浙江农业学报 ›› 2023, Vol. 35 ›› Issue (3): 489-498.DOI: 10.3969/j.issn.1004-1524.2023.03.01
孟羽莎1,2(
), 王寅1,2, 赖齐贤1,2, 刘雷1,2, 项超3, 吴永华1,2, 郑嫣然1,2, 顾兴国1,2, 方豪1,2, 苗苗1,2, 吴列洪3, 汤勇1,2,*(
)
收稿日期:2021-12-15
出版日期:2023-03-25
发布日期:2023-04-07
作者简介:孟羽莎(1989—),女,河北保定人,博士,助理研究员,主要从事甘薯育种和分子生物学研究。E-mail: mengyusha200@163.com
通讯作者:
*汤勇,E-mail:基金资助:
MENG Yusha1,2(
), WANG Yin1,2, LAI Qixian1,2, LIU Lei1,2, XIANG Chao3, WU Yonghua1,2, ZHENG Yanran1,2, GU Xingguo1,2, FANG Hao1,2, MIAO Miao1,2, WU Liehong3, TANG Yong1,2,*(
)
Received:2021-12-15
Online:2023-03-25
Published:2023-04-07
摘要:
从甘薯近缘野生种Ipomoea triloba和Ipomoea trifida的基因组测序序列中鉴定出2 360条长末端重复反转座子(long terminal repeat retrotransposons, LTR-RT)序列,在此基础上开发了100对基于插入位点的多态性(insertion-site-based polymorphisms,ISBP)引物,并利用4份甘薯种质资源对开发的ISBP引物进行多态性评估,发现24对ISBP引物具有较高的多态性,随后将其应用于浙江省收集的56份甘薯种质资源的遗传多样性分析和品种鉴定。结果显示, 24对ISBP引物在56份种质资源中共产生182条多态性条带,且每份种质资源都有独特的指纹信息。NTsys遗传分析结果显示,群体内不同种质资源之间的遗传距离从0.027 5至0.653 8,平均为0.373 2,引物多态性信息含量(polymorphic information content,PIC)平均为0.289 6,UPGMA和PCA结果显示,这些群体共被分为两个大群,分别包含11和45份种质资源。以上研究表明,该群体的遗传变异较小,不同种质资源之间的遗传背景狭窄。本研究开发的ISBP引物一方面增加了甘薯中逆转座子分子标记的数量,填补了ISBP标记在甘薯遗传分析中应用的空白,另一方面为甘薯品种资源鉴定、保护与利用提供了有力工具。
中图分类号:
孟羽莎, 王寅, 赖齐贤, 刘雷, 项超, 吴永华, 郑嫣然, 顾兴国, 方豪, 苗苗, 吴列洪, 汤勇. 甘薯近缘野生种ISBP分子标记的开发及其在遗传多样性分析和品种鉴定中的应用[J]. 浙江农业学报, 2023, 35(3): 489-498.
MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498.
| 亚家族中LTR 的个数 LTR No. of subfamily | Ipomoea triloba | Ipomoea trifida | ||||||
|---|---|---|---|---|---|---|---|---|
| Copia家族 Copia family | Gypsy家族 Gypsy family | Copia家族 Gypsy family | Gypsy家族 Gypsy family | |||||
| 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | |
| 1 | 128 | 128 | 1 102 | 1 102 | 126 | 126 | 826 | 826 |
| 2 | 6 | 12 | 13 | 26 | 4 | 8 | 12 | 24 |
| ≥3 | 6 | 22 | 9 | 49 | 5 | 22 | 3 | 15 |
| 共计Total | 149 | 162 | 1 124 | 1 177 | 135 | 156 | 841 | 865 |
表1 LTR-RT分类结果
Table 1 LTR-RT classification summary
| 亚家族中LTR 的个数 LTR No. of subfamily | Ipomoea triloba | Ipomoea trifida | ||||||
|---|---|---|---|---|---|---|---|---|
| Copia家族 Copia family | Gypsy家族 Gypsy family | Copia家族 Gypsy family | Gypsy家族 Gypsy family | |||||
| 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | |
| 1 | 128 | 128 | 1 102 | 1 102 | 126 | 126 | 826 | 826 |
| 2 | 6 | 12 | 13 | 26 | 4 | 8 | 12 | 24 |
| ≥3 | 6 | 22 | 9 | 49 | 5 | 22 | 3 | 15 |
| 共计Total | 149 | 162 | 1 124 | 1 177 | 135 | 156 | 841 | 865 |
图1 M,100 bp DNA ladder;1~16,分别对应17~32号引物。
Fig.1 Amplifications of partial ISBP primers M, 100 bp DNA ladder; 1-16, Respectively corresponding to primers of No.17-32.
图2 引物ISBP31在部分种质资源中扩增结果 M,100 bp DNA ladder;1~21,分别对应1~21份种质份资源编号。
Fig.2 Amplifications of partial sweet-potato varieties based on ISBP31 primer pairs M, 100 bp DNA ladder; 1-21, Respectively corresponding to 1-21 germplasm resources.
| 引物名称 Primer name | Ne* | H* | I* | PIC |
|---|---|---|---|---|
| IbISBP4 | 1.300 5 | 0.204 4 | 0.342 1 | 0.257 8 |
| IbISBP14 | 1.563 0 | 0.335 8 | 0.503 4 | 0.326 4 |
| IbISBP17 | 1.266 8 | 0.185 6 | 0.309 8 | 0.250 0 |
| IbISBP18 | 1.490 8 | 0.288 4 | 0.433 7 | 0.281 5 |
| IbISBP19 | 1.595 8 | 0.349 9 | 0.521 4 | 0.339 6 |
| IbISBP26 | 1.620 2 | 0.356 5 | 0.527 8 | 0.319 2 |
| IbISBP30 | 1.677 8 | 0.379 0 | 0.552 5 | 0.260 4 |
| IbISBP31 | 1.448 1 | 0.286 3 | 0.445 0 | 0.314 5 |
| IbISBP32 | 1.359 7 | 0.224 3 | 0.356 6 | 0.266 8 |
| IbISBP57 | 1.557 2 | 0.323 0 | 0.479 4 | 0.318 4 |
| IbISBP60 | 1.801 4 | 0.436 8 | 0.626 0 | 0.271 2 |
| IbISBP67 | 1.604 5 | 0.345 7 | 0.511 6 | 0.288 7 |
| IbISBP69 | 1.593 6 | 0.341 5 | 0.506 1 | 0.305 0 |
| IbISBP70 | 1.619 2 | 0.345 3 | 0.508 9 | 0.294 4 |
| IbISBP71 | 1.559 8 | 0.335 6 | 0.508 5 | 0.338 8 |
| IbISBP72 | 1.670 8 | 0.377 7 | 0.555 0 | 0.326 6 |
| IbISBP74 | 1.526 4 | 0.301 6 | 0.448 2 | 0.278 8 |
| IbISBP79 | 1.582 3 | 0.320 5 | 0.459 9 | 0.200 8 |
| IbISBP80 | 1.707 6 | 0.399 4 | 0.581 4 | 0.296 5 |
| IbISBP107 | 1.523 4 | 0.314 5 | 0.476 9 | 0.314 5 |
| IbISBP112 | 1.558 1 | 0.324 3 | 0.479 0 | 0.240 5 |
| IbISBP120 | 1.251 4 | 0.172 6 | 0.283 8 | 0.233 7 |
| IbISBP129 | 1.823 9 | 0.445 0 | 0.635 2 | 0.334 0 |
| IbISBP135 | 1.531 9 | 0.314 8 | 0.474 2 | 0.291 2 |
表2 二十四对ISBP引物在56份资源中的多态性特征
Table 2 The characters of the 24 ISBP primer pairs based on 56 sweet potato germplasm resources
| 引物名称 Primer name | Ne* | H* | I* | PIC |
|---|---|---|---|---|
| IbISBP4 | 1.300 5 | 0.204 4 | 0.342 1 | 0.257 8 |
| IbISBP14 | 1.563 0 | 0.335 8 | 0.503 4 | 0.326 4 |
| IbISBP17 | 1.266 8 | 0.185 6 | 0.309 8 | 0.250 0 |
| IbISBP18 | 1.490 8 | 0.288 4 | 0.433 7 | 0.281 5 |
| IbISBP19 | 1.595 8 | 0.349 9 | 0.521 4 | 0.339 6 |
| IbISBP26 | 1.620 2 | 0.356 5 | 0.527 8 | 0.319 2 |
| IbISBP30 | 1.677 8 | 0.379 0 | 0.552 5 | 0.260 4 |
| IbISBP31 | 1.448 1 | 0.286 3 | 0.445 0 | 0.314 5 |
| IbISBP32 | 1.359 7 | 0.224 3 | 0.356 6 | 0.266 8 |
| IbISBP57 | 1.557 2 | 0.323 0 | 0.479 4 | 0.318 4 |
| IbISBP60 | 1.801 4 | 0.436 8 | 0.626 0 | 0.271 2 |
| IbISBP67 | 1.604 5 | 0.345 7 | 0.511 6 | 0.288 7 |
| IbISBP69 | 1.593 6 | 0.341 5 | 0.506 1 | 0.305 0 |
| IbISBP70 | 1.619 2 | 0.345 3 | 0.508 9 | 0.294 4 |
| IbISBP71 | 1.559 8 | 0.335 6 | 0.508 5 | 0.338 8 |
| IbISBP72 | 1.670 8 | 0.377 7 | 0.555 0 | 0.326 6 |
| IbISBP74 | 1.526 4 | 0.301 6 | 0.448 2 | 0.278 8 |
| IbISBP79 | 1.582 3 | 0.320 5 | 0.459 9 | 0.200 8 |
| IbISBP80 | 1.707 6 | 0.399 4 | 0.581 4 | 0.296 5 |
| IbISBP107 | 1.523 4 | 0.314 5 | 0.476 9 | 0.314 5 |
| IbISBP112 | 1.558 1 | 0.324 3 | 0.479 0 | 0.240 5 |
| IbISBP120 | 1.251 4 | 0.172 6 | 0.283 8 | 0.233 7 |
| IbISBP129 | 1.823 9 | 0.445 0 | 0.635 2 | 0.334 0 |
| IbISBP135 | 1.531 9 | 0.314 8 | 0.474 2 | 0.291 2 |
图3 二十四对特异性引物对56份种质资源的聚类分析 红色代表第一个大群,蓝色、紫色、青色和绿色分别代表第二个大群中不同的亚群。紫色圆形、青色的方形、青色的三角形、绿色的菱形和圆形分别代表来自淳安县、莲都区、建德市、缙云县和黄岩区且聚集在同一分支上的种质资源。
Fig.3 UPGMA analysis of 56 sweetpotato germplasm resources based on the 24 pairs of specific primers Red represents the first population, and bule, purple, cyan and green represent different subpopulations in the second population. Purple circle, cyan square, cyan triangle, green diamond and circle represent germplasm resources from Chun’an county, Liandu district, Jiande city, Jinyun county and Huangyan district, which are clustered in the same branch respectively.
| [1] |
ZHANG H, WANG Z, LI X, et al. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato[J]. New Phytologist, 2022, 233(3): 1133-1152.
DOI URL |
| [2] |
ZHANG H, GAO X R, ZHI Y H, et al. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato[J]. New Phytologist, 2019, 223(4): 1918-1936.
DOI PMID |
| [3] |
ARUMUGANATHAN K, EARLE E D. Nuclear DNA content of some important plant species[J]. Plant Molecular Biology Reporter, 1991, 9(3): 208-218.
DOI URL |
| [4] |
SI Z Z, DU B, HUO J X, et al. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas(L.) Lam.) genome composition[J]. BMC Genomics, 2016, 17(1): 945.
DOI URL |
| [5] | 何畅, 杨锦昌, 余纽, 等. 基于油楠(Sindora glabra)转录组测序的SSR分子标记的开发[J]. 分子植物育种, 2020, 18(7): 2280-2289. |
| HE C, YANG J C, YU N, et al. Development of SSR molecular markers based on transcriptome sequencing of Sindora glabra[J]. Molecular Plant Breeding, 2020, 18(7): 2280-2289. (in Chinese with English abstract) | |
| [6] |
MONDEN Y, HARA T, OKADA Y, et al. Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing[J]. Breeding Science, 2015, 65(2): 145-153.
DOI PMID |
| [7] |
MENG Y S, ZHAO N, LI H, et al. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas(L.) Lam.) varieties[J]. Journal of Integrative Agriculture, 2018, 17(1): 86-93.
DOI URL |
| [8] |
SASAI R M, TABUCHI H, SHIRASAWA K, et al. Development of molecular markers associated with resistance to Meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato[J]. DNA Research, 2019, 26(5): 399-409.
DOI URL |
| [9] |
FENG J Y, ZHAO S, LI M, et al. Genome-wide genetic diversity detection and population structure analysis in sweetpotato (Ipomoea batatas) using RAD-seq[J]. Genomics, 2020, 112(2): 1978-1987.
DOI PMID |
| [10] |
MENG Y, SU W, MA Y, et al. Assessment of genetic diversity and variety identification based on developed retrotransposon-based insertion polymorphism (RBIP) markers in sweet potato (Ipomoea batatas(L.) Lam.)[J]. Scientific Reports, 2021, 11: 17116.
DOI |
| [11] |
MENG Y S, ZHENG C X, LI H, et al. Development of a high-density SSR genetic linkage map in sweet potato[J]. The Crop Journal, 2021, 9(6): 1367-1374.
DOI URL |
| [12] |
YANG J, MOEINZADEH M H, KUHL H, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history[J]. Nature Plants, 2017, 3 (9): 696-703.
DOI PMID |
| [13] |
JIANG S, CAI D Y, SUN Y W, et al. Isolation and characterization of putative functional long terminal repeat retrotransposons in the Pyrus genome[J]. Mobile DNA, 2016, 7: 1.
DOI URL |
| [14] |
GALINDO-GONZÁLEZ L, MHIRI C, DEYHOLOS M K, et al. LTR-retrotransposons in plants: engines of evolution[J]. Gene, 2017, 626: 14-25.
DOI URL |
| [15] |
OROZCO-ARIAS S, ISAZA G, GUYOT R. Retrotransposons in plant genomes: structure, identification, and classification through bioinformatics and machine learning[J]. International Journal of Molecular Sciences, 2019, 20(15): 3837.
DOI URL |
| [16] |
HUANG Y J, CHEN H, HAN J L, et al. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars[J]. Chromosoma, 2020, 129(1): 45-55.
DOI PMID |
| [17] |
NADEEM M A. Deciphering the genetic diversity and population structure of Turkish bread wheat germplasm using iPBS-retrotransposons markers[J]. Molecular Biology Reports, 2021, 48(10): 6739-6748.
DOI PMID |
| [18] | WAUGH R, MCLEAN K, FLAVELL A J, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP)[J]. Molecular & General Genetics: MGG, 1997, 253(6): 687-694. |
| [19] |
KALENDAR R, GROB T, REGINA M, et al. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques[J]. Theoretical and Applied Genetics, 1999, 98(5): 704-711.
DOI URL |
| [20] |
SMýKAL P, BAČOVÁ-KERTESZOVÁ N, KALENDAR R, et al. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers[J]. Theoretical and Applied Genetics, 2011, 122(7): 1385-1397.
DOI URL |
| [21] | MELNIKOVA N V, KUDRYAVTSEVA A V, SPERANSKAYA A S, et al. The FaRE1 LTR-retrotransposon based SSAP markers reveal genetic polymorphism of strawberry (Fragaria×ananassa) cultivars[J]. Journal of Agricultural Science, 2012, 4(11): 111. |
| [22] |
NASRI S, ABDOLLAHI MANDOULAKANI B, DARVISHZADEH R, et al. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers[J]. Biochemical Genetics, 2013, 51(11/12): 927-943.
DOI URL |
| [23] |
PAUX E, FAURE S, CHOULET F, et al. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat[J]. Plant Biotechnology Journal, 2010, 8(2): 196-210.
DOI PMID |
| [24] |
LIU J, ZHOU R J, WANG W X, et al. A copia-like retrotransposon insertion in the upstream region of the SHATTERPROOF1 gene, BnSHP1.A9, is associated with quantitative variation in pod shattering resistance in oilseed rape[J]. Journal of Experimental Botany, 2020, 71(18): 5402-5413.
DOI PMID |
| [25] |
GHONAIM M, KALENDAR R, BARAKAT H, et al. High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis[J]. Molecular Biology Reports, 2020, 47(3): 1589-1603.
DOI PMID |
| [26] |
GHONAIM M M, MOHAMED H I, OMRAN A A A. Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers[J]. Genetic Resources and Crop Evolution, 2021, 68(1): 227-242.
DOI |
| [27] |
BUTELLI E, LICCIARDELLO C, ZHANG Y, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges[J]. The Plant Cell, 2012, 24(3): 1242-1255.
DOI PMID |
| [28] |
KASHINO-FUJII M, YOKOSHO K, YAMAJI N, et al. Retrotransposon insertion and DNA methylation regulate aluminum tolerance in European barley accessions[J]. Plant Physiology, 2018, 178(2): 716-727.
DOI URL |
| [29] | ROY N S, LEE S I, NKONGOLO K, et al. Retrotransposons in Betula nana, and interspecific relationships in the Betuloideae, based on inter-retrotransposon amplified polymorphism (IRAP) markers[J]. Genes & Genomics, 2018, 40(5): 511-519. |
| [30] |
WU S, LAU K H, CAO Q, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement[J]. Nature Communications, 2018, 9: 4580.
DOI PMID |
| [31] |
VOS P, HOGERS R, BLEEKER M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Research, 1995, 23(21): 4407-4414.
DOI PMID |
| [32] | 李慧. 甘薯SSR分子连锁图谱的构建和块根产量相关QTL的定位[D]. 北京: 中国农业大学, 2014. |
| LI H. Development of SSR genetic linkage maps and mapping of QTLs for storage root yield in sweetpotato, Ipomoea batatas(L.) Lam[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract) | |
| [33] |
WU J, WANG Z W, SHI Z B, et al. The genome of the pear (Pyrus bretschneideri Rehd.)[J]. Genome Research, 2013, 23(2): 396-408.
DOI URL |
| [34] |
SCHNABLE P S, WARE D, FULTON R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115.
DOI PMID |
| [35] |
PIEGU B, GUYOT R, PICAULT N, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice[J]. Genome Research, 2006, 16(10): 1262-1269.
DOI URL |
| [1] | 洪霞, 卢基来, 漆慧娟, 陈孝赏. 姜种质资源遗传多样性分析与核心种质资源库的构建[J]. 浙江农业学报, 2025, 37(6): 1233-1243. |
| [2] | 王一镝, 汪精磊, 胡天华, 徐云敏, 包崇来. 十字花科蔬菜抗根肿病分子标记开发及其在育种上的应用[J]. 浙江农业学报, 2025, 37(6): 1272-1284. |
| [3] | 刘思彤, 侯宇, 潘家荃, 周桦楠, 崔亮, 万博, 于涛. 甘薯对低温胁迫的生理响应及耐寒性评价[J]. 浙江农业学报, 2025, 37(4): 767-778. |
| [4] | 雷志伟, 李新欣, 徐恒, 张恒, 朱英, 张华. 利用染色体片段替换系鉴定水稻二化螟抗性QTL[J]. 浙江农业学报, 2025, 37(3): 530-537. |
| [5] | 秦斗文, 刘伟强, 田吉婷, 巨秀婷. 伊犁郁金香cpDNA-PCR体系构建与遗传多样性分析[J]. 浙江农业学报, 2025, 37(1): 78-89. |
| [6] | 张元元, 冯举伶, 肖婧凤, 关宇, 龙楚儿, 姚立蓉, 孟亚雄, 司二静, 李葆春, 马小乐, 王化俊, 周喜荣, 刘梅金, 汪军成. 青稞遗传多样性及其农艺性状与SSR标记的关联分析[J]. 浙江农业学报, 2024, 36(9): 1977-1989. |
| [7] | 董莉莉, 徐志浩, 严灿龙, 范小平, 金泽兰, 王忠华. 基于表型与分子标记对浙贝母不同育种群体的分子鉴定与亲缘关系研究[J]. 浙江农业学报, 2024, 36(8): 1719-1730. |
| [8] | 黄辉, 储忝江, 谢楠, 刘凯. 基于线粒体COI序列片段研究华鳈不同地理群体及其他鳈属鱼类的遗传多样性[J]. 浙江农业学报, 2024, 36(8): 1779-1788. |
| [9] | 沈升法, 项超, 孟羽莎, 李兵, 吴列洪. 高光效甘薯品种浙薯86的选育、产量与品质特征[J]. 浙江农业学报, 2024, 36(7): 1469-1480. |
| [10] | 马黎, 兰艺, 谢冰心, 周春露, 罗舒元, 许文坤, 董新星, 严达伟. 杜撒×大长撒VRTN基因多态及其与生产性状的关联研究[J]. 浙江农业学报, 2024, 36(7): 1502-1510. |
| [11] | 汪宝根, 陈小央, 吴健, 李潇, 汪颖, 王尖, 吴晓花, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴新义. 浙江豇豆地方品种的遗传多样性[J]. 浙江农业学报, 2024, 36(7): 1569-1582. |
| [12] | 朱艳宇, 于文涛, 高水练, 吕水源, 王攀, 靳宛旻, 贵文静, 林浥, 叶乃兴. 福建安溪茶树种质资源遗传多样性与铁观音衍生品种遗传关系[J]. 浙江农业学报, 2024, 36(7): 1591-1601. |
| [13] | 韩清宇, 程林润, 李月红, 仇智灵, 后猛, 楼兵干. 六十份甘薯种质资源对基腐病的抗性评价与抗病相关指标分析[J]. 浙江农业学报, 2024, 36(7): 1616-1625. |
| [14] | 柴荣耀, 游雨欣, 邱海萍, 郭峻宁, 张震, 李斌, 沈升法, 王艳丽. 甘薯抗茎腐病鉴定技术的建立及种质资源抗性分析[J]. 浙江农业学报, 2024, 36(3): 569-578. |
| [15] | 张婷, 王雪艳, 郭勤卫, 李朝森, 刘慧琴, 项小敏, 韦静, 赵东风, 万红建. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||