浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1582-1590.DOI: 10.3969/j.issn.1004-1524.2022.08.02
姜昊梁1,2(), 黄允1, 梁绍芳1,2, 谢梦晨1,2, 徐天成1, 宋芷婷1,2, 向文文1,2, 陈青春1,2, 万小荣1,2, 孙伟1,2,*()
收稿日期:
2021-09-21
出版日期:
2022-08-25
发布日期:
2022-08-26
通讯作者:
孙伟
作者简介:
*孙伟,E-mail: starking521@126.com基金资助:
JIANG Haoliang1,2(), HUANG Yun1, LIANG Shaofang1,2, XIE Mengchen1,2, XU Tiancheng1, SONG Zhiting1,2, XIANG Wenwen1,2, CHEN Qingchun1,2, WAN Xiaorong1,2, SUN Wei1,2,*()
Received:
2021-09-21
Online:
2022-08-25
Published:
2022-08-26
Contact:
SUN Wei
摘要:
为探究不同甜玉米自交系幼苗期对镉的响应差异,发掘与甜玉米苗期耐镉性状相关的分子标记位点,选取13份甜玉米自交系进行镉胁迫处理(Cd浓度为0.01 mol·L-1),综合评价甜玉米幼苗生理指标差异,并寻找与甜玉米苗期耐镉性相关的简单重复序列(SSR)分子标记。结果显示,从耐镉性判断,KY188、M114A为敏感型自交系,T96-4、M3、T35和T8-1为耐受型自交系。与对照处理相比:KY188(敏感型)经过镉胁迫处理后,叶绿素含量随时间推进显著(P<0.05)降低,苗高、总根数、根长、地上部鲜重和干重、地下部鲜重和干重、总鲜重、总干重分别显著(P<0.05)降低了18.87%、24.32%、21.13%、58.86%、2.04%、33.77%、26.11%、47.11%、14.29%;T96-4(耐受型)经过镉胁迫处理后,上述指标无显著变化。通过相关性分析,共检测到9个与甜玉米苗期耐镉性状相关的SSR标记,分别位于第2、3、4、5、6、8、9、10号染色体上。
中图分类号:
姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590.
JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590.
性状Trait | RPH | RRL | RRN | RSFW | RRFW | RSDW | RRDW | RSFW/RRFW | RSDW/RRDW | RTDW |
---|---|---|---|---|---|---|---|---|---|---|
RRL | 0.431** | |||||||||
RRN | 0.586** | 0.274* | ||||||||
RSFW | 0.845** | 0.230 | 0.601** | |||||||
RRFW | 0.659** | -0.009 | 0.503** | 0.855** | ||||||
RSDW | 0.743** | 0.484** | 0.810** | 0.788** | 0.634** | |||||
RRDW | 0.087 | -0.104 | 0.122 | 0.129 | 0.198 | 0.102 | ||||
RSFW/RRFW | 0.039 | 0.450** | 0.443** | -0.071 | -0.048 | 0.526** | -0.027 | |||
RSDW/RRDW | -0.113 | -0.125 | -0.036 | -0.109 | -0.082 | -0.103 | 0.954** | -0.048 | ||
RTDW | 0.371** | -0.069 | 0.325* | 0.480** | 0.564** | 0.368** | 0.910** | -0.046 | 0.762** | |
RTFW | 0.828** | 0.330* | 0.733** | 0.944** | 0.825** | 0.918** | 0.136 | 0.196 | -0.111 | 0.470** |
表1 镉胁迫下甜玉米自交系不同指标的相关系数矩阵
Table 1 Correlation coefficient matrix of different indexes of sweet corn inbred lines under cadmium stress
性状Trait | RPH | RRL | RRN | RSFW | RRFW | RSDW | RRDW | RSFW/RRFW | RSDW/RRDW | RTDW |
---|---|---|---|---|---|---|---|---|---|---|
RRL | 0.431** | |||||||||
RRN | 0.586** | 0.274* | ||||||||
RSFW | 0.845** | 0.230 | 0.601** | |||||||
RRFW | 0.659** | -0.009 | 0.503** | 0.855** | ||||||
RSDW | 0.743** | 0.484** | 0.810** | 0.788** | 0.634** | |||||
RRDW | 0.087 | -0.104 | 0.122 | 0.129 | 0.198 | 0.102 | ||||
RSFW/RRFW | 0.039 | 0.450** | 0.443** | -0.071 | -0.048 | 0.526** | -0.027 | |||
RSDW/RRDW | -0.113 | -0.125 | -0.036 | -0.109 | -0.082 | -0.103 | 0.954** | -0.048 | ||
RTDW | 0.371** | -0.069 | 0.325* | 0.480** | 0.564** | 0.368** | 0.910** | -0.046 | 0.762** | |
RTFW | 0.828** | 0.330* | 0.733** | 0.944** | 0.825** | 0.918** | 0.136 | 0.196 | -0.111 | 0.470** |
自交系Inbred lines | CI1 | CI2 | CI3 | U1 | U2 | U3 | D | 耐镉性Cd tolerance |
---|---|---|---|---|---|---|---|---|
KY188 | -2.551 | -3.822 | 1.704 | 0 | 0 | 0.975 | 0.099 | 不耐镉Not tolerant |
M114A | -1.579 | -1.487 | -2.335 | 0.233 | 0.485 | 0 | 0.230 | 不耐镉Not tolerant |
M103 | -0.795 | -0.881 | -1.066 | 0.420 | 0.611 | 0.306 | 0.377 | 中度耐镉Medium tolerant |
M119 | -0.554 | -0.537 | -1.190 | 0.478 | 0.682 | 0.276 | 0.418 | 中度耐镉Medium tolerant |
T52-1 | -0.203 | -0.418 | -0.575 | 0.562 | 0.707 | 0.425 | 0.477 | 中度耐镉Medium tolerant |
M118 | -0.976 | 0.623 | 0.505 | 0.377 | 0.923 | 0.686 | 0.478 | 中度耐镉Medium tolerant |
T96-2 | -0.396 | -0.148 | -0.275 | 0.516 | 0.763 | 0.497 | 0.478 | 中度耐镉Medium tolerant |
M55 | -0.083 | -0.205 | -1.351 | 0.591 | 0.751 | 0.238 | 0.482 | 中度耐镉Medium tolerant |
T43 | -0.283 | -0.205 | -0.340 | 0.543 | 0.751 | 0.482 | 0.486 | 中度耐镉Medium tolerant |
T35 | 0.148 | 0.152 | 0.227 | 0.646 | 0.826 | 0.618 | 0.564 | 高度耐镉Highly tolerant |
T8-1 | 0.707 | 0.055 | 1.807 | 0.780 | 0.805 | 1.000 | 0.657 | 高度耐镉Highly tolerant |
M3 | 1.297 | 0.372 | -0.388 | 0.921 | 0.871 | 0.470 | 0.683 | 高度耐镉Highly tolerant |
T96-4 | 1.628 | 0.992 | -2.241 | 1.000 | 1.000 | 0.023 | 0.706 | 高度耐镉Highly tolerant |
表2 不同甜玉米自交系的耐镉性
Table 2 Cadmium tolerance of different sweet corn inbred lines
自交系Inbred lines | CI1 | CI2 | CI3 | U1 | U2 | U3 | D | 耐镉性Cd tolerance |
---|---|---|---|---|---|---|---|---|
KY188 | -2.551 | -3.822 | 1.704 | 0 | 0 | 0.975 | 0.099 | 不耐镉Not tolerant |
M114A | -1.579 | -1.487 | -2.335 | 0.233 | 0.485 | 0 | 0.230 | 不耐镉Not tolerant |
M103 | -0.795 | -0.881 | -1.066 | 0.420 | 0.611 | 0.306 | 0.377 | 中度耐镉Medium tolerant |
M119 | -0.554 | -0.537 | -1.190 | 0.478 | 0.682 | 0.276 | 0.418 | 中度耐镉Medium tolerant |
T52-1 | -0.203 | -0.418 | -0.575 | 0.562 | 0.707 | 0.425 | 0.477 | 中度耐镉Medium tolerant |
M118 | -0.976 | 0.623 | 0.505 | 0.377 | 0.923 | 0.686 | 0.478 | 中度耐镉Medium tolerant |
T96-2 | -0.396 | -0.148 | -0.275 | 0.516 | 0.763 | 0.497 | 0.478 | 中度耐镉Medium tolerant |
M55 | -0.083 | -0.205 | -1.351 | 0.591 | 0.751 | 0.238 | 0.482 | 中度耐镉Medium tolerant |
T43 | -0.283 | -0.205 | -0.340 | 0.543 | 0.751 | 0.482 | 0.486 | 中度耐镉Medium tolerant |
T35 | 0.148 | 0.152 | 0.227 | 0.646 | 0.826 | 0.618 | 0.564 | 高度耐镉Highly tolerant |
T8-1 | 0.707 | 0.055 | 1.807 | 0.780 | 0.805 | 1.000 | 0.657 | 高度耐镉Highly tolerant |
M3 | 1.297 | 0.372 | -0.388 | 0.921 | 0.871 | 0.470 | 0.683 | 高度耐镉Highly tolerant |
T96-4 | 1.628 | 0.992 | -2.241 | 1.000 | 1.000 | 0.023 | 0.706 | 高度耐镉Highly tolerant |
图2 镉胁迫处理对甜玉米自交系幼苗生长情况(A)和SPAD值(B)的影响 CK,对照;T,镉胁迫。下同。
Fig.2 Effect of cadmium stress on growth (A) and SPAD value (B) of different sweet corn inbred lines CK, Control; T, Cd stress.The same as below.
图3 镉胁迫处理对不同甜玉米自交系幼苗生物量的影响 “*”和“**”分别表示差异显著(P<0.05)与极显著(P<0.01)。
Fig.3 Effect of cadmium treatment on seedling biomass of different sweet corn inbred lines “*” and “**” indicated significant difference at P<0.05 and P<0.01, respectively.
自交系Inbred lines | 处理Treatment | 苗高Plant height/cm | 总根数Root number | 根长Root length/cm |
---|---|---|---|---|
KY188 | 对照Control | 14.52±0.54 a | 9.17±0.85 a | 14.01±1.19 a |
镉胁迫Cd stress | 11.78±0.61 b | 6.94±0.49 b | 11.05±0.64 b | |
T96-4 | 对照Control | 14.87±0.61 a | 7.17±0.45 a | 13.45±0.89 a |
镉胁迫Cd stress | 14.77±0.65 a | 7.63±0.49 a | 13.29±1.08 a |
表3 镉处理对不同甜玉米自交系苗高、总根数、根长的影响
Table 3 Effects of cadmium treatment on plant height, root number and root length of different sweet corn inbred lines
自交系Inbred lines | 处理Treatment | 苗高Plant height/cm | 总根数Root number | 根长Root length/cm |
---|---|---|---|---|
KY188 | 对照Control | 14.52±0.54 a | 9.17±0.85 a | 14.01±1.19 a |
镉胁迫Cd stress | 11.78±0.61 b | 6.94±0.49 b | 11.05±0.64 b | |
T96-4 | 对照Control | 14.87±0.61 a | 7.17±0.45 a | 13.45±0.89 a |
镉胁迫Cd stress | 14.77±0.65 a | 7.63±0.49 a | 13.29±1.08 a |
标记名称Marker name | 染色体Chromosome | 引物序列Primer sequences(5'→3') | P |
---|---|---|---|
bnlg108 | 2 | F: GCACTCACGCGCACAGGTCA R:CGCCTGCCAAGGTACATCAC | 0.001 3 |
bnlg1456 | 3 | F: CTCTAGGTGGTTAAGATTAACTC R: TTCATGAGGACCGTGTTGAA | 0.045 0 |
bnlg589 | 4 | F: GGGTCGTTTAGGGAGGCACCTTTG R: GCGACAGACAGACAGACAAGCG | 0.023 0 |
bnlg2305 | 5 | F: CACCTTGAAAGCATCCTCGT R: GTATCACACCCTCTGCTGCA | 0.000 2 |
umc1083 | 6 | F: CTTTCCTCTCTGGAGCGTGTATTG R: ATATGTTGCAGAACCATCCAGGTC | 0.005 6 |
umc1139 | 8 | F: TTTGTAATATGGCGCTCGAAAACT R: GAAGACGCCTCCAAGATGGATAC | 0.000 4 |
umc1170 | 9 | F: TGGGTGCTAAAACGTAACAACAAA R: GAGGACGAAGCAGAAATCCTACC | 0.004 2 |
bnlg210 | 10 | F: GCCTCGCACCAAGACATAATA R: TGCCCCATTTGAGTAGACTTC | 0.000 8 |
phi059 | 10 | F: AAGCTAATTAAGGCCGGTCATCCC R: TCCGTGTACTCGGCGGACTC | 0.000 2 |
表4 甜玉米自交系中与其苗期耐镉性状相关的遗传标记
Table 4 Genetic markers of cadmium tolerance traits in sweet corn inbred lines at seedling stage
标记名称Marker name | 染色体Chromosome | 引物序列Primer sequences(5'→3') | P |
---|---|---|---|
bnlg108 | 2 | F: GCACTCACGCGCACAGGTCA R:CGCCTGCCAAGGTACATCAC | 0.001 3 |
bnlg1456 | 3 | F: CTCTAGGTGGTTAAGATTAACTC R: TTCATGAGGACCGTGTTGAA | 0.045 0 |
bnlg589 | 4 | F: GGGTCGTTTAGGGAGGCACCTTTG R: GCGACAGACAGACAGACAAGCG | 0.023 0 |
bnlg2305 | 5 | F: CACCTTGAAAGCATCCTCGT R: GTATCACACCCTCTGCTGCA | 0.000 2 |
umc1083 | 6 | F: CTTTCCTCTCTGGAGCGTGTATTG R: ATATGTTGCAGAACCATCCAGGTC | 0.005 6 |
umc1139 | 8 | F: TTTGTAATATGGCGCTCGAAAACT R: GAAGACGCCTCCAAGATGGATAC | 0.000 4 |
umc1170 | 9 | F: TGGGTGCTAAAACGTAACAACAAA R: GAGGACGAAGCAGAAATCCTACC | 0.004 2 |
bnlg210 | 10 | F: GCCTCGCACCAAGACATAATA R: TGCCCCATTTGAGTAGACTTC | 0.000 8 |
phi059 | 10 | F: AAGCTAATTAAGGCCGGTCATCCC R: TCCGTGTACTCGGCGGACTC | 0.000 2 |
[1] | 郑彦坤. 特用玉米营养品质与淀粉体和蛋白体发育关系的研究进展[J]. 玉米科学, 2019, 27(6): 89-94. |
ZHENG Y K. Research progress on the relationship between special maize nutrient quality and development of amyloplasts and protein bodies[J]. Journal of Maize Sciences, 2019, 27(6): 89-94. (in Chinese with English abstract) | |
[2] | 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. (in Chinese with English abstract) | |
[3] |
LIU H J, ZHANG C X, WANG J M, et al. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars[J]. Chemosphere, 2017, 171: 240-247.
DOI URL |
[4] | 刘丽珍, 戎婷婷, 高昆. 镉对玉米幼苗生长的影响[J]. 农业与技术, 2016, 36(3): 3-5. |
LIU L Z, RONG T T, GAO K. Effects of cadmium on growth of maize seedlings[J]. Agriculture and Technology, 2016, 36(3): 3-5. (in Chinese) | |
[5] | 樊金娟, 刘宇, 曹樱迪, 等. 玉米对镉胁迫的响应及其耐镉机制研究进展[J]. 沈阳农业大学学报, 2018, 49(5): 633-640. |
FAN J J, LIU Y, CAO Y D, et al. Responses of maize to cadmium stress and mechanisms of cadmium tolerance[J]. Journal of Shenyang Agricultural University, 2018, 49(5): 633-640. (in Chinese with English abstract) | |
[6] |
WAHID A, KHALIQ S. Architectural and biochemical changes in embryonic tissues of maize under cadmium toxicity[J]. Plant Biology, 2015, 17(5): 1005-1012.
DOI URL |
[7] | 宇克莉, 邹婧, 邹金华. 镉胁迫对玉米幼苗抗氧化酶系统及矿质元素吸收的影响[J]. 农业环境科学学报, 2010, 29(6): 1050-1056. |
YU K L, ZOU J, ZOU J H. Effects of cadmium stress on antioxidant enzyme system and absorption of mineral elements in maize seedlings[J]. Journal of Agro-Environment Science, 2010, 29(6): 1050-1056. (in Chinese with English abstract) | |
[8] | CHANEVA G, PARVANOVA P, TZVETKOVA N, et al. Photosynthetic response of maize plants against cadmium and paraquat impact[J]. Water, Air, and Soil Pollution, 2010, 208(1/2/3/4): 287-293. |
[9] | 彭鸣, 王焕校, 吴玉树. 镉、铅在玉米幼苗中的积累和迁移: X射线显微分析[J]. 环境科学学报, 1989, 9(1): 61-67. |
PENG M, WANG H X, WU Y S. Accumulation and transport of cadmium and lead in the seedlings of maize[J]. Acta Scientiae Circumstantiae, 1989, 9(1): 61-67. (in Chinese with English abstract) | |
[10] |
TANWIR K, AKRAM M S, MASOOD S, et al. Cadmium-induced rhizospheric pH dynamics modulated nutrient acquisition and physiological attributes of maize (Zea mays L.)[J]. Environmental Science and Pollution Research International, 2015, 22(12): 9193-9203.
DOI URL |
[11] | 王子明, 李春艳, 万世敏, 等. 广东省鲜食玉米产业发展经验与战略发展思路[J]. 作物杂志, 2014(3): 1-4. |
WANG Z M, LI C Y, WAN S M, et al. Experience and strategic development of fresh corn industry in Guangdong Province[J]. Crops, 2014(3): 1-4. (in Chinese) | |
[12] | 张珂, 厉萌萌, 刘德权, 等. 镉胁迫对小麦、玉米种子萌发及幼苗生长的影响[J]. 种子, 2019, 38(5): 90-94. |
ZHANG K, LI M M, LIU D Q, et al. Effects of cadmium stress on seed germination and seedling growth of wheat and maize[J]. Seed, 2019, 38(5): 90-94. (in Chinese) | |
[13] | 杜彩艳, 余小芬, 杜建磊, 等. 不同玉米品种对Cd、Pb、As积累与转运的差异研究[J]. 生态环境学报, 2019, 28(9): 1867-1875. |
DU C Y, YU X F, DU J L, et al. Variety difference of Cd, Pb and As accumulation and translocation in different varieties of Zea mays[J]. Ecology and Environmental Sciences, 2019, 28(9): 1867-1875. (in Chinese with English abstract) | |
[14] | 孟桂元, 唐婷, 周静, 等. 不同玉米品种种子萌发期耐镉性分析[J]. 分子植物育种, 2016, 14(11): 3166-3171. |
MENG G Y, TANG T, ZHOU J, et al. Analysis on cadmium tolerance of different maize varieties during seed germination stage[J]. Molecular Plant Breeding, 2016, 14(11): 3166-3171. (in Chinese with English abstract) | |
[15] | 吴琼, 杨克军, 张翼飞, 等. 不同基因型玉米耐密植抗倒性分析及其鉴定指标的筛选[J]. 玉米科学, 2017, 25(6): 79-86. |
WU Q, YANG K J, ZHANG Y F, et al. Analysis of lodging resistance and determination of resistance evaluation indicators in different maize genotypes under higher population density selection pressures[J]. Journal of Maize Sciences, 2017, 25(6): 79-86. (in Chinese with English abstract) | |
[16] | 沙丽萍. 例谈植物DNA粗提取的CTAB法、SDS法与盐析法[J]. 中学生物教学, 2018(21): 65-67. |
SHA L P. CTAB method, SDS method and salting out method for crude extraction of plant DNA[J]. Teaching of Middle School Biology, 2018(21): 65-67. (in Chinese) | |
[17] | 顾丹丹, 羌维民, 王卓仁, 等. 玉米苗期耐镉胁迫的基因型差异[J]. 西北农业学报, 2014, 23(10): 76-81. |
GU D D, QIANG W M, WANG Z R, et al. Genotypic differences of cadmium tolerance at maize seedling stages[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(10): 76-81. (in Chinese with English abstract) | |
[18] | 沈天尔, 施洁, 胡盈盈, 等. 玉米对镉的转运、积累机制及其生理响应[J]. 中国粮油学报, 2019, 34(9): 139-146. |
SHEN T E, SHI J, HU Y Y, et al. Mechanism of cadmium transport and accumulation in maize and its physiological response against Cd toxicity[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(9): 139-146. (in Chinese with English abstract) | |
[19] |
王艳芳, 悦飞雪, 李冬, 等. 镉胁迫对不同基因型玉米生长和镉吸收分配的影响[J]. 核农学报, 2019, 33(7): 1440-1447.
DOI |
WANG Y F, YUE F X, LI D, et al. Effects of cadmium stress on plant growth, cadmium absorption and distribution of different genotypes of maize[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(7): 1440-1447. (in Chinese with English abstract) | |
[20] | 于子昊, 李胜宝, 赵晓玲, 等. 玉米根系、根鞘性状与镉吸收的品种差异研究[J]. 农业环境科学学报, 2021, 40(4): 747-755. |
YU Z H, LI S B, ZHAO X L, et al. Differences in root morphology, rhizosheath traits, and Cd uptake in maize cultivars[J]. Journal of Agro-Environment Science, 2021, 40(4): 747-755. (in Chinese with English abstract) | |
[21] |
LAPIE C, LEGLIZE P, PARIS C, et al. Profiling of main metabolites in root exudates and mucilage collected from maize submitted to cadmium stress[J]. Environmental Science and Pollution Research International, 2019, 26(17): 17520-17534.
DOI URL |
[22] | 单长卷, 徐新娟, 孙海丽, 等. 茉莉酸对镉胁迫下玉米幼苗叶片生理特性的影响[J]. 玉米科学, 2016, 24(3): 99-102. |
SHAN C J, XU X J, SUN H L, et al. Effects of jasmonic acid on the leaf physiological characteristics of maize seedlings under cadmium stress[J]. Journal of Maize Sciences, 2016, 24(3): 99-102. (in Chinese with English abstract) | |
[23] |
RIZWAN M, ALI S, QAYYUM M F, et al. Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review[J]. Environmental Geochemistry and Health, 2017, 39(2): 259-277.
DOI URL |
[24] | 李国良. 重金属镉污染对玉米种子萌发及幼苗生长的影响[J]. 国土与自然资源研究, 2006(2): 91-92. |
LI G L. Effect of cadmium on maize seeds germination and seedling growth[J]. Territory & Natural Resources Study, 2006(2): 91-92. (in Chinese with English abstract) |
[1] | 麻仲花, 吴娜, 陈娟, 赵匆, 闫承宏, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期生理特性的影响[J]. 浙江农业学报, 2022, 34(6): 1205-1216. |
[2] | 杜红, 李玉鹏, 程文, 肖荣英, 胡鹏. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
[3] | 赵宇洪, 何文, 李根, 王强, 谢锐, 王燕, 陈清, 王小蓉. 四川地区琯溪蜜柚及其芽变品种的果实品质[J]. 浙江农业学报, 2022, 34(5): 995-1004. |
[4] | 杨蕾, 洪林, 刘兆俊, 杨海健, 王武. 六个金柑品种果实品质与营养综合评价[J]. 浙江农业学报, 2022, 34(3): 534-547. |
[5] | 裴芸, 徐秀红, 陆锦彪, 陈阿敏, 张万萍. 151份贵州地方樱桃番茄资源的遗传多样性分析[J]. 浙江农业学报, 2022, 34(2): 310-316. |
[6] | 张棚, 张希, 杨雪妍, 刘元林, 李儒, 龙鸣, 田晓静, 张福梅, 陈士恩, 马忠仁. 基于微量元素分析的三七产地及其主侧根鉴别[J]. 浙江农业学报, 2021, 33(7): 1300-1308. |
[7] | 王英珍, 潘芝梅. 二十二份毛花猕猴桃种质资源果实品质的主成分分析与综合评价[J]. 浙江农业学报, 2021, 33(5): 825-830. |
[8] | 张婷, 刘慧琴, 郭勤卫, 李朝森, 章心惠, 项小敏, 赵东风, 万红建. 十六份辣椒材料游离氨基酸组成的主成分分析与聚类分析[J]. 浙江农业学报, 2021, 33(4): 640-650. |
[9] | 周艳超, 薛坤, 葛海燕, 陈火英, 刘杨. 基于主成分与聚类分析的樱桃番茄品质综合评价[J]. 浙江农业学报, 2021, 33(12): 2320-2329. |
[10] | 任倩倩, 孙纪霞, 张德顺, 丁兆堂, 张英杰, 张京伟. 干旱胁迫下不同绣球品种生理响应与抗旱性评价[J]. 浙江农业学报, 2021, 33(10): 1852-1860. |
[11] | 崔鹏飞, 魏灵珠, 程建徽, 向江, 李明山, 吴江, . 不同砧木对天工翠玉葡萄生长和果实品质的影响[J]. 浙江农业学报, 2021, 33(1): 52-61. |
[12] | 张宇, 张继, 荣涛, 欧克纬, 黄国弟, 宋红霞. 杧果品种亲缘关系的CDDP分析[J]. 浙江农业学报, 2020, 32(5): 824-830. |
[13] | 沈迪, 陈龙正, 路晓华, 陶建平, 冯顾城, 刘洁霞, 冯凯, 尹莲, 丁旭, 贾丽丽, 徐志胜, 刘惠吉, 熊爱生. 苏南地区29个秋冬茬芹菜品种资源评价[J]. 浙江农业学报, 2020, 32(4): 653-660. |
[14] | 王长进, 徐运林, 程昕昕, 周毅, 余海兵. 甜玉米种子营养品质主要性状全基因组关联分析[J]. 浙江农业学报, 2020, 32(3): 383-389. |
[15] | 闫晶秋子, 李钢铁, 刘玉军, 麻云霞, 杨颖. 基于主成分分析及隶属函数法的巨菌草幼苗耐盐碱性评价[J]. 浙江农业学报, 2019, 31(9): 1531-1540. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||