浙江农业学报 ›› 2022, Vol. 34 ›› Issue (1): 79-88.DOI: 10.3969/j.issn.1004-1524.2022.01.10
收稿日期:
2020-09-06
出版日期:
2022-01-25
发布日期:
2022-02-05
通讯作者:
芦建国
作者简介:
* 芦建国,E-mail: ljgnj@sina.com基金资助:
ZHOU Beining(), MAO Lian, HUA Zhuangzhuang, LU Jianguo*(
)
Received:
2020-09-06
Online:
2022-01-25
Published:
2022-02-05
Contact:
LU Jianguo
摘要:
采用不同浓度的碱性盐(NaHCO3)溶液对3年生夏蜡梅实生苗进行处理,从形态生长和离子运输途径分析夏蜡梅对碱性盐胁迫的响应机制,为夏蜡梅的合理开发利用提供理论指导。结果表明:夏蜡梅苗高、地径相对生长量、生物量以及根冠比均随着盐碱胁迫的加重而不同程度的减少;随着碱性盐浓度的增加,各器官中 Na+含量均高于对照,其排序为:根>叶>茎;低浓度碱性盐胁迫下K+含量排序为:茎>根>叶,而高浓度胁迫下K+含量排序为:叶>茎>根;Ca2+含量排序为:叶>根>茎;夏蜡梅茎、叶中K+/Na+比值远大于根,叶中Ca2+/Na+比值远大于茎和根;夏蜡梅K+和Ca2+根系到茎部的选择运输能力排序:K+>Ca2+,从茎部到叶片排序为:Ca2+>K+,而从根系到叶片的选择运输能力基本相同。研究表明,碱性盐胁迫下,夏蜡梅的茎和叶通过吸收K+及Ca2+以阻止Na+的进入,将Na+贮存区隔在根系中以减轻盐离子对地上部分的伤害,叶片通过增加对矿质元素的吸收以维持离子平衡。
中图分类号:
周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅生长与离子分布的影响[J]. 浙江农业学报, 2022, 34(1): 79-88.
ZHOU Beining, MAO Lian, HUA Zhuangzhuang, LU Jianguo. Effects of alkaline salt stress on growth and ion allocation of Sinocalycanthus chinensis[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 79-88.
图1 碱性盐胁迫对夏蜡梅苗高、地径相对生长量的影响 没有相同小写字母表示差异显著(P<0.05)。下同。
Fig.1 Effect of alkaline salt stress on relative height growth and diameter growth of Sinocalycanthus chinensis The bars with different lowercase letters indicated significant differences (P<0.05). The same as below.
NaHCO3浓度 NaHCO3 concentration/% | 根重 Root weight/g | 茎重 Stem weight/g | 叶重 Leaf weight/g | 根冠比 Root shoot ratio | 总干重 Total dry weight/g |
---|---|---|---|---|---|
0 | 6.744 0 a | 9.342 7 a | 7.440 0 a | 0.406 7 a | 23.526 7 a |
0.1 | 4.764 0 b | 9.086 7 a | 5.990 7 ab | 0.317 7 ab | 19.841 3 b |
0.2 | 4.922 3 b | 8.084 0 ab | 5.284 3 abc | 0.376 3 ab | 18.290 7 b |
0.3 | 5.271 7 b | 9.326 0 a | 5.398 7 abc | 0.366 3 ab | 19.996 3 b |
0.4 | 4.182 7 b | 7.178 3 bc | 3.855 7 bcd | 0.383 3 ab | 15.216 7 c |
0.5 | 2.473 7 c | 6.224 3 c | 3.606 3 cd | 0.250 0 b | 12.304 3 d |
0.6 | 2.604 0 c | 5.748 0 c | 3.011 3 d | 0.301 3 ab | 11.363 3 d |
0.7 | 1.945 7 c | 5.588 0 c | 2.376 3 d | 0.243 0 b | 9.910 0 d |
表1 碱性盐胁迫对夏蜡梅不同器官生物量的影响
Table 1 Effect of alkaline salt stress on biomass of different organs of Sinocalycanthus chinensis
NaHCO3浓度 NaHCO3 concentration/% | 根重 Root weight/g | 茎重 Stem weight/g | 叶重 Leaf weight/g | 根冠比 Root shoot ratio | 总干重 Total dry weight/g |
---|---|---|---|---|---|
0 | 6.744 0 a | 9.342 7 a | 7.440 0 a | 0.406 7 a | 23.526 7 a |
0.1 | 4.764 0 b | 9.086 7 a | 5.990 7 ab | 0.317 7 ab | 19.841 3 b |
0.2 | 4.922 3 b | 8.084 0 ab | 5.284 3 abc | 0.376 3 ab | 18.290 7 b |
0.3 | 5.271 7 b | 9.326 0 a | 5.398 7 abc | 0.366 3 ab | 19.996 3 b |
0.4 | 4.182 7 b | 7.178 3 bc | 3.855 7 bcd | 0.383 3 ab | 15.216 7 c |
0.5 | 2.473 7 c | 6.224 3 c | 3.606 3 cd | 0.250 0 b | 12.304 3 d |
0.6 | 2.604 0 c | 5.748 0 c | 3.011 3 d | 0.301 3 ab | 11.363 3 d |
0.7 | 1.945 7 c | 5.588 0 c | 2.376 3 d | 0.243 0 b | 9.910 0 d |
NaHCO3浓度 NaHCO3 concentration/% | 主根长 Length of axial root/cm | 一级侧根数(d>2 mm) Number of primary lateralroots(d>2 mm) | 根体积 Root volume/cm3 |
---|---|---|---|
0 | 17.333 3 a | 26.333 3 a | 3.333 3 a |
0.1 | 12.633 3 bc | 20.666 7 ab | 2.666 7 ab |
0.2 | 13.866 7 b | 16.666 7 bc | 2.400 0 abc |
0.3 | 12.166 7 bc | 14.666 7 bc | 3.333 3 a |
0.4 | 9.366 7 cd | 12.666 7 cd | 1.666 7 bc |
0.5 | 8.200 0 d | 13.666 7 cd | 1.733 3 bc |
0.6 | 8.333 3 d | 11.000 0 cd | 1.666 7 bc |
0.7 | 5.900 0 d | 8.000 0 d | 1.366 7 c |
表2 碱性盐胁迫对夏蜡梅根系形态的影响
Table 2 Effect of alkaline salt stress on root morphology of Sinocalycanthus chinensis
NaHCO3浓度 NaHCO3 concentration/% | 主根长 Length of axial root/cm | 一级侧根数(d>2 mm) Number of primary lateralroots(d>2 mm) | 根体积 Root volume/cm3 |
---|---|---|---|
0 | 17.333 3 a | 26.333 3 a | 3.333 3 a |
0.1 | 12.633 3 bc | 20.666 7 ab | 2.666 7 ab |
0.2 | 13.866 7 b | 16.666 7 bc | 2.400 0 abc |
0.3 | 12.166 7 bc | 14.666 7 bc | 3.333 3 a |
0.4 | 9.366 7 cd | 12.666 7 cd | 1.666 7 bc |
0.5 | 8.200 0 d | 13.666 7 cd | 1.733 3 bc |
0.6 | 8.333 3 d | 11.000 0 cd | 1.666 7 bc |
0.7 | 5.900 0 d | 8.000 0 d | 1.366 7 c |
NaHCO3浓度 NaHCO3 concentration/% | 根 Root | 茎 Stem | 叶 Leaf | |||
---|---|---|---|---|---|---|
K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | |
0 | 5.60±0.68 a | 4.76±0.57 a | 27.24±1.90 ab | 28.34±2.59 a | 22.94±5.22 ab | 57.37±15.11 a |
0.1 | 2.97±0.05 b | 3.47±050 b | 30.53±5.20 a | 22.51±6.16 a | 22.98±4.38 ab | 47.22±3.35 ab |
0.2 | 2.01±0.22 c | 1.60±0.08 cd | 19.19±0.93 bc | 9.35±0.52 b | 23.22±4.66 ab | 35.44±4.79 abc |
0.3 | 1.24±0.18 cd | 1.87±0.40 cd | 21.89±2.13 bc | 10.76±0.24 b | 37.84±7.60 a | 52.59±10.57 ab |
0.4 | 1.23±0.25 cd | 2.63±0.42 bc | 17.61±1.62 cd | 10.87±0.19 b | 38.28±9.09 a | 39.11±3.00 ab |
0.5 | 1.04±0.38 cd | 1.49±0.26 cd | 14.13±2.94 cd | 8.17±0.89 b | 7.83±1.85 b | 13.63±3.43 c |
0.6 | 0.59±0.17 d | 1.11±0.13 d | 9.81±1.20 d | 6.34±1.07 b | 9.14±1.46 b | 13.04±0.99 c |
0.7 | 0.53±0.13 d | 0.80±0.10 d | 13.92±2.00 cd | 8.44±1.50 b | 20.14±6.98 ab | 31.77±4.58 bc |
表3 碱性盐胁迫下夏蜡梅不同器官K+/Na+、Ca2+/Na+比值变化及方差分析
Table 3 The change of K+/Na+, Ca2+/Na+ratio in different organs of Sinocalycanthus chinensis under alkaline salt stress and variance analysis
NaHCO3浓度 NaHCO3 concentration/% | 根 Root | 茎 Stem | 叶 Leaf | |||
---|---|---|---|---|---|---|
K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | |
0 | 5.60±0.68 a | 4.76±0.57 a | 27.24±1.90 ab | 28.34±2.59 a | 22.94±5.22 ab | 57.37±15.11 a |
0.1 | 2.97±0.05 b | 3.47±050 b | 30.53±5.20 a | 22.51±6.16 a | 22.98±4.38 ab | 47.22±3.35 ab |
0.2 | 2.01±0.22 c | 1.60±0.08 cd | 19.19±0.93 bc | 9.35±0.52 b | 23.22±4.66 ab | 35.44±4.79 abc |
0.3 | 1.24±0.18 cd | 1.87±0.40 cd | 21.89±2.13 bc | 10.76±0.24 b | 37.84±7.60 a | 52.59±10.57 ab |
0.4 | 1.23±0.25 cd | 2.63±0.42 bc | 17.61±1.62 cd | 10.87±0.19 b | 38.28±9.09 a | 39.11±3.00 ab |
0.5 | 1.04±0.38 cd | 1.49±0.26 cd | 14.13±2.94 cd | 8.17±0.89 b | 7.83±1.85 b | 13.63±3.43 c |
0.6 | 0.59±0.17 d | 1.11±0.13 d | 9.81±1.20 d | 6.34±1.07 b | 9.14±1.46 b | 13.04±0.99 c |
0.7 | 0.53±0.13 d | 0.80±0.10 d | 13.92±2.00 cd | 8.44±1.50 b | 20.14±6.98 ab | 31.77±4.58 bc |
NaHCO3浓度 NaHCO3 concentration/% | 根-茎 Root-stem | 茎-叶 Stem-leaf | 根-叶 Root-leaf | |||
---|---|---|---|---|---|---|
SK,Na | SCa,Na | SK,Na | SCa,Na | SK,Na | SCa,Na | |
0 | 4.95±0.41 c | 6.15±0.93 b | 0.83±0.17 bc | 2.03±0.51 cd | 3.98±0.53 d | 11.62±2.07 c |
0.1 | 10.24±1.58 bc | 6.72±1.73 ab | 0.84±0.29 bc | 2.47±0.74 bcd | 7.78±1.58 cd | 14.09±1.79 bc |
0.2 | 9.96±1.76 bc | 5.85±0.19 b | 1.19±0.18 bc | 3.76±0.30 abc | 12.50±4.17 bcd | 22.01±2.16 bc |
0.3 | 18.83±3.88 ab | 6.37±1.48 b | 1.71±0.27 ab | 4.87±0.95 a | 33.34±9.74 ab | 33.68±13.15 ab |
0.4 | 15.35±3.12 bc | 4.42±0.88 b | 2.26±0.60 a | 3.59±0.21 abc | 31.11±5.26 abc | 16.23±4.23 bc |
0.5 | 15.28±2.22 bc | 5.78±0.96 b | 0.55±0.04 c | 1.62±0.23 d | 8.41±1.37 bcd | 9.72±2.61 c |
0.6 | 20.82±7.52 ab | 6.16±1.91 b | 0.94±0.14 bc | 2.12±0.18 bcd | 19.14±7.69 abcd | 12.37±2.62 Bc |
0.7 | 28.96±6.62 a | 10.63±1.79 a | 1.38±0.30 abc | 3.94±0.78 ab | 43.58±16.15 a | 41.71±9.14 Aa |
表4 碱性盐胁迫下夏蜡梅不同器官离子选择运输的变化
Table 4 The change of ion selective transport in different organs of Sinocalycanthus chinensis under alkaline salt stress and the result of variance analysis
NaHCO3浓度 NaHCO3 concentration/% | 根-茎 Root-stem | 茎-叶 Stem-leaf | 根-叶 Root-leaf | |||
---|---|---|---|---|---|---|
SK,Na | SCa,Na | SK,Na | SCa,Na | SK,Na | SCa,Na | |
0 | 4.95±0.41 c | 6.15±0.93 b | 0.83±0.17 bc | 2.03±0.51 cd | 3.98±0.53 d | 11.62±2.07 c |
0.1 | 10.24±1.58 bc | 6.72±1.73 ab | 0.84±0.29 bc | 2.47±0.74 bcd | 7.78±1.58 cd | 14.09±1.79 bc |
0.2 | 9.96±1.76 bc | 5.85±0.19 b | 1.19±0.18 bc | 3.76±0.30 abc | 12.50±4.17 bcd | 22.01±2.16 bc |
0.3 | 18.83±3.88 ab | 6.37±1.48 b | 1.71±0.27 ab | 4.87±0.95 a | 33.34±9.74 ab | 33.68±13.15 ab |
0.4 | 15.35±3.12 bc | 4.42±0.88 b | 2.26±0.60 a | 3.59±0.21 abc | 31.11±5.26 abc | 16.23±4.23 bc |
0.5 | 15.28±2.22 bc | 5.78±0.96 b | 0.55±0.04 c | 1.62±0.23 d | 8.41±1.37 bcd | 9.72±2.61 c |
0.6 | 20.82±7.52 ab | 6.16±1.91 b | 0.94±0.14 bc | 2.12±0.18 bcd | 19.14±7.69 abcd | 12.37±2.62 Bc |
0.7 | 28.96±6.62 a | 10.63±1.79 a | 1.38±0.30 abc | 3.94±0.78 ab | 43.58±16.15 a | 41.71±9.14 Aa |
[1] | WANG J C, YAO L R, LI B C, et al. Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress[J]. Frontiers in Plant Science, 2016, 7: 110. |
[2] | 毛恋, 芦建国, 江海燕. 植物响应盐碱胁迫的机制[J]. 分子植物育种, 2020, 18(10): 3441-3448. |
MAO L, LU J G, JIANG H Y. Mechanisms of plant responses to salt-alkali stress[J]. Molecular Plant Breeding, 2020, 18(10): 3441-3448.(in Chinesewith English abstract) | |
[3] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1): 651-681.
DOI URL |
[4] | 郑万钧, 章绍尧, 洪涛, 等. 中国经济树木新种及学名订正[J]. 林业科学, 1963(1): 1-14. |
ZHENG W J, ZHANG S Y, HONG T, et al. New species and revision of scientific names of economic trees in China[J]. Scientia Silvae Sinicae, 1963(1): 1-14.(in Chinese) | |
[5] | 张丽萍, 陈香波, 金荷仙. 夏蜡梅研究进展[J]. 浙江林业科技, 2009, 29(1): 65-70. |
ZHANG L P, CHEN X B, JIN H X. Advances of researches on Calycanthus chinensis[J]. Journal of Zhejiang Forestry Science and Technology, 2009, 29(1): 65-70.(in Chinese with English abstract) | |
[6] | 芦建国, 孙姿, 唐桂兰. 珍稀树种夏蜡梅研究进展[J]. 林业科技开发, 2015, 29(4): 1-6. |
LU J G, SUN Z, TANG G L. Research progress on the rare species of Calycanthus chinensis[J]. China Forestry Science and Technology, 2015, 29(4): 1-6. | |
[7] | 赵宏波, 周莉花, 郝日明, 等. 中国特有濒危植物夏蜡梅的交配系统[J]. 生态学报, 2011, 31(3): 602-610. |
ZHAO H B, ZHOU L H, HAO R M, et al. Mating system of Sinocalycanthus chinensis(Cheng et S.Y.Chang), an endangered, indigenous species in China[J]. ActaEcologicaSinica, 2011, 31(3): 602-610.(in Chinese with English abstract) | |
[8] | 纪凯婷. 夏蜡梅幼苗年生长规律和耐盐性研究[D]. 南京: 南京林业大学, 2014. |
JI K T. Studies on annual growth rhythm and salt-tolerance of Sinocalycanthus chinensis seedlings[D]. Nanjing: Nanjing Forestry University, 2014. (in Chinese with English abstract) | |
[9] | 章华婷. 盐胁迫对夏蜡梅幼苗生长的影响及机理研究[D]. 上海:上海师范大学, 2018. |
ZHANG H T. Effects of salt stress on the growth and its mechanism of the endangered species Sinocalycanthus chinensis seedlings[D]. Shanghai: Shanghai Normal University, 2018. (in Chinese with English abstract) | |
[10] | 陈丽飞. 遮荫及干旱胁迫对大花萱草生理特性的影响[D]. 长春: 吉林农业大学, 2007. |
CHEN L F. The effects of shading and water stress on physiology characteristics of Hemerocallis middendorfii[D]. Changchun: Jilin Agricultural University, 2007. (in Chinese with English abstract) | |
[11] | 郑必昭. 土壤分析技术指南[M]. 北京: 中国农业出版社, 2013. |
[12] | 王志强, 吴翠云, 杨哲, 等. 盐碱胁迫对酸枣幼苗生长及生理生化特性的影响[J]. 干旱地区农业研究, 2018, 36(2): 153-160. |
WANG Z Q, WU C Y, YANG Z, et al. Effect of saline-alkali stress on growth, physiological and biochemical characteristics of wild jujube seedlings[J]. Agricultural Research in the Arid Areas, 2018, 36(2): 153-160.(in Chinese with English abstract) | |
[13] | 李峰, 谢永宏, 覃盈盈. 盐胁迫条件下湿地植物的适应策略[J]. 生态学杂志, 2009, 28(2): 314-321. |
LI F, XIE Y H, QIN Y Y. Adaptive strategies of wetland plants in salt stress environment[J]. Chinese Journal of Ecology, 2009, 28(2): 314-321.(in Chinese with English abstract) | |
[14] | 毛桂莲, 梁文裕, 王盛, 等. 碱性盐胁迫对宁夏枸杞生长、结构及光合参数的影响[J]. 干旱地区农业研究, 2017, 35(4): 236-242. |
MAO G L, LIANG W Y, WANG S, et al. Effects of alkali stress on growth, structure and photosynthetic parameters of Lycium barbarum L.[J]. Agricultural Research in the Arid Areas, 2017, 35(4): 236-242.(in Chinese with English abstract) | |
[15] | YEO A. Molecular biology of salt tolerance in the context of whole-plant physiology[J]. Journal of Experimental Botany, 1998, 49(323): 915-929. |
[16] | 杜远鹏, 晋学娟, 郭淑华, 等. 不同盐碱类型胁迫对红地球/贝达葡萄植株离子分布的影响[J]. 应用生态学报, 2015, 26(6): 1801-1806. |
DU Y P, JIN X J, GUO S H, et al. Effects of different salt and alkali stresses on ion distribution in Red globe/Beta grapevines[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1801-1806.(in Chinese with English abstract) | |
[17] | 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理[J]. 浙江农业学报, 2020, 32(7): 1141-1148. |
SHI J, LIU D Y, ZHANG F H. Physiological response and salt tolerance mechanism of cotton seedlings to salt stress[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1141-1148.(in Chinese with English abstract) | |
[18] |
YANG C W, WANG P, LI C Y, et al. Comparison of effects of salt and alkali stresses on the growth and photosynjournal of wheat[J]. Photosynthetica, 2008, 46(1): 107-114.
DOI URL |
[19] |
SUN M Z, JIA B W, CUI N, et al. Functional characterization of a Glycine soja Ca(2+)ATPase in salt-alkaline stress responses[J]. Plant Molecular Biology, 2016, 90(4/5): 419-434.
DOI URL |
[20] | 颜路明, 郭祥泉. 盐碱胁迫对香樟幼苗离子吸收与分配的影响[J]. 土壤, 2015, 47(6): 1176-1180. |
YAN L M, GUO X Q. Effects of saline-alkali stress on Ion absorption and distribution of camphor seedling[J]. Soils, 2015, 47(6): 1176-1180.(in Chinese with English abstract) | |
[21] |
ABBAS Z K, MOBIN M. Comparative growth and physiological responses of two wheat (Triticum aestivum L.) cultivars differing in salt tolerance to salinity and cyclic drought stress[J]. Archives of Agronomy and Soil Science, 2016, 62(6): 745-758.
DOI URL |
[22] |
郭瑞, 李峰, 周际, 等. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79.
DOI |
GUO R, LI F, ZHOU J, et al. Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses[J]. Chinese Journal of Plant Ecology, 2016, 40(1): 69-79. (in Chinese with English abstract)
DOI URL |
|
[23] |
WAKEEL A, FAROOQ M, QADIR M, et al. Potassium substitution by sodium in plants[J]. Critical Reviews in Plant Sciences, 2011, 30(4): 401-413.
DOI URL |
[24] | 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8): 2741-2746. |
QI Q, MA S R, XU W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J]. Molecular Plant Breeding, 2020, 18(8): 2741-2746.(in Chinese with English abstract) | |
[25] | 陈展宇, 常雨婷, 邓川, 等. 盐碱生境对甜高粱幼苗抗氧化酶活性和生物量的影响[J]. 吉林农业大学学报, 2017, 39(1): 15-19. |
CHEN Z Y, CHANG Y T, DENG C, et al. Effect of saline-alkali habitat on antioxidant enzyme activity and biomass of sweet sorghum seedlings[J]. Journal of Jilin Agricultural University, 2017, 39(1): 15-19.(in Chinese with English abstract) | |
[26] |
TIAN X Y, HE M R, WANG Z L, et al. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress[J]. Plant Growth Regulation, 2015, 77(3): 343-356.
DOI URL |
[27] |
WANG X P, GENG S J, MA Y Q, et al. Growth, photosynjournal, solute accumulation, and ion balance of tomato plant under sodium-or potassium-salt stress and alkali stress[J]. Agronomy Journal, 2015, 107(2): 651-661.
DOI URL |
[28] | 石德成, 盛艳敏, 赵可夫. 不同盐浓度的混合盐对羊草苗的胁迫效应[J]. 植物学报, 1998, 40(12): 3-5. |
SHI D C, SHENG Y M, ZHAO K F. Stress effects of mixed salts with various salinities on the seedlings of aneuro Lepidium chinense[J]. Acta Botanica Sinica, 1998, 40(12): 3-5.(in Chinese with English abstract) | |
[29] | 赵昕, 杨小菊, 石勇, 等. 盐胁迫下荒漠共生植物红砂与珍珠的根茎叶中离子吸收与分配特征[J]. 生态学报, 2014, 34(4): 963-972. |
ZHAO X, YANG X J, SHI Y, et al. Ion absorption and distribution of symbiotic Reaumuria soongorica and Salsol apasserina seedlings under NaCl stress[J]. Acta Ecologica Sinica, 2014, 34(4): 963-972.(in Chinese with English abstract) | |
[30] |
BLUMWALD E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12(4): 431-434.
DOI URL |
[31] | 周琦, 祝遵凌. NaCl胁迫对2种鹅耳枥幼苗生长及离子吸收、分配与运输的影响[J]. 北京林业大学学报, 2015, 37(12): 7-16. |
ZHOU Q, ZHU Z L. Effects of NaCl stress on seedling growth and mineral ions uptake, distribution and transportation of two varieties of Carpinus L.[J]. Journal of Beijing Forestry University, 2015, 37(12): 7-16.(in Chinese with English abstract) | |
[32] |
张科, 田长彦, 李春俭. 一年生盐生植物耐盐机制研究进展[J]. 植物生态学报, 2009, 33(6): 1220-1231.
DOI |
ZHANG K, TIAN C Y, LI C J. Review of progress of studies on salt-tolerance mechanisms of annual halophytes[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1220-1231.(in Chinese with English abstract)
DOI |
|
[33] | 顾大形, 陈双林, 顾李俭, 等. 盐胁迫对四季竹细胞膜透性和矿质离子吸收、运输和分配的影响[J]. 生态学杂志, 2011, 30(7): 1417-1422. |
GU D X, CHEN S L, GU L J, et al. Impacts of NaCl stress on Oligostachyum lubricum cell membrane permeability and mineral ion uptake, transportation, and allocation[J]. Chinese Journal of Ecology, 2011, 30(7): 1417-1422.(in Chinese with English abstract) |
[1] | 江小帆, 吴涛, 魏玉明, 杨发荣, 陈国顺, 焦婷, 蔡原, 赵生国. 饲粮中添加牛至精油对芦花鸡生长性能、屠宰性能、器官指数和肠道形态的影响[J]. 浙江农业学报, 2022, 34(1): 41-49. |
[2] | 冯小芳, 蒋秋斐, 封元, 王瑜, 陈亚飞, 母童, 黎明, 周子航, 蔡正云, 张娟, 顾亚玲. 安格斯牛体重和体尺性状生长曲线拟合与相关性分析[J]. 浙江农业学报, 2022, 34(1): 50-59. |
[3] | 杨超, 刘敏竹, 李强, 韩涛, 彭良志, 凌丽俐, 付行政, 淳长品, 曹立, 何义仲. 发光二极管(LED)光质对金秋砂糖橘幼苗生长发育和光合特性的影响[J]. 浙江农业学报, 2022, 34(1): 89-97. |
[4] | 董智豪, 陈宇, 黄高想, 白俊艳, 李静云, 赵淑娟, 雷莹, 王新乐, 胡琦杭, 范征宇. 蛋用鹌鹑的VIPR-1基因的多态性与早期生长性状的关联分析[J]. 浙江农业学报, 2021, 33(8): 1393-1401. |
[5] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[6] | 黄书超, 侯栋, 岳宏忠, 孔维萍, 张东琴, 李亚莉, 撖冬荣, 颉博杰. 三株促生菌及其混合微生物菌剂对莴笋生长和品质的影响[J]. 浙江农业学报, 2021, 33(7): 1212-1221. |
[7] | 侯立娟, 李正鹏, 林金盛, 马林, 李辉平, 曲绍轩, 姜建新, 邹秀龙, 杨华平, 李长田, 蒋宁. 不同光质LED光照对草菇菌丝生长速度、菌丝分支与生物量的影响[J]. 浙江农业学报, 2021, 33(6): 1110-1116. |
[8] | 王铁, 黄胜佳, 杨友婷, 谭丽平, 邱霞, 董甜甜, 黎思辰, 孙国超, 熊博, 王均, 汪志辉. 不同中间砧对媛小春柑橘生长与光合特性的影响[J]. 浙江农业学报, 2021, 33(3): 413-421. |
[9] | 程安东, 汪本勤. 金寨县桑黄的菌种鉴定与生长特性研究[J]. 浙江农业学报, 2021, 33(12): 2234-2244. |
[10] | 葛金涛, 王江英, 赵文静, 邵小斌, 朱朋波, 汤雪燕, 孙明伟, 刘兴满. 魏可葡萄气生根发育的转录组分析[J]. 浙江农业学报, 2020, 32(9): 1645-1655. |
[11] | 陈天, 包宁颖, 杜崇宣, 刘云根. 不同砷污染程度下香蒲生长与砷富集特征[J]. 浙江农业学报, 2020, 32(9): 1672-1682. |
[12] | 许娜, 王大海, 杜传印, 杜沙沙, 王晓萌, 张彦, 张玉琴, 吴元华, 管恩森, 石屹. 株距对烟苗生长发育的影响[J]. 浙江农业学报, 2020, 32(8): 1342-1350. |
[13] | 兰挚谦, 张凯歌, 张雪艳. 耕层厚度对黄瓜叶片光合荧光与根系生理特性的影响[J]. 浙江农业学报, 2020, 32(7): 1196-1205. |
[14] | 刘连忠, 李孟杰, 宁井铭. 基于时序巡航图像的茶树生长监测研究[J]. 浙江农业学报, 2020, 32(5): 886-896. |
[15] | 白俊艳, 卢军浩, 付学言, 武晓红, 杨又兵, 雷莹, 庞有志, 卢小宁, 巩慧荣, 胡陆星, 刘红涛, 樊红灯, 曹恒, 时坤鹏, 陈梦柯, 马永康. 蛋用鹌鹑IGF-1R基因的多态性与体尺性状相关性分析[J]. 浙江农业学报, 2020, 32(3): 398-405. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||