浙江农业学报 ›› 2022, Vol. 34 ›› Issue (4): 870-878.DOI: 10.3969/j.issn.1004-1524.2022.04.24
• 综述 • 上一篇
刘晨(), 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞(
)
收稿日期:
2021-07-23
出版日期:
2022-04-25
发布日期:
2022-04-28
通讯作者:
杜长霞
作者简介:
*杜长霞,E-mail: changxiadu@zafu.edu.cn基金资助:
LIU Chen(), XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia(
)
Received:
2021-07-23
Online:
2022-04-25
Published:
2022-04-28
Contact:
DU Changxia
摘要:
盐胁迫是限制植物生长和产量的重要环境因子之一。经过长期的进化,植物已形成了一套响应盐胁迫的调控机制。转录组学可以从植物mRNA整体转录水平揭示植物响应盐胁迫的调控机制,对研究植物抗盐、耐盐具有重要意义。本文针对转录组学在植物响应盐胁迫调控机制中的研究,简述了植物体内的信号传导、渗透调节、内源激素合成、光合作用、活性氧清除、次生代谢与细胞壁合成、转录因子等有关的差异表达基因,从转录水平上分析了植物的耐盐机制,为今后植物抗逆分子研究提供参考。
中图分类号:
刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878.
LIU Chen, XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia. Research progress on regulation mechanism of plant response to salt stress based on transcriptomics[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 870-878.
[1] |
LOCKHART D J, WINZELER E A. Genomics, gene expression and DNA arrays[J]. Nature, 2000, 405(6788): 827-836.
DOI URL |
[2] | 王芳, 万书波, 孟庆伟, 等. Ca2+在植物盐胁迫响应机制中的调控作用[J]. 生命科学研究, 2012, 16(4): 362-367. |
WANG F, WAN S B, MENG Q W, et al. Regulation of Ca2+ in plant response mechanisms under salt stress[J]. Life Science Research, 2012, 16(4): 362-367. (in Chinese with English abstract) | |
[3] | 徐晓琪. 基于转录组测序对菊花耐盐性的研究[D]. 泰安: 山东农业大学, 2020. |
XU X Q. Study on salt tolerance of chrysanthemum based on transcriptome sequencing[D]. Taian: Shandong Agricultural University, 2020. (in Chinese with English abstract) | |
[4] | 吉福桑. 香蕉响应盐胁迫转录组及蛋白质组分析[D]. 海口: 海南大学, 2017. |
JI F S. Transcriptomic and proteomic analysis of banana response to salt stress[D]. Haikou: Hainan University, 2017. (in Chinese with English abstract) | |
[5] | MIRANSARI M, RANGBAR B, KHAJEH K, et al. Salt stress and MAPK signaling in plants[M/OL]//PARVAIZAHMAD, AZOOZ M MM, PRASAD N V.S Salt stress in plants. New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6108-1. |
[6] |
DROILLARD M J, BOUDSOCQ M, BARBIER-BRYGOO H, et al. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance[J]. FEBS Letters, 2004, 574(1/2/3): 42-48.
DOI URL |
[7] |
DING H D, ZHANG X H, XU S C, et al. Induction of protection against paraquat-induced oxidative damage by abscisic acid in maize leaves is mediated through mitogen-activated protein kinase[J]. Journal of Integrative Plant Biology, 2009, 51(10): 961-972.
DOI URL |
[8] |
ZHU J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6(5): 441-445.
DOI URL |
[9] |
CONDE A, CHAVES M M, GERÓS H. Membrane transport, sensing and signaling in plant adaptation to environmental stress[J]. Plant and Cell Physiology, 2011, 52(9): 1583-1602.
DOI URL |
[10] | 孟繁昊, 王聪, 徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展[J]. 内蒙古民族大学学报(自然科学版), 2014, 29(3): 315-318, 373. |
MENG F H, WANG C, XU S J. Advances in research on effects of salt stress on plant and the mechanism of plant salt tolerance[J]. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2014, 29(3): 315-318, 373. (in Chinese with English abstract) | |
[11] | 李中虎. 盐生植物滨麦响应盐分胁迫的转录组分析[D]. 烟台: 鲁东大学, 2018. |
LI Z H. Transcriptome analysis of Leymus mollis response to salt stress[D]. Yantai: Ludong University, 2018. (in Chinese with English abstract) | |
[12] |
WEI Y Y, XU Y C, LU P, et al. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis[J]. PLoS One, 2017, 12(5): e0178313.
DOI URL |
[13] |
LI J, GAO Z, ZHOU L, et al. Comparative transcriptome analysis reveals K+ transporter gene contributing to salt tolerance in eggplant[J]. BMC Plant Biology, 2019, 19(1): 67.
DOI URL |
[14] | 赵龙. 盐生植物碱地肤耐盐生理及分子机制研究[D]. 长春: 东北师范大学, 2018. |
ZHAO L. Pysiological and molecular mechanisms underlying salt tolerance in halophyte Kochia sieversiana[D]. Changchun: Northeast Normal University, 2018. (in Chinese with English abstract) | |
[15] |
ZHANG H W, FENG H, ZHANG J W, et al. Emerging crosstalk between two signaling pathways coordinates K+ and Na+ homeostasis in the halophyte Hordeum brevisubulatum[J]. Journal of Experimental Botany, 2020, 71(14): 4345-4358.
DOI URL |
[16] | 刘奕媺, 于洋, 方军. 盐碱胁迫及植物耐盐碱分子机制研究[J]. 土壤与作物, 2018, 7(2): 201-211. |
LIU Y M, YU Y, FANG J. Saline-alkali stress and molecular mechanism of saline-alkali tolerance in plants[J]. Soils and Crops, 2018, 7(2): 201-211. (in Chinese with English abstract) | |
[17] |
CHANDRAN D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance[J]. IUBMB Life, 2015, 67(7): 461-471.
DOI URL |
[18] | UMEZAWA T, SUGIYAMA N, MIZOGUCHI M, et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17588-17593. |
[19] | 周凯悦. 大豆盐胁迫下叶绿体淀粉积累转录组及相关基因功能研究[D]. 杭州: 浙江大学, 2020. |
ZHOU K Y. Transcriptome analysis and research of related gene function of starch accumulation in soybean chloroplast under salt stress[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract) | |
[20] |
CAO B L, LI N, XU K. Crosstalk of phenylpropanoid biosynthesis with hormone signaling in Chinese cabbage is key to counteracting salt stress[J]. Environmental and Experimental Botany, 2020, 179: 104209.
DOI URL |
[21] |
YANG C, MA B, HE S J, et al. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice[J]. Plant Physiology, 2015, 169(1): 148-165.
DOI URL |
[22] |
WANG N N, SHIH M C, LI N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses[J]. Journal of Experimental Botany, 2005, 56(413): 909-920.
DOI URL |
[23] |
MA Q, ZHOU H J, SUI X Y, et al. Generation of new salt-tolerant wheat lines and transcriptomic exploration of the responsive genes to ethylene and salt stress[J]. Plant Growth Regulation, 2021, 94(1): 33-48.
DOI URL |
[24] |
DONG H, ZHEN Z Q, PENG J Y, et al. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(14): 4875-4887.
DOI URL |
[25] |
WANG Y N, LIU C, LI K X, et al. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway[J]. Plant Molecular Biology, 2007, 64(6): 633-644.
DOI URL |
[26] | 许祥明, 叶和春, 李国凤. 植物抗盐机理的研究进展[J]. 应用与环境生物学报, 2000, 6(4): 379-387. |
XU X M, YE H C, LI G F. Progress in research of plant tolerance to saline stress[J]. Chinese Journal of Applied and Environmental Biology, 2000, 6(4): 379-387. (in Chinese with English abstract) | |
[27] |
SALEHIN M, BAGCHI R, ESTELLE M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development[J]. The Plant Cell, 2015, 27(1): 9-19.
DOI URL |
[28] |
JAIN M, KHURANA J P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice[J]. The FEBS Journal, 2009, 276(11): 3148-3162.
DOI URL |
[29] |
PASTERNAK T, POTTERS G, CAUBERGS R, et al. Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level[J]. Journal of Experimental Botany, 2005, 56(418): 1991-2001.
DOI URL |
[30] | 王志维. NaCl胁迫条件下旱柳不定根发生的转录组学分析[D]. 泰安: 山东农业大学, 2018. |
WANG Z W. Transcriptomic analysis of adventitious root formation exposed to NaCl stress in Salix[D]. Tai’an: Shandong Agricultural University, 2018. (in Chinese with English abstract) | |
[31] |
LU C C, CHEN M X, LIU R, et al. Abscisic acid regulates auxin distribution to mediate maize lateral root development under salt stress[J]. Frontiers in Plant Science, 2019, 10: 716.
DOI URL |
[32] | 刘莉. 盐胁迫下植物激素对水稻种子萌发及幼苗根系生长的调控机理研究[D]. 武汉: 华中农业大学, 2018. |
LIU L. The regulation and mechanism of phytohormone on rice seed germination and seedling root growth under salinity[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[33] |
SHI P B, GU M F. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress[J]. BMC Plant Biology, 2020, 20(1): 568.
DOI URL |
[34] |
LEI P, LIU Z, HU Y B, et al. Transcriptome analysis of salt stress responsiveness in the seedlings of wild and cultivated Ricinus communis L[J]. Journal of Biotechnology, 2021, 327: 106-116.
DOI URL |
[35] | 焦德志, 宋士伟. 基于转录组测序的扎龙湿地野大麦耐盐性分析[J]. 基因组学与应用生物学, 2020, 39(2): 658-665. |
JIAO D Z, SONG S W. Salt tolerance analysis of Hordeum brevisubulatum in Zhalong Wetland based on transcriptome sequencing[J]. Genomics and Applied Biology, 2020, 39(2): 658-665. (in Chinese with English abstract) | |
[36] | 曹晟阳. 高盐胁迫下翅碱蓬的全转录组研究[D]. 大连: 大连海洋大学, 2018. |
CAO S Y. Study on the whole transcriptome of Suaeda heteroptera in response to high salt stress[D]. Dalian: Dalian Ocean University, 2018. (in Chinese with English abstract) | |
[37] |
LIN J, LI J P, YUAN F, et al. Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress[J]. Photosynthetica, 2018, 56(4): 998-1009.
DOI URL |
[38] | 董明, 再吐尼古丽·库尔班, 吕芃, 等. 高粱苗期耐盐性转录组分析和基因挖掘[J]. 中国农业科学, 2019, 52(22): 3987-4001. |
DONG M, KUERBAN Z, LÜ P, et al. Transcriptome analysis and gene mining of salt tolerance in Sorghum seedlings(Sorghum bicolor L. Moench)[J]. Scientia Agricultura Sinica, 2019, 52(22): 3987-4001. (in Chinese with English abstract) | |
[39] |
YANG L, MA C Q, WANG L L, et al. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14[J]. Journal of Plant Physiology, 2012, 169(9): 839-850.
DOI URL |
[40] |
SOBHANIAN H, MOTAMED N, JAZII F R, et al. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides(Poaceae), a halophyte C(4) plant[J]. Journal of Proteome Research, 2010, 9(6): 2882-2897.
DOI URL |
[41] |
GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.
DOI URL |
[42] |
SUN X C, XU L, WANG Y, et al. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.)[J]. Plant Cell Reports, 2016, 35(2): 329-346.
DOI URL |
[43] |
BLUMWALD E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12(4): 431-434.
DOI URL |
[44] | 何敬和, 姚丽. 小麦Mn-SOD基因的克隆及其在盐胁迫下的表达分析[J]. 麦类作物学报, 2010, 30(4): 630-633. |
HE J H, YAO L. Cloning and expression of Mn-SOD gene of wheat under salt stress[J]. Journal of Triticeae Crops, 2010, 30(4): 630-633. (in Chinese with English abstract) | |
[45] | 贾鹏燕. 盐胁迫下苦苣菜的生理响应及转录组分析[D]. 杨凌: 西北农林科技大学, 2017. |
JIA P Y. Physiological and transcriptome study of Sonchus oleraceus L.response to salt stress[D]. Yangling: Northwest A & F University, 2017. (in Chinese with English abstract) | |
[46] |
WEI Y Y, XU Y C, LU P, et al. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis[J]. PLoS One, 2017, 12(5): e0178313.
DOI URL |
[47] | 张倩倩. 短期盐胁迫下中国石竹幼苗响应的转录组测序、组装和分析[D]. 呼和浩特: 内蒙古农业大学, 2017. |
ZHANG Q Q. Transcriptional sequencing, assembly and analysis of Dianthus chinensis L. seedlings in response to short time salt-stress[D]. Hohhot: Inner Mongolia Agricultural University, 2017. (in Chinese with English abstract) | |
[48] | 于乐. 胡杨响应盐胁迫的组织特异性转录组研究[D]. 兰州: 兰州大学, 2018. |
YU L. Tissue-specific transcriptome analysis reveals multiple responses to salt stress in Populus euphratica seedlings[D]. Lanzhou: Lanzhou University, 2018. (in Chinese with English abstract) | |
[49] |
BAHIELDIN A, ATEF A, SABIR J S M, et al. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress[J]. Comptes Rendus Biologies, 2015, 338(5): 285-297.
DOI URL |
[50] | 牛灵慧. 丹参生物学特性及盐胁迫对其次生代谢影响研究[D]. 南京: 南京农业大学, 2016. |
NIU L H. Preliminary study on biological characteristics of Salvia miltiorrhiza[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese with English abstract) | |
[51] |
PITANN B, ZÖRB C, MÜHLING K H. Comparative proteome analysis of maize (Zea mays L.) expansins under salinity[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(1): 75-77.
DOI URL |
[52] |
SKORUPA M, GOLEBIEWSKI M, DOMAGALSKI K, et al. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima[J]. Plant Science, 2016, 243: 56-70.
DOI URL |
[53] | 宋雪梅, 杨九艳, 吕美婷, 等. 红砂种子萌发对盐胁迫及适度干旱的响应[J]. 中国沙漠, 2012, 32(6): 1674-1680. |
SONG X M, YANG J Y, LYU M T, et al. Responses of Reaumuria soongorica seed germination to salt stress and moderate drought[J]. Journal of Desert Research, 2012, 32(6): 1674-1680. (in Chinese with English abstract) | |
[54] |
CAI C P, NIU E L, DU H, et al. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploidcotton[J]. The Crop Journal, 2014, 2(2/3): 87-101.
DOI URL |
[55] |
JIANG Y Q, DEYHOLOS M K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes[J]. BMC Plant Biology, 2006, 6: 25.
DOI URL |
[56] | 端木慧子, 陶鑫, 王建慧, 等. 甜菜M14品系盐胁迫转录组数据库的转录因子分析[J]. 黑龙江大学工程学报, 2017, 8(4): 48-54. |
DUANMU H Z, TAO X, WANG J H, et al. Analysis of transcription factors in the transcriptome database of sugar beet M14 line under salt stress[J]. Journal of Engineering of Heilongjiang University, 2017, 8(4): 48-54. (in Chinese with English abstract) | |
[57] |
WEI W, ZHANG Y X, HAN L, et al. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco[J]. Plant Cell Reports, 2008, 27(4): 795-803.
DOI URL |
[58] |
CUI M H, YOO K S, HYOUNG S, et al. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance[J]. FEBS Letters, 2013, 587(12): 1773-1778.
DOI URL |
[59] | 王星哲, 武悦, 王艺煊, 等. 玉米发芽期响应盐胁迫的转录组分析[J/OL]. 分子植物育种. https://kns.cnki.netkcmsdetail/46.1068.S.20210323.0947.007.html. |
WANG X Z, WU Y, WANG YX, et al. Transriptome analysis of maize in response to salt stress at germination stage[J/OL]. Molecular Plant Breeding. https://kns.cnki.netkcmsdetail/46.1068.S.20210323.0947.007.html. | |
[60] | SHAO H B, WANG H Y, TANG X L. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects[J]. Frontiers in Plant Science, 2015, 6: 902. |
[61] | CHEN T, CAI X, WU X Q, et al. Casparian strip development and its potential function in salt tolerance[J]. Plant Signaling & Behavior, 2011, 6(10): 1499-1502. |
[62] | NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2007, 146(2): 323-324. |
[63] |
WELTMEIER F, RAHMANI F, EHLERT A, et al. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development[J]. Plant Molecular Biology, 2009, 69(1/2): 107-119.
DOI URL |
[1] | 王乾昆, 张小辉, 庞有志, 祁艳霞, 雷莹, 白俊艳, 户运奇, 赵毅威, 苑志文, 王涛. 基于RNA-seq技术挖掘鹌鹑羽色自别雌雄相关基因[J]. 浙江农业学报, 2022, 34(3): 498-506. |
[2] | 兰国湘, 金思琪, 李星润, 刘喜雨, 李国美, 董新星. 高原雨点鸽与詹森鸽胸肌转录组差异表达基因筛选与功能分析[J]. 浙江农业学报, 2022, 34(3): 507-516. |
[3] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[4] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅生长与离子分布的影响[J]. 浙江农业学报, 2022, 34(1): 79-88. |
[5] | 杨生海, 刘西兰, 张勇. 利用加权基因共表达网络分析牛口蹄疫病毒感染通路变化[J]. 浙江农业学报, 2021, 33(9): 1617-1624. |
[6] | 马杰, 屈雯, 陈春艳, 王磊, 马俊, 刘针杉, 马维, 周平, 何远宽, 孙勃. 基于转录组序列的叶用芥菜奶奶青菜EST-SSR标记开发与遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1640-1649. |
[7] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[8] | 黄长兵, 程培蕾, 杨绍宗, 张焕朝, 姜正之, 金立敏. 萱草根茎低温胁迫转录组分析[J]. 浙江农业学报, 2021, 33(8): 1445-1460. |
[9] | 杨昕霞, 张斌. 大豆LAZ1基因家族鉴定与GmLAZ1-9基因的功能研究[J]. 浙江农业学报, 2021, 33(4): 586-594. |
[10] | 陆安桥, 张峰举, 王学琴, 许兴. 盐胁迫对苗期湖南稷子K +、Na +含量与分布的影响[J]. 浙江农业学报, 2021, 33(3): 396-403. |
[11] | 蒋智芳, 韩怡蝶, 楼盼盼, 郭宏, 冯尚国, 沈晨佳, 王慧中. 苦蘵P450家族基因鉴定与表达分析[J]. 浙江农业学报, 2021, 33(11): 2009-2016. |
[12] | 冯上乐, 李雪男, 陈一格, 刘瑞琦, 白志毅, 李文娟. 三角帆蚌细胞周期蛋白基因筛选及其表达分析[J]. 浙江农业学报, 2021, 33(11): 2041-2050. |
[13] | 赵华, 任晴雯, 王熙予, 李珍妮, 唐秀梅, 蒋丽慧, 刘鹏, 邢承华. 丛枝菌根真菌对盐胁迫下番茄抗氧化酶活性和光合特性的影响[J]. 浙江农业学报, 2021, 33(11): 2075-2084. |
[14] | 毛爽, 周万里, 杨帆, 狄小琳, 蔺吉祥, 杨青杰. 植物根系应答盐碱胁迫机理研究进展[J]. 浙江农业学报, 2021, 33(10): 1991-2000. |
[15] | 尹明华, 曹晴, 陈红, 邓思宇, 邓燕梅. 江西铅山红芽芋和青秆芋的转录组比较分析[J]. 浙江农业学报, 2020, 32(9): 1533-1543. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||