浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1205-1216.DOI: 10.3969/j.issn.1004-1524.2022.06.11
麻仲花a(), 吴娜a, 陈娟a, 赵匆a, 闫承宏a, 刘吉利b,c,*(
)
收稿日期:
2021-02-01
出版日期:
2022-06-25
发布日期:
2022-06-30
通讯作者:
刘吉利
作者简介:
*刘吉利,E-mail: tim11082003@163.com基金资助:
MA Zhonghuaa(), WU Naa, CHEN Juana, ZHAO Conga, YAN Chenghonga, LIU Jilib,c,*(
)
Received:
2021-02-01
Online:
2022-06-25
Published:
2022-06-30
Contact:
LIU Jili
摘要:
为了明确不同柳枝稷品种对盐胁迫和供磷水平两个因素的生理响应特征,本研究采用水培试验,设置2个盐胁迫水平(A1盐胁迫、A2非盐胁迫)和4个供磷水平(B1无磷、B2低磷、B3高磷、B4全磷),分析了盐胁迫和供磷水平对Alamo加倍体、Alamo和Pathfinder 3个柳枝稷品种苗期生理特性的影响规律。结果表明:Alamo加倍体、Alamo和Pathfinder在盐胁迫条件下可溶性糖含量随着供磷水平的增加而降低,全磷处理下较无磷处理分别降低40.80%、26.47%、13.82%。盐胁迫下3个柳枝稷品种丙二醛含量随着供磷水平的提高均在高磷处理下达到最大值。3个柳枝稷品种在盐胁迫下脯氨酸含量随着供磷水平增加而增加,全磷处理较无磷处理分别升高 136.79%、193.85%、61.09%。盐胁迫下Alamo 加倍体和Alamo的过氧化物酶(POD)活性随着供磷水平下的提高均在全磷处理下达到最大值;而Pathfinder的POD活性在低磷处理下达到最大值。盐胁迫下Alamo 加倍体的超氧化物歧化酶(SOD)活性随着供磷水平提高在高磷处理下达到最大值;盐胁迫下Alamo和Pathfinder的SOD活性随着供磷水平的提高均在低磷处理下达到最大值。3个柳枝稷品种在盐胁迫条件下过氧化氢酶(CAT)活性随着供磷水平增加而降低,全磷处理较无磷处理著降低 65.81%、37.41%、90.66%。通过对3个柳枝稷品种综合生理抗逆性分析得出Pathfinder品种在各处理下综合值之和最高,表明Pathfinder苗期抗盐胁迫与低磷胁迫能力最强,适宜在盐碱地种植。
中图分类号:
麻仲花, 吴娜, 陈娟, 赵匆, 闫承宏, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期生理特性的影响[J]. 浙江农业学报, 2022, 34(6): 1205-1216.
MA Zhonghua, WU Na, CHEN Juan, ZHAO Cong, YAN Chenghong, LIU Jili. Effects of salt stress and phosphorus supply on physiological characteristics of switchgrass seedlings[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1205-1216.
品种 | 生态类型 | 染色体倍数 | 原产地 |
---|---|---|---|
Varieties | Ecotype | Ploidy level | Origin |
Alamo | 低地Lowland | 四倍体Tetraploid | 得克萨斯州南部Southern Texas 28°N |
Alamo加倍体Alamo syndiploid | 低地Lowland | 八倍体 Octoploid | Alamo通过秋水仙素人工加倍Alamo doubled artificially with colchicine |
Pathfinder | 高地Upland | 八倍体 Octoploid | 内布拉斯加州堪萨斯州 Nebraska/Kansas 40°N |
表1 柳枝稷材料生态类型、染色体倍性及来源
Table 1 Ecological type, chromosome doubling and origin of switchgrass material
品种 | 生态类型 | 染色体倍数 | 原产地 |
---|---|---|---|
Varieties | Ecotype | Ploidy level | Origin |
Alamo | 低地Lowland | 四倍体Tetraploid | 得克萨斯州南部Southern Texas 28°N |
Alamo加倍体Alamo syndiploid | 低地Lowland | 八倍体 Octoploid | Alamo通过秋水仙素人工加倍Alamo doubled artificially with colchicine |
Pathfinder | 高地Upland | 八倍体 Octoploid | 内布拉斯加州堪萨斯州 Nebraska/Kansas 40°N |
图1 盐胁迫与供磷水平对3个柳枝稷品种可溶性糖含量的影响 同一品种柱上无相同字母表示差异显著(P<0.05)。下同。
Fig. 1 Effects of salt stress and phosphorus supply level on soluble sugar content of three switchgrass varieties Different lowercase letters on the bars indicated significant difference at P<0.05 within the same variety. The same as below.
营养成分 Component | 母液浓度Initial solution concentration/ (mol·L-1) | 溶液浓度 Solution concentration / (mmol·L-1) | 供磷水平Phosphorus level | |||
---|---|---|---|---|---|---|
P0/mL | -P/mL | +P/mL | P/mL | |||
Ca(NO3)2·4H2O | 5 | 5.0 | 1 | 1 | 1 | 1 |
KNO3 | 2.5 | 5.0 | 2 | 2 | 2 | 2 |
MgSO4·7H2O | 2.5 | 2.5 | 1 | 1 | 1 | 1 |
KH2PO4 | 1 | 2.0 | _ | 0.005 | 0.2 | 2 |
NaH2PO4 | _ | 2.0 | _ | _ | _ | _ |
NaNO3 | _ | 5.0 | _ | _ | _ | _ |
MgCl2 | _ | 2.5 | _ | _ | _ | _ |
NaSO4 | _ | 2.5 | _ | _ | _ | _ |
CaCl2 | _ | 5.0 | _ | _ | _ | _ |
KCL | 2.5 | 5.0 | 0.8 | 0.798 | 0.72 | _ |
EDTA-FeNa | 0.2 | 0.02 | 0.1 | 0.1 | 0.1 | 0.1 |
MnSO4·H2O | 0.672 2 | 0.006 722 | 0.1 | 0.1 | 0.1 | 0.1 |
CuSO4·5H2O | 0.003 16 | 0.000 316 | 0.1 | 0.1 | 0.1 | 0.1 |
表 2 不同磷浓度的 Hoagland 营养液配置表
Table 2 Hoagland nutrient solution configuration table with different phosphorus concentrations
营养成分 Component | 母液浓度Initial solution concentration/ (mol·L-1) | 溶液浓度 Solution concentration / (mmol·L-1) | 供磷水平Phosphorus level | |||
---|---|---|---|---|---|---|
P0/mL | -P/mL | +P/mL | P/mL | |||
Ca(NO3)2·4H2O | 5 | 5.0 | 1 | 1 | 1 | 1 |
KNO3 | 2.5 | 5.0 | 2 | 2 | 2 | 2 |
MgSO4·7H2O | 2.5 | 2.5 | 1 | 1 | 1 | 1 |
KH2PO4 | 1 | 2.0 | _ | 0.005 | 0.2 | 2 |
NaH2PO4 | _ | 2.0 | _ | _ | _ | _ |
NaNO3 | _ | 5.0 | _ | _ | _ | _ |
MgCl2 | _ | 2.5 | _ | _ | _ | _ |
NaSO4 | _ | 2.5 | _ | _ | _ | _ |
CaCl2 | _ | 5.0 | _ | _ | _ | _ |
KCL | 2.5 | 5.0 | 0.8 | 0.798 | 0.72 | _ |
EDTA-FeNa | 0.2 | 0.02 | 0.1 | 0.1 | 0.1 | 0.1 |
MnSO4·H2O | 0.672 2 | 0.006 722 | 0.1 | 0.1 | 0.1 | 0.1 |
CuSO4·5H2O | 0.003 16 | 0.000 316 | 0.1 | 0.1 | 0.1 | 0.1 |
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A因素 A Level | * | NS | * |
B因素 B Level | NS | NS | NS |
A×B | * | * | * |
表3 可溶性糖含量方差分析表
Table 3 Analysis of variance table of soluble sugar content
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A因素 A Level | * | NS | * |
B因素 B Level | NS | NS | NS |
A×B | * | * | * |
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A水平 A Level | NS | NS | NS |
B水平 B Level | NS | NS | NS |
A×B | * | * | * |
表4 丙二醛含量方差分析表
Table 4 Analysis of variance table of MDA content
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A水平 A Level | NS | NS | NS |
B水平 B Level | NS | NS | NS |
A×B | * | * | * |
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A水平 A Level | NS | NS | * |
B水平 B Level | NS | NS | NS |
A×B | * | * | * |
表5 脯氨酸含量方差分析表
Table 5 Analysis of variance table of proline content
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A水平 A Level | NS | NS | * |
B水平 B Level | NS | NS | NS |
A×B | * | * | * |
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A水平 A Level | NS | NS | * |
B水平 A Level | NS | NS | NS |
A×B | * | * | NS |
表6 POD活性方差分析表
Table 6 Analysis variance table of POD activity
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A水平 A Level | NS | NS | * |
B水平 A Level | NS | NS | NS |
A×B | * | * | NS |
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A水平 A Level | * | NS | NS |
B水平 B Level | * | * | NS |
A×B | NS | NS | * |
表7 SOD活性方差分析表
Table 7 Analysis variance table of SOD activity
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A水平 A Level | * | NS | NS |
B水平 B Level | * | * | NS |
A×B | NS | NS | * |
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A水平 A Level | * | * | * |
B水平 B Level | * | * | NS |
A×B | NS | NS | NS |
表8 CAT活性方差分析表
Table 8 Analysis variance table of CAT activity
变异来源Source | Alamo加倍体Alamo syndiploid | Alamo | Pathfinder |
---|---|---|---|
A水平 A Level | * | * | * |
B水平 B Level | * | * | NS |
A×B | NS | NS | NS |
主成分 Principal component | 初始特征值 Initial eigenvalues | 提取的主成分 The extracted principal component | ||||||
---|---|---|---|---|---|---|---|---|
特征值 Eigenvalues | 贡献率 Contribution rate/% | 累积贡献率Cumulative contribution rate /% | 特征值 Eigenvalues | 贡献率 Contribution rate/% | 累积贡献率Cumulative contribution rate/% | |||
1 | 2.27 | 37.88 | 37.88 | 2.27 | 33.88 | 37.88 | ||
2 | 1.43 | 23.80 | 61.68 | 1.43 | 23.80 | 61.68 | ||
3 | 1.21 | 20.16 | 81.84 | 1.21 | 20.16 | 81.84 | ||
4 | 0.57 | 9.57 | 91.41 | |||||
5 | 0.37 | 4.65 | 97.53 | |||||
6 | 0.15 | 2.47 | 100.00 |
表9 各成分的特征值、方差及累计贡献率
Table 9 The characteristic value, contribution rate and cumulative contribution rate of each component.
主成分 Principal component | 初始特征值 Initial eigenvalues | 提取的主成分 The extracted principal component | ||||||
---|---|---|---|---|---|---|---|---|
特征值 Eigenvalues | 贡献率 Contribution rate/% | 累积贡献率Cumulative contribution rate /% | 特征值 Eigenvalues | 贡献率 Contribution rate/% | 累积贡献率Cumulative contribution rate/% | |||
1 | 2.27 | 37.88 | 37.88 | 2.27 | 33.88 | 37.88 | ||
2 | 1.43 | 23.80 | 61.68 | 1.43 | 23.80 | 61.68 | ||
3 | 1.21 | 20.16 | 81.84 | 1.21 | 20.16 | 81.84 | ||
4 | 0.57 | 9.57 | 91.41 | |||||
5 | 0.37 | 4.65 | 97.53 | |||||
6 | 0.15 | 2.47 | 100.00 |
指标Index | PC1 | PC2 | PC3 |
---|---|---|---|
SS | 0.52 | 0.41 | 0.14 |
MDA | 0.49 | 0.21 | -0.35 |
PRO | 0.50 | 0 | 0.39 |
POD | -0.13 | 0.03 | 0.84 |
SOD | 0.44 | -0.44 | 0.04 |
CAT | -0.15 | 0.77 | 0 |
表10 主成分载荷矩阵
Table 10 Principal component load matrix.
指标Index | PC1 | PC2 | PC3 |
---|---|---|---|
SS | 0.52 | 0.41 | 0.14 |
MDA | 0.49 | 0.21 | -0.35 |
PRO | 0.50 | 0 | 0.39 |
POD | -0.13 | 0.03 | 0.84 |
SOD | 0.44 | -0.44 | 0.04 |
CAT | -0.15 | 0.77 | 0 |
品种 Variety | 处理Treatment | PC1 | PC2 | PC3 | 综合值Comprehensive value(F) |
---|---|---|---|---|---|
Alamo加倍体Alamo syndiploid | A1B1 | -0.58 | 2.66 | -0.24 | 1.84 |
A1B2 | 0.23 | 1.62 | -1.09 | 0.76 | |
A1B3 | 0.44 | 1.44 | -0.21 | 1.67 | |
A1B4 | -0.48 | 0.66 | 1.15 | 1.34 | |
A2B1 | -2.00 | 0.91 | 1.33 | 0.25 | |
A2B2 | -2.78 | -0.77 | 1.86 | -1.69 | |
A2B3 | -1.92 | -0.84 | 1.28 | 1.48 | |
A2B4 | -0.93 | -0.16 | 0.02 | -1.07 | |
Alamo | A1B1 | -0.30 | 1.66 | -1.33 | 0.03 |
A1B2 | 0.21 | 1.00 | -1.01 | 0.20 | |
A1B3 | 0.07 | 0.63 | -1.21 | -0.50 | |
A1B4 | 0.38 | 0.56 | 0.69 | 1.62 | |
A2B1 | -2.24 | -0.62 | 0.56 | -2.29 | |
A2B2 | -1.29 | -0.82 | -0.44 | -2.55 | |
A2B3 | -0.60 | -0.68 | -0.86 | -2.15 | |
A2B4 | -0.29 | -0.70 | -1.23 | -2.22 | |
Pathfinder | A1B1 | 1.62 | 0.62 | 0.65 | 2.89 |
A1B2 | 2.89 | 0.05 | 1.71 | 4.64 | |
A1B3 | 2.79 | -0.45 | 1.38 | 3.72 | |
A1B4 | 2.78 | -0.29 | 0.98 | 3.46 | |
A2B1 | 0.08 | -1.40 | -0.87 | -2.19 | |
A2B2 | 0.57 | -2.39 | -0.44 | -2.26 | |
A2B3 | 0.94 | -1.48 | -1.10 | -1.64 | |
A2B4 | 0.42 | -1.22 | -1.58 | -2.38 |
表11 三个柳枝稷品种在不同处理下各主成分值与综合值
Table 11 Principal component values and comprehensive values of three switchgrass varieties under different treatments
品种 Variety | 处理Treatment | PC1 | PC2 | PC3 | 综合值Comprehensive value(F) |
---|---|---|---|---|---|
Alamo加倍体Alamo syndiploid | A1B1 | -0.58 | 2.66 | -0.24 | 1.84 |
A1B2 | 0.23 | 1.62 | -1.09 | 0.76 | |
A1B3 | 0.44 | 1.44 | -0.21 | 1.67 | |
A1B4 | -0.48 | 0.66 | 1.15 | 1.34 | |
A2B1 | -2.00 | 0.91 | 1.33 | 0.25 | |
A2B2 | -2.78 | -0.77 | 1.86 | -1.69 | |
A2B3 | -1.92 | -0.84 | 1.28 | 1.48 | |
A2B4 | -0.93 | -0.16 | 0.02 | -1.07 | |
Alamo | A1B1 | -0.30 | 1.66 | -1.33 | 0.03 |
A1B2 | 0.21 | 1.00 | -1.01 | 0.20 | |
A1B3 | 0.07 | 0.63 | -1.21 | -0.50 | |
A1B4 | 0.38 | 0.56 | 0.69 | 1.62 | |
A2B1 | -2.24 | -0.62 | 0.56 | -2.29 | |
A2B2 | -1.29 | -0.82 | -0.44 | -2.55 | |
A2B3 | -0.60 | -0.68 | -0.86 | -2.15 | |
A2B4 | -0.29 | -0.70 | -1.23 | -2.22 | |
Pathfinder | A1B1 | 1.62 | 0.62 | 0.65 | 2.89 |
A1B2 | 2.89 | 0.05 | 1.71 | 4.64 | |
A1B3 | 2.79 | -0.45 | 1.38 | 3.72 | |
A1B4 | 2.78 | -0.29 | 0.98 | 3.46 | |
A2B1 | 0.08 | -1.40 | -0.87 | -2.19 | |
A2B2 | 0.57 | -2.39 | -0.44 | -2.26 | |
A2B3 | 0.94 | -1.48 | -1.10 | -1.64 | |
A2B4 | 0.42 | -1.22 | -1.58 | -2.38 |
[1] | 何海锋, 吴娜, 刘吉利, 等. 盐碱地不同柳枝稷品种生物质产量及氮素吸收利用特性研究[J]. 华北农学报, 2019, 34(S1): 273-280. |
HE H F, WU N, LIU J L, et al. Study on yield and nitrogen absorption and utilization characteristics of different switchgrass varieties in saline-alkali land[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(S1): 273-280. (in Chinese with English abstract) | |
[2] | 刘洁, 阎世江. 盐碱地对玉米植株生长及产量的影响[J]. 天津农林科技, 2020(5): 19-21. |
LIU J, YAN S J. Effects of saline soil on the growth and yield of corn plants[J]. Science and Technology of Tianjin Agriculture and Forestry, 2020(5): 19-21. (in Chinese) | |
[3] | 张进红, 王国良, 吴波, 等. 黄河三角洲盐碱地不同柳枝稷品种生长特性比较[J]. 中国农业大学学报, 2018, 23(12): 158-165. |
ZHANG J H, WANG G L, WU B, et al. Comparative study on the growth characteristics of different switchgrass varieties in saline-alkali soil of the Yellow River Delta[J]. Journal of China Agricultural University, 2018, 23(12): 158-165. (in Chinese with English abstract) | |
[4] | 常雯雯, 刘吉利, 吴娜, 等. 西北盐碱地区不同柳枝稷品种光合特性与产量比较[J]. 浙江农业学报, 2019, 31(10): 1647-1654. |
CHANG W W, LIU J L, WU N, et al. Comparative study on photosynthetic characteristics and yield of different switchgrass varieties in saline-alkali land of northwest China[J]. Acta Agriculturae Zhejiangensis, 2019, 31(10): 1647-1654. (in Chinese with English abstract) | |
[5] | 田志杰, 李景鹏, 杨福. 非生物胁迫下作物磷素利用研究进展[J]. 生态学杂志, 2017, 36(8): 2336-2342. |
TIAN Z J, LI J P, YANG F. Progress in crop phosphorus utilization under abiotic stresses[J]. Chinese Journal of Ecology, 2017, 36(8): 2336-2342. (in Chinese with English abstract) | |
[6] | 刘吉利, 常雯雯, 张永乾, 等. 盐碱地不同柳枝稷品种的生理特性[J]. 草业科学, 2018, 35(11): 2641-2649. |
LIU J L, CHANG W W, ZHANG Y Q, et al. Comparison of physiological characteristics of different switchgrass varieties in saline-alkali land[J]. Pratacultural Science, 2018, 35(11): 2641-2649. (in Chinese with English abstract) | |
[7] | 刘金彪, 王世琪, 康继月, 等. 水磷供应对柳枝稷和达乌里胡枝子生物量、水分利用效率及种间关系的影响[J]. 草地学报, 2019, 27(6): 1545-1552. |
LIU J B, WANG S Q, KANG J Y, et al. Effects of water and phosphorus supply on biomass production, water use efficiency and interspecific relationship of switchgrass and bushclover[J]. Acta Agrestia Sinica, 2019, 27(6): 1545-1552. (in Chinese with English abstract) | |
[8] | 高珊, 杨劲松, 姚荣江, 等. 调控措施对滨海盐渍土磷素形态及作物磷素吸收的影响[J]. 土壤, 2020, 52(4): 691-698. |
GAO S, YANG J S, YAO R J, et al. Effects of different management on phosphorus fractions in coastal saline soil and phosphorus absorption and utilization by crops[J]. Soils, 2020, 52(4): 691-698. (in Chinese with English abstract) | |
[9] | 邓力群, 刘兆普, 程爱武, 等. 不同盐分滨海盐土上油葵(G101-B)的氮磷肥效应研究[J]. 中国油料作物学报, 2002, 24(4): 35-41. |
DENG L Q, LIU Z P, CHENG A W, et al. Influence of N and P fertilizers on sunflower grown in different saline soil on Coast[J]. Chinese Journal of Oil Crop Scieves, 2002, 24(4): 35-41. (in Chinese with English abstract) | |
[10] | 张蕊, 张富平, 郝艳丽. 水分胁迫条件下磷素营养对小麦抗旱性影响的研究进展[J]. 安徽农业科学, 2007, 35(11): 3313-3314,3316. |
ZHANG R, ZHANG F P, HAO Y L. Research progress in the effect of phosphorus nutrition on wheat drought resistance under water stress[J]. Journal of Anhui Agricultural Sciences, 2007, 35(11): 3313-3314,3316. (in Chinese with English abstract) | |
[11] | 朱毅, 范希峰, 侯新村, 等. 中性盐胁迫对柳枝稷苗期生长和生理特性的影响[J]. 草地学报, 2015, 23(2): 352-357. |
ZHU Y, FAN X F, HOU X C, et al. Effects of neutral salt-stress on the seedling growth and physiological characteristics of switchgrass[J]. Acta Agrestia Sinica, 2015, 23(2): 352-357. (in Chinese with English abstract) | |
[12] | 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006. |
[13] | 常福辰, 陆长梅, 沙莎. 植物生物学实验[M]. 南京: 南京师范大学出版社, 2007. |
[14] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
[15] | 王保平, 董晓燕, 董宽虎. 盐碱胁迫对紫花苜蓿幼苗生理特性的影响[J]. 草地学报, 2013, 21(6): 1124-1129. |
WANG B P, DONG X Y, DONG K H. Effects of saline-alkali stress on the physiological characteristics of alfalfa seedlings[J]. Acta Agrestia Sinica, 2013, 21(6): 1124-1129. (in Chinese with English abstract) | |
[16] | 刘晓东, 李洋洋, 何淼. PEG模拟干旱胁迫对玉带草生理特性的影响[J]. 草业科学, 2012, 29(5): 687-693. |
LIU X D, LI Y Y, HE M. Physiological characteristics of Phalaris arundinacea cv.Picta under drought stress simulated by PEG[J]. Pratacultural Science, 2012, 29(5): 687-693. (in Chinese with English abstract) | |
[17] | 李孔晨, 卢欣石. 黑麦草属9个品种萌发及苗期耐盐性研究[J]. 草业科学, 2008, 25(3): 111-115. |
LI K C, LU X S. Evaluation of salt tolerance of 9 cultivars of Lolium spp.in germination and seedling stage[J]. Pratacultural Science, 2008, 25(3): 111-115. (in Chinese with English abstract) | |
[18] | 杨万鹏, 马瑞, 杨永义, 等. NaCl处理对黑果枸杞生长、生理指标的影响[J]. 分子植物育种, 2019, 17(13): 4437-4447. |
YANG W P, MA R, YANG Y Y, et al. Effects of NaCl treatment on the growth and physiological indexes of Lycium ruthenicum[J]. Molecular Plant Breeding, 2019, 17(13): 4437-4447. (in Chinese with English abstract) | |
[19] |
KHOSH KHOLGH SIMA N A, AHMAD S T, ALITABAR R A, et al. Interactive effects of salinity and phosphorus nutrition on physiological responses of two barley species[J]. Journal of Plant Nutrition, 2012, 35(9): 1411-1428.
DOI URL |
[20] | 梁晓艳, 顾寅钰, 李萌, 等. 盐胁迫下不同耐盐性花生品种形态及生理差异研究[J]. 花生学报, 2018, 47(1): 19-26. |
LIANG X Y, GU Y Y, LI M, et al. Study on the morphological and physiological differences of different salt tolerant peanut varieties under salt stress[J]. Journal of Peanut Science, 2018, 47(1): 19-26. (in Chinese with English abstract) | |
[21] | 李成忠, 孙燕, 杜庆平. 黄连木根系抗氧化酶系对干旱胁迫的响应[J]. 林业科技开发, 2008, 22(2): 57-60. |
LI C Z, SUN Y, DU Q P. Responses of anti-oxidative enzymes in Pistacia chinensis roots to drought stress[J]. China Forestry Science and Technology, 2008, 22(2): 57-60. (in Chinese with English abstract) | |
[22] |
TAKAHAMA U, ONIKI T. A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells[J]. Physiologia Plantarum, 1997, 101(4): 845-852.
DOI URL |
[23] | 韩冬梅, 吴振先, 季作梁, 等. SO2对龙眼果实的氧化作用与衰老的影响[J]. 果树科学, 1999, 16(1): 24-29. |
HAN D M, WU Z X, JI Z L, et al. Effects of SO2 treatment on the oxidation and senescence of longan fruit[J]. Journal of Fruit Science, 1999, 16(1): 24-29. (in Chinese with English abstract) | |
[24] | 李晓雅, 赵翠珠, 程小军, 等. 盐胁迫对亚麻荠幼苗生理生化指标的影响[J]. 西北农业学报, 2015, 24(4): 76-83. |
LI X Y, ZHAO C Z, CHENG X J, et al. Effects of salt stress on physiological and biochemical indexes of Camelina sativa seedlings[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(4): 76-83. (in Chinese with English abstract) | |
[25] | 赵春桥, 李继伟, 范希峰, 等. 不同盐胁迫对柳枝稷生物量、品质和光合生理的影响[J]. 生态学报, 2015, 35(19): 6489-6495. |
ZHAO C Q, LI J W, FAN X F, et al. Effects of salt stress on biomass, quality, and photosynthetic physiology in switchgrass[J]. Acta Ecologica Sinica, 2015, 35(19): 6489-6495. (in Chinese with English abstract) | |
[26] | 廖岩, 彭友贵, 陈桂珠. 植物耐盐性机理研究进展[J]. 生态学报, 2007, 27(5): 2077-2089. |
LIAO Y, PENG Y G, CHEN G Z. Research advances in plant salt-tolerance mechanism[J]. Acta Ecologica Sinica, 2007, 27(5): 2077-2089. (in Chinese with English abstract) | |
[27] | 李佳欢, 刘希强, 吕进英, 等. 基于植株各器官生理响应对12种苜蓿抗旱性的综合评价[J]. 草地学报, 2020, 28(5): 1319-1328. |
LI J H, LIU X Q, LV J Y, et al. Drought resistance evaluation of 12 alfalfa varieties based on physiological response of four plant organs[J]. Acta Agrestia Sinica, 2020, 28(5): 1319-1328. (in Chinese with English abstract) | |
[28] | 卢闯, 逄焕成, 张建丽, 等. 增施磷肥对重度盐碱地食葵生长及土壤微生物区系的影响[J]. 农业环境科学学报, 2017, 36(2): 329-337. |
LU C, PANG H C, ZHANG J L, et al. Effect of phosphorus application rates on sunflower growth and soil microflora in severe saline land[J]. Journal of Agro-Environment Science, 2017, 36(2): 329-337. (in Chinese with English abstract) | |
[29] |
隆小华, 刘兆普, 徐文君. 海水处理下菊芋幼苗生理生化特性及磷效应的研究[J]. 植物生态学报, 2006, 30(2): 307-313.
DOI |
LONG X H, LIU Z P, XU W J. Effects of seawater treatments on the physiological and biochemical characteristics of Helianthus tuberosus seedlings and response to phosphorus supply[J]. Journal of Plant Ecology, 2006, 30(2): 307-313. (in Chinese with English abstract) | |
[30] | 王志恒, 徐中伟, 周吴艳, 等. 藜麦种子萌发阶段响应干旱和盐胁迫变化的综合评价[J]. 中国生态农业学报(中英文), 2020, 28(7): 1033-1042. |
WANG Z H, XU Z W, ZHOU W Y, et al. Comprehensive evaluation of quinoa seed responses to drought and salt stress during germination[J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 1033-1042. (in Chinese with English abstract) | |
[31] |
宝力格, 陆平, 史梦莎, 等. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-753.
DOI |
BAO L G, LU P, SHI M S, et al. Screening and identification of Chinese Sorghum landraces for salt tolerance at germination and seedling stages[J]. Acta Agronomica Sinica, 2020, 46(5): 734-753. (in Chinese with English abstract)
DOI URL |
[1] | 李丽艳, 谭海霞, 李婧, 王连龙, 杜迎辉, 徐志文. 耐盐促生芽孢杆菌的筛选及其对盐胁迫下燕麦生长的影响[J]. 浙江农业学报, 2022, 34(6): 1268-1276. |
[2] | 赵宇洪, 何文, 李根, 王强, 谢锐, 王燕, 陈清, 王小蓉. 四川地区琯溪蜜柚及其芽变品种的果实品质[J]. 浙江农业学报, 2022, 34(5): 995-1004. |
[3] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[4] | 杨蕾, 洪林, 刘兆俊, 杨海健, 王武. 六个金柑品种果实品质与营养综合评价[J]. 浙江农业学报, 2022, 34(3): 534-547. |
[5] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[6] | 裴芸, 徐秀红, 陆锦彪, 陈阿敏, 张万萍. 151份贵州地方樱桃番茄资源的遗传多样性分析[J]. 浙江农业学报, 2022, 34(2): 310-316. |
[7] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅生长与离子分布的影响[J]. 浙江农业学报, 2022, 34(1): 79-88. |
[8] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[9] | 张棚, 张希, 杨雪妍, 刘元林, 李儒, 龙鸣, 田晓静, 张福梅, 陈士恩, 马忠仁. 基于微量元素分析的三七产地及其主侧根鉴别[J]. 浙江农业学报, 2021, 33(7): 1300-1308. |
[10] | 王英珍, 潘芝梅. 二十二份毛花猕猴桃种质资源果实品质的主成分分析与综合评价[J]. 浙江农业学报, 2021, 33(5): 825-830. |
[11] | 杨昕霞, 张斌. 大豆LAZ1基因家族鉴定与GmLAZ1-9基因的功能研究[J]. 浙江农业学报, 2021, 33(4): 586-594. |
[12] | 张婷, 刘慧琴, 郭勤卫, 李朝森, 章心惠, 项小敏, 赵东风, 万红建. 十六份辣椒材料游离氨基酸组成的主成分分析与聚类分析[J]. 浙江农业学报, 2021, 33(4): 640-650. |
[13] | 陆安桥, 张峰举, 王学琴, 许兴. 盐胁迫对苗期湖南稷子K +、Na +含量与分布的影响[J]. 浙江农业学报, 2021, 33(3): 396-403. |
[14] | 周艳超, 薛坤, 葛海燕, 陈火英, 刘杨. 基于主成分与聚类分析的樱桃番茄品质综合评价[J]. 浙江农业学报, 2021, 33(12): 2320-2329. |
[15] | 赵华, 任晴雯, 王熙予, 李珍妮, 唐秀梅, 蒋丽慧, 刘鹏, 邢承华. 丛枝菌根真菌对盐胁迫下番茄抗氧化酶活性和光合特性的影响[J]. 浙江农业学报, 2021, 33(11): 2075-2084. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 770
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 465
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||