多样性研究[J]. 浙江农业学报, 2022, 34(11): 2395-2403. |
[10] | 汪宝根, 董君暘, 汪颖, 李素娟, 王尖, 鲁忠富, 吴晓花, 李国景, 吴新义. 浙江省地方菜豆种质资源鉴定与遗传多样性分析[J]. 浙江农业学报, 2022, 34(11): 2416-2427. |
[11] | 鲁艳辉, 郭嘉雯, 田俊策, 薛钊鸿, 郑许松, 吕仲贤. 基于COⅠ和Cytb基因的浙江不同抗性水平二化螟种群的遗传结构分析[J]. 浙江农业学报, 2022, 34(11): 2462-2470. |
[12] | 王郅琪, 孙建, 梁俊超, 赵云燕, 颜廷献, 颜小文, 危文亮, 乐美旺. 基于分子标记的江西省芝麻地方种质遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1565-1580. |
[13] | 马杰, 屈雯, 陈春艳, 王磊, 马俊, 刘针杉, 马维, 周平, 何远宽, 孙勃. 基于转录组序列的叶用芥菜奶奶青菜EST-SSR标记开发与遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1640-1649. |
[14] | 刘士力, 卞玉玲, 贾永义, 迟美丽, 李飞, 郑建波, 程顺, 顾志敏. 基于线粒体CO Ⅰ 基因序列的红螯螯虾养殖群体遗传结构分析[J]. 浙江农业学报, 2021, 33(8): 1385-1392. |
[15] | 黄宣, 金林灿, 叶朝辉, 姜洁锋, 施贤波. 浙江近年育成粳稻新品种(系)部分抗病虫基因的分子检测与育种应用[J]. 浙江农业学报, 2021, 33(7): 1159-1169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||