浙江农业学报 ›› 2021, Vol. 33 ›› Issue (8): 1445-1460.DOI: 10.3969/j.issn.1004-1524.2021.08.12
黄长兵1,2(), 程培蕾2, 杨绍宗3, 张焕朝1,*(
), 姜正之3, 金立敏2
收稿日期:
2020-10-11
出版日期:
2021-08-25
发布日期:
2021-08-27
通讯作者:
张焕朝
作者简介:
*张焕朝,E-mail: hczhang@njfu.edu.cn基金资助:
HUANG Changbing1,2(), CHENG Peilei2, YANG Shaozong3, ZHANG Huanchao1,*(
), JIANG Zhengzhi3, JIN Limin2
Received:
2020-10-11
Online:
2021-08-25
Published:
2021-08-27
Contact:
ZHANG Huanchao
摘要:
低温胁迫是萱草育种和生产中最严重的非生物胁迫之一。该研究以耐冷型和冷敏感型萱草低温处理前后的根茎为材料,利用转录组测序(RNA-seq)技术,比较了耐冷型和冷敏感型萱草在低温胁迫下的基因表达差异。结果表明,4个样品获得的高质量clean reads均大于35 880 734条;低温处理后,耐冷型萱草差异表达基因数量多于冷敏感型,差异表达基因主要富集于次级代谢产物等相关途径,Ca2+信号通路基因、MAPKs信号通路基因、转录因子和热激蛋白基因表达在2种萱草中表现出不同的变化,可能导致2种萱草在低温胁迫中的不同反应。qRT-PCR验证结果显示,差异基因的表达变化趋势与RNA-seq结果一致。该研究表明Ca2+信号通路基因、MAPKs信号通路基因在萱草响应低温胁迫过程中发挥着重要作用。
中图分类号:
黄长兵, 程培蕾, 杨绍宗, 张焕朝, 姜正之, 金立敏. 萱草根茎低温胁迫转录组分析[J]. 浙江农业学报, 2021, 33(8): 1445-1460.
HUANG Changbing, CHENG Peilei, YANG Shaozong, ZHANG Huanchao, JIANG Zhengzhi, JIN Limin. Transcriptome analysis of Hemerocallis fulva under low temperature stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1445-1460.
引物名称 Primer name | 引物序列(5'-3') Sequence (5'-3') | 基因 Gene | 产物长度 Product length/bp |
---|---|---|---|
Unigene25337_All-F | CGTCCGGAGCCACAGCA | 类硫氧还蛋白基因Thioredoxin-like protein gene | 120 |
Unigene25337_All-R | AGAGGCAGCGAACCAG | 类硫氧还蛋白基因Thioredoxin-like protein gene | 120 |
Unigene25480_All-F | ATTGATGCTGCAAAAGGC | 丝氨酸/精氨酸重复基质蛋白基因 | 118 |
Aerine/arginine repetitive matrix protein 3-like gene | |||
Unigene25480_All-R | TCTGTGTGTTTTCATAAA | 丝氨酸/精氨酸重复基质蛋白基因 | 118 |
Serine/arginine repetitive matrix protein 3-like gene | |||
Unigene25572_All-F | TACTTTTCAGCTATTTAG | 溶磷酰胆碱酰转移酶1基因 | 110 |
Lysophos phatidylcholine acyltransferase 1 gene | |||
Unigene25572_All-R | ACCCGGATGAAGTTTGC | 溶磷酰胆碱酰转移酶1基因 | 110 |
Lysophos phatidylcholine acyltransferase 1 gene | |||
Unigene25602_All-F | GACGGCTGAGAGTGATGA | 1-磷脂酰肌醇3-磷酸5-激酶基因 | 108 |
1-phosphatidylinositol 3-phosphate 5-kinase gene | |||
Unigene25602_All-R | ACAAGAAGAGGGAAAGG | 1-磷脂酰肌醇3-磷酸5-激酶基因 | 108 |
1-phosphatidylinositol 3-phosphate 5-kinase gene | |||
Unigene25633_All-F | TCATCTTCTTCCTCTCTCTC | 粘液素-2基因 Mucin-2 gene | 110 |
Unigene25633_All-R | GCTTCTTCAGCGAAAGCTT | 粘液素-2基因Mucin-2 gene | 110 |
Unigene25700_All-F | TAAAACATCTATGTATTA | 肌球蛋白VIIa基因 Myosin-VIIa-like gene | 112 |
Unigene25700_All-R | TGTCGGGCAAACAGCTC | 肌球蛋白VIIa基因 Myosin-VIIa-like gene | 112 |
Unigene25732_All-F | GTCTGAATATTTCGTGT | 含有LOB结构域的蛋白38基因 | 108 |
LOB domain-containing protein 38-like gene | |||
Unigene25732_All-R | CTGAATCTATGAGAATC | 含有LOB结构域的蛋白38基因 | 108 |
LOB domain-containing protein 38-like gene | |||
Unigene25769_All-F | CAAGCTATTAATTTAAG | 多聚泛素-A基因Polyubiquitin-A gene | 106 |
Unigene25769_All-R | TTAGAGAAATCATGTCA | 多聚泛素-A基因Polyubiquitin-A gene | 106 |
表1 差异表达基因qRT-PCR引物
Table 1 qRT-PCR primers for differentially expressed genes
引物名称 Primer name | 引物序列(5'-3') Sequence (5'-3') | 基因 Gene | 产物长度 Product length/bp |
---|---|---|---|
Unigene25337_All-F | CGTCCGGAGCCACAGCA | 类硫氧还蛋白基因Thioredoxin-like protein gene | 120 |
Unigene25337_All-R | AGAGGCAGCGAACCAG | 类硫氧还蛋白基因Thioredoxin-like protein gene | 120 |
Unigene25480_All-F | ATTGATGCTGCAAAAGGC | 丝氨酸/精氨酸重复基质蛋白基因 | 118 |
Aerine/arginine repetitive matrix protein 3-like gene | |||
Unigene25480_All-R | TCTGTGTGTTTTCATAAA | 丝氨酸/精氨酸重复基质蛋白基因 | 118 |
Serine/arginine repetitive matrix protein 3-like gene | |||
Unigene25572_All-F | TACTTTTCAGCTATTTAG | 溶磷酰胆碱酰转移酶1基因 | 110 |
Lysophos phatidylcholine acyltransferase 1 gene | |||
Unigene25572_All-R | ACCCGGATGAAGTTTGC | 溶磷酰胆碱酰转移酶1基因 | 110 |
Lysophos phatidylcholine acyltransferase 1 gene | |||
Unigene25602_All-F | GACGGCTGAGAGTGATGA | 1-磷脂酰肌醇3-磷酸5-激酶基因 | 108 |
1-phosphatidylinositol 3-phosphate 5-kinase gene | |||
Unigene25602_All-R | ACAAGAAGAGGGAAAGG | 1-磷脂酰肌醇3-磷酸5-激酶基因 | 108 |
1-phosphatidylinositol 3-phosphate 5-kinase gene | |||
Unigene25633_All-F | TCATCTTCTTCCTCTCTCTC | 粘液素-2基因 Mucin-2 gene | 110 |
Unigene25633_All-R | GCTTCTTCAGCGAAAGCTT | 粘液素-2基因Mucin-2 gene | 110 |
Unigene25700_All-F | TAAAACATCTATGTATTA | 肌球蛋白VIIa基因 Myosin-VIIa-like gene | 112 |
Unigene25700_All-R | TGTCGGGCAAACAGCTC | 肌球蛋白VIIa基因 Myosin-VIIa-like gene | 112 |
Unigene25732_All-F | GTCTGAATATTTCGTGT | 含有LOB结构域的蛋白38基因 | 108 |
LOB domain-containing protein 38-like gene | |||
Unigene25732_All-R | CTGAATCTATGAGAATC | 含有LOB结构域的蛋白38基因 | 108 |
LOB domain-containing protein 38-like gene | |||
Unigene25769_All-F | CAAGCTATTAATTTAAG | 多聚泛素-A基因Polyubiquitin-A gene | 106 |
Unigene25769_All-R | TTAGAGAAATCATGTCA | 多聚泛素-A基因Polyubiquitin-A gene | 106 |
样品 Sample | 原始 readsTotal raw reads | 过滤后的reads Total clean reads | 核苷酸数量 Number of nucleotides | 质量值≥20碱基 所占百分比 Q20/% | 质量值≥30的碱基 所占百分比 Q30/% | GC含量 GCcontent/% |
---|---|---|---|---|---|---|
4CK | 47 738 570 | 46 171 660 | 6 858 685 119 | 98.61 | 95.65 | 48.83 |
4T | 50 110 130 | 47 791 962 | 7 099 131 160 | 98.63 | 95.70 | 48.89 |
7CK | 50 918 552 | 47 411 290 | 7 047 333 003 | 98.72 | 95.97 | 48.57 |
7T | 38 540 808 | 35 880 734 | 5 342 671 114 | 98.82 | 96.23 | 48.48 |
表2 有效数据评估统计
Table 2 Valid data evaluation statistics
样品 Sample | 原始 readsTotal raw reads | 过滤后的reads Total clean reads | 核苷酸数量 Number of nucleotides | 质量值≥20碱基 所占百分比 Q20/% | 质量值≥30的碱基 所占百分比 Q30/% | GC含量 GCcontent/% |
---|---|---|---|---|---|---|
4CK | 47 738 570 | 46 171 660 | 6 858 685 119 | 98.61 | 95.65 | 48.83 |
4T | 50 110 130 | 47 791 962 | 7 099 131 160 | 98.63 | 95.70 | 48.89 |
7CK | 50 918 552 | 47 411 290 | 7 047 333 003 | 98.72 | 95.97 | 48.57 |
7T | 38 540 808 | 35 880 734 | 5 342 671 114 | 98.82 | 96.23 | 48.48 |
数据库 Database | 数量 Number | 比例 Percentage/% |
---|---|---|
NCBI非冗余蛋白数据库 Nr | 38 447 | 44.15 |
NCBI核酸数据库 Nt | 10 453 | 12.00 |
瑞士蛋白序列数据库 SwissProt | 28 095 | 32.27 |
京都基因和基因组路径 KEGG | 27 835 | 31.97 |
真核生物直系同源物 KOG | 41 418 | 47.57 |
Pfam蛋白家族数据库 Pfam | 36 767 | 42.23 |
基因本体GO | 15 933 | 18.30 |
表3 Unigenes注释结果统计
Table 3 Annotation results of unigene sequences
数据库 Database | 数量 Number | 比例 Percentage/% |
---|---|---|
NCBI非冗余蛋白数据库 Nr | 38 447 | 44.15 |
NCBI核酸数据库 Nt | 10 453 | 12.00 |
瑞士蛋白序列数据库 SwissProt | 28 095 | 32.27 |
京都基因和基因组路径 KEGG | 27 835 | 31.97 |
真核生物直系同源物 KOG | 41 418 | 47.57 |
Pfam蛋白家族数据库 Pfam | 36 767 | 42.23 |
基因本体GO | 15 933 | 18.30 |
路径 Pathway | 代谢通路 Metabolic pathway | 基因数量 Gene number | P值 P value |
---|---|---|---|
ko01100 | 异黄酮生物合成Isoflavone biosynthesis | 5 543 | 1.23×10-2 |
ko05010 | 牛磺酸和亚牛磺酸代谢Taurine and taurine metabolism | 2 333 | 1.00×10-2 |
ko04022 | 光合天线作用蛋白Photosynthetic antenna acting protein | 2 134 | 8.15×10-2 |
ko04022 | 二苯基庚酮和姜酚生物合成Biosynthesis of diphenylheptanone and gingerol | 2 057 | 1.71×10-3 |
ko04020 | 昼夜节律-植物Circadian rhythm-plants | 2 026 | 3.72×10-2 |
ko05169 | 不饱和脂肪酸的生物合成Biosynthesis of unsaturated fatty acids | 1 915 | 1.00×10-2 |
ko04972 | 花青素生物合成Anthocyanin biosynthesis | 1 743 | 1.00×10-2 |
ko05016 | 类黄酮生物合成Flavonoid biosynthesis | 1 599 | 3.45×10-3 |
ko00230 | 吲哚生物碱生物合成Biosynthesis of indole alkaloids | 1 488 | 1.00×10-2 |
ko05168 | 类固醇生物合成Steroid biosynthesis | 1 447 | 1.00×10-2 |
ko05110 | 嘌呤代谢purine metabolism | 1 429 | 4.34×10-3 |
ko00240 | 硫辛酸代谢Lipoic acid metabolism | 1 345 | 1.00×10-2 |
ko05146 | 黄酮生物合成Flavone biosynthesis | 1 265 | 4.53×10-2 |
ko03020 | 花生四烯酸代谢Arachidonic acid metabolism | 1 121 | 9.80×10-9 |
ko03010 | RNA聚合酶RNA polymerase | 1 110 | 6.73×10-15 |
ko05152 | 光合作用Photosynthesis | 990 | 1.00×10-4 |
表4 与萱草低温胁迫作用相关的16条代谢通路
Table 4 Sixteen metabolic pathways related to cold stress of Hemerocallis fulva
路径 Pathway | 代谢通路 Metabolic pathway | 基因数量 Gene number | P值 P value |
---|---|---|---|
ko01100 | 异黄酮生物合成Isoflavone biosynthesis | 5 543 | 1.23×10-2 |
ko05010 | 牛磺酸和亚牛磺酸代谢Taurine and taurine metabolism | 2 333 | 1.00×10-2 |
ko04022 | 光合天线作用蛋白Photosynthetic antenna acting protein | 2 134 | 8.15×10-2 |
ko04022 | 二苯基庚酮和姜酚生物合成Biosynthesis of diphenylheptanone and gingerol | 2 057 | 1.71×10-3 |
ko04020 | 昼夜节律-植物Circadian rhythm-plants | 2 026 | 3.72×10-2 |
ko05169 | 不饱和脂肪酸的生物合成Biosynthesis of unsaturated fatty acids | 1 915 | 1.00×10-2 |
ko04972 | 花青素生物合成Anthocyanin biosynthesis | 1 743 | 1.00×10-2 |
ko05016 | 类黄酮生物合成Flavonoid biosynthesis | 1 599 | 3.45×10-3 |
ko00230 | 吲哚生物碱生物合成Biosynthesis of indole alkaloids | 1 488 | 1.00×10-2 |
ko05168 | 类固醇生物合成Steroid biosynthesis | 1 447 | 1.00×10-2 |
ko05110 | 嘌呤代谢purine metabolism | 1 429 | 4.34×10-3 |
ko00240 | 硫辛酸代谢Lipoic acid metabolism | 1 345 | 1.00×10-2 |
ko05146 | 黄酮生物合成Flavone biosynthesis | 1 265 | 4.53×10-2 |
ko03020 | 花生四烯酸代谢Arachidonic acid metabolism | 1 121 | 9.80×10-9 |
ko03010 | RNA聚合酶RNA polymerase | 1 110 | 6.73×10-15 |
ko05152 | 光合作用Photosynthesis | 990 | 1.00×10-4 |
比较 Comparison | 基因ID GeneID | log2(fold change) | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | Unigene26840_All | 1.752 123 | 7.08×10-12 | 6.43×10-13 | CBL互作丝氨酸/苏氨酸蛋白激酶3 |
CBL-interacting serine/threonine-protein kinase 3 | |||||
7CK-VS-7T | CL2505.Contig6_All | 1.261 008 | 1.64×10-6 | 4.186×10-7 | 钙/钙调蛋白依赖性蛋白激酶II |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
CL11891.Contig1_All | 1.245 642 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL10570.Contig1_All | 1.240 229 | 0 | 0 | 钙调蛋白Calmodulin (Calm3) | |
CL7725.Contig5_All | -2.088 160 | 2.18×10-17 | 3.17×10-18 | 钙调素和肌素相互作用RhoGEF | |
Calmodulin and titin-interacting RhoGEF | |||||
CL2721.Contig3_All | -2.334 250 | 1.38×10-47 | 9.96×10-49 | CBL互作丝氨酸/苏氨酸蛋白激酶14 | |
CBL-interacting serine/threonine-protein kinase 14-like | |||||
4CK-VS-7CK | Unigene66_All | 3.843 314 | 5.71×10-111 | 2.74×10-112 | 钙调蛋白Calmodulin (Calm1) |
CL11891.Contig3_All | 1.867 317 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL2721.Contig2_All | 2.743 697 | 0 | 0 | CBL互作丝氨酸/苏氨酸蛋白激酶14 | |
CBL-interacting serine/threonine-protein kinase 14-like | |||||
CL2505.Contig6_All | -2.933 600 | 6.70×10-48 | 6.57×10-49 | 钙/钙调蛋白依赖性蛋白激酶II | |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
4T-VS-7T | Unigene66_All | 3.345 624 | 1.17×10-70 | 6.59×10-72 | 钙调蛋白Calmodulin (Calm1) |
CL11891.Contig3_All | 1.990 892 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL2505.Contig6_All | -2.505 860 | 4.20×10-58 | 2.86×10-59 | 钙/钙调蛋白依赖性蛋白激酶II | |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
CL7725.Contig5_All | -1.397 450 | 1.19×10-6 | 3.68×10-7 | 钙调素和肌素相互作用RhoGEF | |
Calmodulin and titin-interacting RhoGEF | |||||
Unigene6945_All | -1.307 820 | 1.57×10-27 | 2.01×10-28 | 钙调素结合转录激活子3 | |
Calmodulin-binding transcription activator 3 |
表5 钙离子信号通路相关差异基因
Table 5 Differentially expressed genes involved in Ca2+ signalling pathway in each comparison
比较 Comparison | 基因ID GeneID | log2(fold change) | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | Unigene26840_All | 1.752 123 | 7.08×10-12 | 6.43×10-13 | CBL互作丝氨酸/苏氨酸蛋白激酶3 |
CBL-interacting serine/threonine-protein kinase 3 | |||||
7CK-VS-7T | CL2505.Contig6_All | 1.261 008 | 1.64×10-6 | 4.186×10-7 | 钙/钙调蛋白依赖性蛋白激酶II |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
CL11891.Contig1_All | 1.245 642 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL10570.Contig1_All | 1.240 229 | 0 | 0 | 钙调蛋白Calmodulin (Calm3) | |
CL7725.Contig5_All | -2.088 160 | 2.18×10-17 | 3.17×10-18 | 钙调素和肌素相互作用RhoGEF | |
Calmodulin and titin-interacting RhoGEF | |||||
CL2721.Contig3_All | -2.334 250 | 1.38×10-47 | 9.96×10-49 | CBL互作丝氨酸/苏氨酸蛋白激酶14 | |
CBL-interacting serine/threonine-protein kinase 14-like | |||||
4CK-VS-7CK | Unigene66_All | 3.843 314 | 5.71×10-111 | 2.74×10-112 | 钙调蛋白Calmodulin (Calm1) |
CL11891.Contig3_All | 1.867 317 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL2721.Contig2_All | 2.743 697 | 0 | 0 | CBL互作丝氨酸/苏氨酸蛋白激酶14 | |
CBL-interacting serine/threonine-protein kinase 14-like | |||||
CL2505.Contig6_All | -2.933 600 | 6.70×10-48 | 6.57×10-49 | 钙/钙调蛋白依赖性蛋白激酶II | |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
4T-VS-7T | Unigene66_All | 3.345 624 | 1.17×10-70 | 6.59×10-72 | 钙调蛋白Calmodulin (Calm1) |
CL11891.Contig3_All | 1.990 892 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL2505.Contig6_All | -2.505 860 | 4.20×10-58 | 2.86×10-59 | 钙/钙调蛋白依赖性蛋白激酶II | |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
CL7725.Contig5_All | -1.397 450 | 1.19×10-6 | 3.68×10-7 | 钙调素和肌素相互作用RhoGEF | |
Calmodulin and titin-interacting RhoGEF | |||||
Unigene6945_All | -1.307 820 | 1.57×10-27 | 2.01×10-28 | 钙调素结合转录激活子3 | |
Calmodulin-binding transcription activator 3 |
比较 Comparison | 基因ID Gene ID | log2(fold change) | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | CL1729.Contig2_All | 1.968 445 | 9.05×10-12 | 8.28×10-13 | 丝裂原活化蛋白激酶激酶激酶3 |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL4304.Contig1_All | -1.360 070 | 6.30×10-25 | 2.99×10-26 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL5093.Contig4_All | -1.116 620 | 7.50×10-11 | 7.33×10-12 | 丝裂原活化蛋白激酶激酶激酶5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
7CK-VS-7T | CL3036.Contig2_All | 3.523 562 | 0.008 842 093 | 0.00 348 524 | 丝裂原活化蛋白激酶激酶激酶MLK4 |
Mitogen-activated protein kinase kinase kinase MLK4-like | |||||
CL1729.Contig2_All | 2.092 002 | 2.45×10-27 | 2.64×10-28 | 丝裂原活化蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL5625.Contig1_All | 1.376 741 | 1.02×10-18 | 1.42×10-19 | 丝裂原活化蛋白激酶4 | |
Mitogen-activated protein kinase 4 | |||||
CL4304.Contig1_All | -3.903 960 | 3.62×10-103 | 1.43×10-104 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL12049.Contig2_All | -3.286 680 | 5.31×10-18 | 7.56×10-19 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL5093.Contig4_All | -1.990 600 | 1.35×10-10 | 2.63×10-11 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
4CK-VS-7CK | CL8048.Contig2_All | 3.014 950 | 1.08×10-88 | 6.41×10-90 | 丝裂原激活蛋白激酶8互作蛋白2 |
Mitogen-activated protein kinase 8 interacting protein 2 (MAPK8IP2) | |||||
CL1729.Contig2_All | 1.106 915 | 0.001 163 593 | 0.000 507 178 | 丝裂原激活蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL12049.Contig2_All | 1.062 509 | 1.48×10-5 | 5.34×10-6 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL5625.Contig1_All | -1.516 540 | 5.41×10-25 | 8.56×10-26 | 丝裂原活化蛋白激酶4 | |
Mitogen-activated protein kinase 4 | |||||
CL5093.Contig4_All | -1.044 110 | 4.97×10-10 | 1.34×10-10 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
4T-VS-7T | CL8048.Contig2_All | 4.202 332 | 1.56×10-200 | 3.03×10-202 | 丝裂原激活蛋白激酶8互作蛋白2 |
Mitogen-activated protein kinase 8 interacting protein 2 (MAPK8IP2) | |||||
CL1729.Contig2_All | 1.230 472 | 1.80×10-13 | 3.76×10-14 | 丝裂原激活蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL3036.Contig2_All | -2.181 490 | 8.88×10-6 | 2.93×10-6 | 丝裂原活化蛋白激酶激酶激酶 MLK4 | |
Mitogen-activated protein kinase kinase kinase MLK4-like | |||||
CL12049.Contig2_All | -2.147 640 | 8.88×10-6 | 2.93×10-6 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL4304.Contig1_All | -2.051 190 | 4.72×10-15 | 9.22×10-16 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL5093.Contig4_All | -1.918 090 | 1.10×10-9 | 2.80×10-10 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 |
表6 MAPK信号通路相关差异基因
Table 6 Differentially expressed genes involved in MAPK cascades pathway in each comparison
比较 Comparison | 基因ID Gene ID | log2(fold change) | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | CL1729.Contig2_All | 1.968 445 | 9.05×10-12 | 8.28×10-13 | 丝裂原活化蛋白激酶激酶激酶3 |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL4304.Contig1_All | -1.360 070 | 6.30×10-25 | 2.99×10-26 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL5093.Contig4_All | -1.116 620 | 7.50×10-11 | 7.33×10-12 | 丝裂原活化蛋白激酶激酶激酶5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
7CK-VS-7T | CL3036.Contig2_All | 3.523 562 | 0.008 842 093 | 0.00 348 524 | 丝裂原活化蛋白激酶激酶激酶MLK4 |
Mitogen-activated protein kinase kinase kinase MLK4-like | |||||
CL1729.Contig2_All | 2.092 002 | 2.45×10-27 | 2.64×10-28 | 丝裂原活化蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL5625.Contig1_All | 1.376 741 | 1.02×10-18 | 1.42×10-19 | 丝裂原活化蛋白激酶4 | |
Mitogen-activated protein kinase 4 | |||||
CL4304.Contig1_All | -3.903 960 | 3.62×10-103 | 1.43×10-104 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL12049.Contig2_All | -3.286 680 | 5.31×10-18 | 7.56×10-19 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL5093.Contig4_All | -1.990 600 | 1.35×10-10 | 2.63×10-11 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
4CK-VS-7CK | CL8048.Contig2_All | 3.014 950 | 1.08×10-88 | 6.41×10-90 | 丝裂原激活蛋白激酶8互作蛋白2 |
Mitogen-activated protein kinase 8 interacting protein 2 (MAPK8IP2) | |||||
CL1729.Contig2_All | 1.106 915 | 0.001 163 593 | 0.000 507 178 | 丝裂原激活蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL12049.Contig2_All | 1.062 509 | 1.48×10-5 | 5.34×10-6 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL5625.Contig1_All | -1.516 540 | 5.41×10-25 | 8.56×10-26 | 丝裂原活化蛋白激酶4 | |
Mitogen-activated protein kinase 4 | |||||
CL5093.Contig4_All | -1.044 110 | 4.97×10-10 | 1.34×10-10 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
4T-VS-7T | CL8048.Contig2_All | 4.202 332 | 1.56×10-200 | 3.03×10-202 | 丝裂原激活蛋白激酶8互作蛋白2 |
Mitogen-activated protein kinase 8 interacting protein 2 (MAPK8IP2) | |||||
CL1729.Contig2_All | 1.230 472 | 1.80×10-13 | 3.76×10-14 | 丝裂原激活蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL3036.Contig2_All | -2.181 490 | 8.88×10-6 | 2.93×10-6 | 丝裂原活化蛋白激酶激酶激酶 MLK4 | |
Mitogen-activated protein kinase kinase kinase MLK4-like | |||||
CL12049.Contig2_All | -2.147 640 | 8.88×10-6 | 2.93×10-6 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL4304.Contig1_All | -2.051 190 | 4.72×10-15 | 9.22×10-16 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL5093.Contig4_All | -1.918 090 | 1.10×10-9 | 2.80×10-10 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 |
比较 Comparison | 基因ID Gene ID | log2 fold change | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | Unigene9010_All | 1.953 179 | 1.12×10-221 | 5.96×10-224 | HSP70-2 |
CL4189.Contig1_All | 1.291 709 | 4.47×10-12 | 4.00×10-13 | DnaJ热激蛋白 | |
DnaJ heat shock protein (DNAJC6) | |||||
Unigene6560_All | 1.045 864 | 1.83×10-25 | 8.58×10-27 | HSP90 | |
7CK-VS-7T | Unigene14974_All | 1.272 815 | 4.91×10-21 | 6.36×10-22 | HSP86 |
Unigene6560_All | -1.611 640 | 8.90×10-22 | 1.12×10-22 | HSP90 | |
CL2382.Contig6_All | -1.455 820 | 3.29×10-8 | 7.40×10-9 | HSP90-5 | |
4CK-VS-7CK | CL12755.Contig2_All | 3.497 080 | 1.25×10-231 | 2.95×10-233 | HSPA8 |
CL2382.Contig6_All | -4.260 570 | 0 | 0 | HSP90-5 | |
CL5229.Contig2_All | -1.364 170 | 1.90×10-45 | 1.95×10-46 | HSP70-2 | |
4T-VS-7T | CL2382.Contig6_All | -4.985 870 | 1.10×10-307 | 0 | HSP90-5 |
Unigene6560_All | -2.617 300 | 6.68×10-79 | 3.36×10-80 | HSP90 | |
Unigene9010_All | -1.729 100 | 2.73×10-161 | 6.80×10-163 | HSPA8 | |
CL707.Contig3_All | -1.140 870 | 2.44×10-220 | 4.23×10-222 | HSP60 |
表7 编码热激蛋白的差异表达基因
Table 7 Differentially expressed genes encoding HSPs protein in each comparison
比较 Comparison | 基因ID Gene ID | log2 fold change | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | Unigene9010_All | 1.953 179 | 1.12×10-221 | 5.96×10-224 | HSP70-2 |
CL4189.Contig1_All | 1.291 709 | 4.47×10-12 | 4.00×10-13 | DnaJ热激蛋白 | |
DnaJ heat shock protein (DNAJC6) | |||||
Unigene6560_All | 1.045 864 | 1.83×10-25 | 8.58×10-27 | HSP90 | |
7CK-VS-7T | Unigene14974_All | 1.272 815 | 4.91×10-21 | 6.36×10-22 | HSP86 |
Unigene6560_All | -1.611 640 | 8.90×10-22 | 1.12×10-22 | HSP90 | |
CL2382.Contig6_All | -1.455 820 | 3.29×10-8 | 7.40×10-9 | HSP90-5 | |
4CK-VS-7CK | CL12755.Contig2_All | 3.497 080 | 1.25×10-231 | 2.95×10-233 | HSPA8 |
CL2382.Contig6_All | -4.260 570 | 0 | 0 | HSP90-5 | |
CL5229.Contig2_All | -1.364 170 | 1.90×10-45 | 1.95×10-46 | HSP70-2 | |
4T-VS-7T | CL2382.Contig6_All | -4.985 870 | 1.10×10-307 | 0 | HSP90-5 |
Unigene6560_All | -2.617 300 | 6.68×10-79 | 3.36×10-80 | HSP90 | |
Unigene9010_All | -1.729 100 | 2.73×10-161 | 6.80×10-163 | HSPA8 | |
CL707.Contig3_All | -1.140 870 | 2.44×10-220 | 4.23×10-222 | HSP60 |
比较 Comparison | 基因ID Gene ID | log2 fold change | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | CL703.Contig1_All | -1.440 740 | 1.94×10-14 | 1.50×10-15 | WRKY11 |
Unigene4802_All | -3.694 380 | 1.60×10-80 | 2.43×10-82 | MYB102 | |
7CK-VS-7T | CL4950.Contig5_All | 2.192 645 | 4.83×10-10 | 9.70×10-11 | MYB20 |
CL9135.Contig2_All | 1.171 953 | 7.09×10-66 | 4.01×10-67 | bHLH2 | |
Unigene4802_All | -1.900 390 | 9.78×10-32 | 9.5×10-33 | MYB102 | |
4CK-VS-7CK | CL703.Contig1_All | 2.076 462 | 2.29×10-100 | 1.21×10-101 | WRKY11 |
CL9135.Contig2_All | -2.614 170 | 0 | 0 | bHLH2 | |
CL4950.Contig5_All | -1.890 000 | 3.43×10-7 | 1.09×10-7 | MYB122-like | |
4T-VS-7T | CL703.Contig1_All | 3.401 090 | 2.74×10-152 | 7.22×10-154 | WRKY11 |
Unigene4802_All | 1.723 331 | 1.95×10-9 | 5.02×10-10 | MYB122-like | |
CL9135.Contig2_All | -1.895 210 | 0 | 0 | bHLH2 |
表8 差异表达的转录因子
Table 8 Differential expression of transcription factors
比较 Comparison | 基因ID Gene ID | log2 fold change | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | CL703.Contig1_All | -1.440 740 | 1.94×10-14 | 1.50×10-15 | WRKY11 |
Unigene4802_All | -3.694 380 | 1.60×10-80 | 2.43×10-82 | MYB102 | |
7CK-VS-7T | CL4950.Contig5_All | 2.192 645 | 4.83×10-10 | 9.70×10-11 | MYB20 |
CL9135.Contig2_All | 1.171 953 | 7.09×10-66 | 4.01×10-67 | bHLH2 | |
Unigene4802_All | -1.900 390 | 9.78×10-32 | 9.5×10-33 | MYB102 | |
4CK-VS-7CK | CL703.Contig1_All | 2.076 462 | 2.29×10-100 | 1.21×10-101 | WRKY11 |
CL9135.Contig2_All | -2.614 170 | 0 | 0 | bHLH2 | |
CL4950.Contig5_All | -1.890 000 | 3.43×10-7 | 1.09×10-7 | MYB122-like | |
4T-VS-7T | CL703.Contig1_All | 3.401 090 | 2.74×10-152 | 7.22×10-154 | WRKY11 |
Unigene4802_All | 1.723 331 | 1.95×10-9 | 5.02×10-10 | MYB122-like | |
CL9135.Contig2_All | -1.895 210 | 0 | 0 | bHLH2 |
图8 差异表达基因的qRT-PCR验证 qRT-PCR结果中的误差线表示平均值的标准差(n=3)。
Fig.8 qRT-PCR validation for differentially expressed genes identified by RNA-Seq The error line in results represents the standard deviation of the mean value (n=3).
[1] |
TUULOS A, TURAKAINEN M, KLEEMOLA J, et al. Yield of spring cereals in mixed stands with undersown winter turnip rape[J]. Field Crops Research, 2015, 174:71-78.
DOI URL |
[2] | AN F X, LIANG Y, LI J F, et al. Construction and significance analysis of the MicroRNA expression profile of Hemerocallis fulva at low temperature[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(3):378-383. |
[3] | HUANG C B, QIAN J L, QIU H J, et al. Effect of low temperature stress on the Hemerocallis fulva[C]//Computer Science and Electronic Technology International Society. Proceedings of 2018 3rd International Social Sciences and Education Conference(ISSEC 2018),June-23, 2018,Francis Academic Press:2018. |
[4] |
WU W T, MONG M C, YANG Y C, et al. Aqueous and ethanol extracts of daylily flower (Hemerocallis fulva L.) protect HUVE cells against high glucose[J]. Journal of Food Science, 2018, 83(5):1463-1469.
DOI URL |
[5] |
WAALEN W, ØVERGAARD S I, ÅSSVEEN M, et al. Winter survival of winter rapeseed and winter turnip rapeseed in field trials, as explained by PPLS regression[J]. European Journal of Agronomy, 2013, 51:81-90.
DOI URL |
[6] |
WEI A L, XIN X J, WANG Y S, et al. Signal regulation involved in sulfur dioxide-induced guard cell apoptosis in Hemerocallis fulva[J]. Ecotoxicology and Environmental Safety, 2013, 98:41-45.
DOI URL |
[7] |
LEE J, LIM J S, KIM S Y, et al. The complete chloroplast genome of Hemerocallisfulva[J]. Mitochondrial DNA Part B, 2019, 4(2):2199-2200.
DOI URL |
[8] |
REN Y, GAO Y K, GAO S Y, et al. Genetic characteristics of circadian flowering rhythm in Hemerocallis[J]. Scientia Horticulturae, 2019, 250:19-26.
DOI URL |
[9] |
LIU Y Z, GAO Y K, YUAN L, et al. Functional characterization and spatial interaction of TERMINAL FLOWER 1 in Hemerocallis[J]. Scientia Horticulturae, 2019, 253:154-162.
DOI URL |
[10] | WANG Y, XU T, FAN B, et al. Advances in researches on chemical composition and functions of Hemerocallis plants[J]. Medicinal Plant, 2018, 9(2):16-21. |
[11] |
CHEN L, ZHANG Y Y, REN Y Y, et al. Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing[J]. Biochemical and Biophysical Research Communications, 2012, 417(2):892-896.
DOI URL |
[12] |
GUO X Y, ZHANG L, DONG G Q, et al. A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum)[J]. Plant Science, 2019, 289:110246.
DOI URL |
[13] | MEGHA S, BASU U, KAV N N V . Regulation of low temperature stress in plants by microRNAs[J]. Plant, Cell & Environment, 2018, 41(1):1-15. |
[14] | 柴华文, 罗光明, 吴波, 等. 转录组测序技术在中药的应用[J]. 时珍国医国药, 2018, 29(12):3001-3003. |
CHAI H W, LUO G M, WU B, et al. Application of transcriptome sequencing technology in traditional Chinese medicine[J]. Lishizhen Medicine and Materia Medica Research, 2018, 29(12):3001-3003.(in Chinese) | |
[15] | 王伟科, 宋吉玲, 闫静, 等. 秀珍菇转录组测序和初步分析[J]. 南京农业大学学报, 2019, 42(2):292-299. |
WANG W K, SONG J L, YAN J, et al. Transcriptome sequencing and analysis of Pleurotus pulmonarius[J]. Journal of Nanjing Agricultural University, 2019, 42(2):292-299.(in Chinese with English abstract) | |
[16] |
PROVART N J, GIL P, CHEN W Q, et al. Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures[J]. Plant Physiology, 2003, 132(2):893-906.
DOI URL |
[17] |
CHEN H Y, CHEN X L, CHEN D, et al. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites[J]. BMC Plant Biology, 2015, 15:132.
DOI URL |
[18] | 李巍. 基于转录组学的紫花苜蓿抗寒分子机制研究[D]. 哈尔滨: 哈尔滨师范大学, 2018. |
LI W. Using RNA-Seq platform revealing molecular mechanism of freezing tolerance in alfalfa[D]. Harbin: Harbin Normal University, 2018. (in Chinese with English abstract) | |
[19] | 戴忠仁. 黄瓜耐冷生理变化规律及相关基因转录组测序和表达分析[D]. 哈尔滨: 东北农业大学, 2015. |
DAI Z R. The physiologycal changes rule of cold tolerance and transcriptome and expression analysis of ralated genes in cucumber[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese with English abstract) | |
[20] | 朱琳, 袁梦, 高红秀, 等. 水稻苗期低温应答转录组分析[J]. 华北农学报, 2018, 33(5):40-51. |
ZHU L, YUAN M, GAO H X, et al. Transcriptomic analysis of rice seedling responsive to low temperature[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(5):40-51.(in Chinese with English abstract) | |
[21] |
GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7):644-652.
DOI URL |
[22] |
AUDIC S, CLAVERIE J M. The significance of digital gene expression profiles[J]. Genome Research, 1997, 7(10):986-995.
DOI URL |
[23] |
SADDHE A A, MALVANKAR M R, KARLE S B, et al. Reactive nitrogen species: paradigms of cellular signaling and regulation of salt stress in plants[J]. Environmental and Experimental Botany, 2019, 161:86-97.
DOI URL |
[24] | TAKAHASHI D, UEMURA M, KAWAMURA Y. Freezing tolerance of plant cells: from the aspect of plasma membrane and microdomain[M]//MARI I I, MINORU S, MATSUO U. Survival strategies in extreme cold and desiccation.Singapore: Springer, 2018: 61. |
[25] | LIU L J, ZHANG D X, JIN Z M, et al. Effects of exogenous abscisic acid on expression of cold-regulated genes in winter wheat under low temperature stress[J]. Pakistan Journal of Botany, 2019, 51(1):55. |
[26] |
SUZUKI N, MITTLER R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction[J]. Physiologia Plantarum, 2006, 126(1):45-51.
DOI URL |
[27] |
IGNATENKO A, TALANOVA V, REPKINA N, et al. Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation[J]. Acta Physiologiae Plantarum, 2019, 41(6):1-10.
DOI URL |
[28] |
DENG S X, MA J, ZHANG L L, et al. De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress[J]. BMC Plant Biology, 2019, 19(1):1-23.
DOI URL |
[29] |
SKYBA M, PETIJOVÁ L, KOŠUTH J , et al. Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treatment[J]. Journal of Plant Physiology, 2012, 169(10):955-964.
DOI URL |
[30] |
SUN C, LI Y, WU Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynjournal[J]. BMC Genomics, 2010, 11:262.
DOI URL |
[31] |
CHEN S, LUO H, LI Y, et al. 454 EST analysis detects genes putatively involved in ginsenoside biosynjournal in Panax ginseng[J]. Plant Cell Reports, 2011, 30(9):1593-1601.
DOI URL |
[32] |
SUI C, ZHANG J, WEI J H, et al. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynjournal of saikosaponins[J]. BMC Genomics, 2011, 12:539.
DOI URL |
[33] |
NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids[J]. Plant Journal, 2014, 77(3):367-379.
DOI URL |
[34] | 张宏涛, 陈纹, 李小伟, 等. 低温胁迫下肋果沙棘试管苗黄酮类化合物合成关键酶的活性[J]. 北方园艺, 2015(10):5-8. |
ZHANG H T, CHEN W, LI X W, et al. The activity of key enzymes related to flavonoids in test-tube plantlets of Hippophae neurocarpaunder low temperature[J]. Northern Horticulture, 2015(10):5-8. (in Chinese with English abstract) | |
[35] |
BOUDSOCQ M, SHEEN J. CDPKs in immune and stress signaling[J]. Trends in Plant Science, 2013, 18(1):30-40.
DOI URL |
[36] |
XU G Y, ROCHA P S C F, WANG M L , et al. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis[J]. Planta, 2011, 234(1):47-59.
DOI URL |
[37] |
WANG X C, ZHAO Q Y, MA C L, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics, 2013, 14(1):1-15.
DOI URL |
[38] |
LEHTI-SHIU M D, ZOU C, HANADA K, et al. Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes[J]. Plant Physiology, 2009, 150(1):12-26.
DOI URL |
[39] |
RAMILOWSKI J A, SAWAI S, SEKI H, et al. Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals[J]. Plant and Cell Physiology, 2013, 54(5):697-710.
DOI URL |
[40] |
YOKOTANI N, SATO Y, TANABE S, et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance[J]. Journal of Experimental Botany, 2013, 64(16):5085-5097.
DOI URL |
[41] |
PENG H H, SHAN W, KUANG J F, et al. Molecular characterization of cold-responsive basic helix-loop-helix transcription factors MabHLHs that interact with MaICE1 in banana fruit[J]. Planta, 2013, 238(5):937-953.
DOI URL |
[1] | 尹明华, 曹晴, 陈红, 邓思宇, 邓燕梅. 江西铅山红芽芋和青秆芋的转录组比较分析[J]. 浙江农业学报, 2020, 32(9): 1533-1543. |
[2] | 刘新雨, 田洁. 大蒜转录组简单重复序列标记分析与分子标记开发[J]. 浙江农业学报, 2020, 32(9): 1615-1625. |
[3] | 葛金涛, 王江英, 赵文静, 邵小斌, 朱朋波, 汤雪燕, 孙明伟, 刘兴满. 魏可葡萄气生根发育的转录组分析[J]. 浙江农业学报, 2020, 32(9): 1645-1655. |
[4] | 朱宇, 刘洋. 二化螟幼虫热胁迫响应的转录组分析[J]. 浙江农业学报, 2020, 32(5): 849-857. |
[5] | 宋志强, 丁祥, 唐贤, 朱淼, 侯怡铃. 松乳菇子实体两个发育时期的转录组分析[J]. 浙江农业学报, 2020, 32(2): 337-347. |
[6] | 张淑文, 梁森苗, 朱婷婷, 任海英, 郑锡良, 戚行江. 不同杨梅品种的耐低温能力比较[J]. 浙江农业学报, 2020, 32(10): 1772-1779. |
[7] | 朱晓林, 魏小红, 王宝强, 王贤, 张明君. c-GMP诱导对盐胁迫下番茄的转录组分析[J]. 浙江农业学报, 2020, 32(10): 1788-1797. |
[8] | 王其, 陈小洁, 顾双月, 张欣悦, 杭天露, 丁婷. 杜仲内生拮抗细菌DZSY21诱导玉米抗病基因表达变化的转录组学研究[J]. 浙江农业学报, 2019, 31(3): 345-354. |
[9] | 王华, 汪王微, 王冬良, 张石虎, 胡新芳, 卢诗雨, 龚雪梅. 杜鹃花叶片转录组测序数据组装及功能注释[J]. 浙江农业学报, 2018, 30(7): 1149-1159. |
[10] | 滕尧, 李安定, 郝自远, 张洪亮, 张丽敏, 蔡国俊. 西番莲解剖结构特征及低温胁迫下叶片结构与抗寒性的关系[J]. 浙江农业学报, 2018, 30(11): 1849-1858. |
[11] | 杜宇, 熊翠玲, 史秀丽, 郑燕珍, 付中民, 徐细建, 陈大福, 郭睿. 意大利蜜蜂6日龄幼虫肠道内球囊菌的差异表达基因分析[J]. 浙江农业学报, 2017, 29(7): 1119-1128. |
[12] | 肖文斐, 倪深, 裘劼人, 王淑珍, 忻雅, 阮松林. 水稻冷激蛋白基因OsCSP2启动子的克隆与分析[J]. 浙江农业学报, 2017, 29(6): 857-863. |
[13] | 冯琛, 汤浩茹, 江雷雨, 宋霞, 张云婷, 叶云天, 陈清, 孙勃. 红蓝光对草莓转录组特异表达基因密码子使用偏好性的影响[J]. 浙江农业学报, 2017, 29(4): 566-574. |
[14] | 沈春修. 水稻LOC_Os10g05490位点冷胁迫条件下表达分析及CRISPR/Cas9定向编辑[J]. 浙江农业学报, 2017, 29(2): 177-185. |
[15] | 洪森荣, 吴夏俊鹏, 徐文慧, 占学林, 谢妮妮, 蒋妍, 汪金华, 凌飞, 吴丽霞, 万琳. 低温离体保存黄独微型块茎转录组、蛋白质组和代谢组的关联分析[J]. 浙江农业学报, 2017, 29(11): 1827-1834. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||