浙江农业学报 ›› 2024, Vol. 36 ›› Issue (8): 1779-1788.DOI: 10.3969/j.issn.1004-1524.20230874
收稿日期:
2023-07-24
出版日期:
2024-08-25
发布日期:
2024-09-06
作者简介:
*刘凯,E-mail: xqa9038@dingtalk.com通讯作者:
刘凯
基金资助:
HUANG Hui(), CHU Tianjiang, XIE Nan, LIU Kai(
)
Received:
2023-07-24
Online:
2024-08-25
Published:
2024-09-06
Contact:
LIU Kai
摘要:
鳈属(Sarcocheilichthys)鱼类是东亚地区常见小型淡水鱼类,并具有一定的养殖开发潜力。深入了解鳈属鱼类的遗传结构及其地域变异,对科学制定保护计划和可持续利用野生资源具有重要意义。试验采用鳈属鱼类包括小鳈(S. parvus, XQ)20尾,江西鳈(S. kiangsiensis, JXQ)20尾,黑鳍鳈(S. nigripinnis, HQQ)20尾,东北鳈(S. lacustris, DBQ)24尾,华鳈(S. sinensis)淮河群体(HQHH)20尾、闽江群体(HQMJ)17尾、江西群体(HQJX)15尾和建德群体(HQJD)17尾,并对每个群体的线粒体细胞色素C氧化酶亚基Ⅰ(cytochrome C oxidase subunit Ⅰ, COI)序列片段进行了测序和分析。试验结果表明,在获得的153个样本序列(668 bp)中,保守位点507个,变异位点154个,简约信息位点150个,碱基缺失或插入位点27个,平均转换与颠换比值为5.2。HQQ群体的单倍型多样性(Hd)最低(0.442),HQHH群体的Hd略高于HQQ群体(0.574),DBQ群体的Hd则稍高于HQHH群体(0.707),而XQ群体的Hd最高(0.963),HQMJ和HQJX群体的Hd则略低于XQ群体(0.860、0.848)。核苷酸多样变化趋势则与Hd结果类似。153尾个体定义了56种单倍型,各群体的单倍型网络中均存在各自群体的主要单倍型,如Hap_2、Hap_33和Hap_37等。基于遗传距离构建的UPGMA分子系统发育树、层次聚类树和NeighborNet分子系统发育网络表明,XQ、HQQ、JXQ和其他鳈属鱼类间遗传关系较远,而DBQ与HQHH群体间遗传关系较近。该研究利用COI序列片段评估了4个华鳈地理群体及其他4种鳈属鱼类的遗传多样性。研究结果将有助于了解华鳈不同地理群体及其他4种鳈属鱼类野生资源的遗传多样性现状,为今后华鳈以及其他4种鳈属鱼类种质资源保护及利用提供参考。
中图分类号:
黄辉, 储忝江, 谢楠, 刘凯. 基于线粒体COI序列片段研究华鳈不同地理群体及其他鳈属鱼类的遗传多样性[J]. 浙江农业学报, 2024, 36(8): 1779-1788.
HUANG Hui, CHU Tianjiang, XIE Nan, LIU Kai. Investigation on the genetic diversity of Sarcocheilichthys sinensis from diverse geographical populations and other species within the Sarcocheilichthys genus through the analysis of mitochondrial COI sequence segments[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1779-1788.
群体Populations | T/% | C/% | A/% | G/% | A+T/% | C+G/% | TS/TV |
---|---|---|---|---|---|---|---|
华鳈淮河群体, HQHH Huaihe population of S. sinensis | 27.28 | 28.90 | 23.66 | 20.16 | 50.94 | 49.06 | 2.0 |
华鳈建德群体HQJD Jiande population of S. sinensis | 27.79 | 28.21 | 24.02 | 19.98 | 51.81 | 48.19 | 1.7 |
华鳈江西群体HQJX Jiangxi population of S. sinensis | 27.88 | 28.14 | 24.14 | 19.84 | 52.02 | 47.98 | 20.7 |
华鳈闽江群体HQMJ Minjiang population of S. sinensis | 27.89 | 28.06 | 24.60 | 19.45 | 52.49 | 47.51 | 11.2 |
东北鳈 DBQ S. lacustris | 27.29 | 28.87 | 23.69 | 20.15 | 50.98 | 49.02 | 1.8 |
黑鳍鳈HQQ S. nigripinnis | 29.36 | 27.66 | 23.89 | 19.09 | 53.25 | 46.75 | 1.7 |
江西鳈JXQ S. kiangsiensis | 27.96 | 29.05 | 23.53 | 19.46 | 51.49 | 48.51 | 4.5 |
小鳈XQ S. parvus | 29.45 | 27.13 | 24.76 | 18.66 | 54.21 | 45.79 | 7.6 |
表1 鳈属鱼类不同群体COI序列片段的碱基组成
Table 1 The base composition of COI sequence segments from different populations of Sarcocheilichthys fish species
群体Populations | T/% | C/% | A/% | G/% | A+T/% | C+G/% | TS/TV |
---|---|---|---|---|---|---|---|
华鳈淮河群体, HQHH Huaihe population of S. sinensis | 27.28 | 28.90 | 23.66 | 20.16 | 50.94 | 49.06 | 2.0 |
华鳈建德群体HQJD Jiande population of S. sinensis | 27.79 | 28.21 | 24.02 | 19.98 | 51.81 | 48.19 | 1.7 |
华鳈江西群体HQJX Jiangxi population of S. sinensis | 27.88 | 28.14 | 24.14 | 19.84 | 52.02 | 47.98 | 20.7 |
华鳈闽江群体HQMJ Minjiang population of S. sinensis | 27.89 | 28.06 | 24.60 | 19.45 | 52.49 | 47.51 | 11.2 |
东北鳈 DBQ S. lacustris | 27.29 | 28.87 | 23.69 | 20.15 | 50.98 | 49.02 | 1.8 |
黑鳍鳈HQQ S. nigripinnis | 29.36 | 27.66 | 23.89 | 19.09 | 53.25 | 46.75 | 1.7 |
江西鳈JXQ S. kiangsiensis | 27.96 | 29.05 | 23.53 | 19.46 | 51.49 | 48.51 | 4.5 |
小鳈XQ S. parvus | 29.45 | 27.13 | 24.76 | 18.66 | 54.21 | 45.79 | 7.6 |
群体 Populations | 变异位点数 Number of variation sites | 单倍型数 Haplotype number | 单倍型多样性Hd Haplotype diversity | 核苷酸多样性π Nucleotide diversity | Tajima’s D | Fu’s Fs |
---|---|---|---|---|---|---|
华鳈淮河群体, HQHH | 3 | 4 | 0.574 | 0.001 01 | -0.526 40 | -0.881 90 |
Huaihe population of S. sinensis | ||||||
华鳈建德群体HQJD | 5 | 6 | 0.794 | 0.001 96 | -0.892 18 | -1.793 11 |
Jiande population of S. sinensis | ||||||
华鳈江西群体HQJX | 18 | 9 | 0.848 | 0.007 90 | -0.110 15 | -0.130 98 |
Jiangxi population of S. sinensis | ||||||
华鳈闽江群体HQMJ | 26 | 9 | 0.860 | 0.013 80 | 0.908 58 | 2.052 88 |
Minjiang population of S. sinensis | ||||||
东北鳈 DBQ S. lacustris | 7 | 9 | 0.707 | 0.001 70 | -1.210 45 | -5.311 87* |
黑鳍鳈HQQ S. nigripinnis | 4 | 5 | 0.442 | 0.000 98 | -1.205 71 | -2.218 43* |
江西鳈JXQ S. kiangsiensis | 4 | 5 | 0.774 | 0.001 91 | 0.388 91 | -0.487 48 |
小鳈XQ S. parvus | 47 | 15 | 0.963 | 0.024 58 | 1.020 70 | -1.012 20 |
表2 鳈属鱼类不同群体COI序列片段的遗传多样性参数
Table 2 Genetic diversity parameters of COI sequence segments from different populations of Sarcocheilichthys fish species
群体 Populations | 变异位点数 Number of variation sites | 单倍型数 Haplotype number | 单倍型多样性Hd Haplotype diversity | 核苷酸多样性π Nucleotide diversity | Tajima’s D | Fu’s Fs |
---|---|---|---|---|---|---|
华鳈淮河群体, HQHH | 3 | 4 | 0.574 | 0.001 01 | -0.526 40 | -0.881 90 |
Huaihe population of S. sinensis | ||||||
华鳈建德群体HQJD | 5 | 6 | 0.794 | 0.001 96 | -0.892 18 | -1.793 11 |
Jiande population of S. sinensis | ||||||
华鳈江西群体HQJX | 18 | 9 | 0.848 | 0.007 90 | -0.110 15 | -0.130 98 |
Jiangxi population of S. sinensis | ||||||
华鳈闽江群体HQMJ | 26 | 9 | 0.860 | 0.013 80 | 0.908 58 | 2.052 88 |
Minjiang population of S. sinensis | ||||||
东北鳈 DBQ S. lacustris | 7 | 9 | 0.707 | 0.001 70 | -1.210 45 | -5.311 87* |
黑鳍鳈HQQ S. nigripinnis | 4 | 5 | 0.442 | 0.000 98 | -1.205 71 | -2.218 43* |
江西鳈JXQ S. kiangsiensis | 4 | 5 | 0.774 | 0.001 91 | 0.388 91 | -0.487 48 |
小鳈XQ S. parvus | 47 | 15 | 0.963 | 0.024 58 | 1.020 70 | -1.012 20 |
图1 基于TCS算法的COI序列片段单倍型网络图 DBQ、HQHH、HQJD、HQJX、HQMJ、HQQ、JXQ和XQ分别表示东北鳈、华鳈淮河群体、华鳈建德群体、华鳈江西群体、华鳈闽江群体、黑鳍鳈,江西鳈和小鳈。下同。
Fig.1 The haplotype network of the COI sequence segments based on the TCS algorithm DBQ, HQHH, HQJD, HQJX, HQMJ, HQQ, JXQ and XQ represent S. lacustris, Huaihe population of S. sinensis, Jiande population of S. sinensis, Jiangxi population of S. sinensis, Minjiang population of S. sinensis, S. nigripinnis, S. kiangsiensis, and S. parvus. The same as below.
群体Populations | HQHH | HQJD | HQJX | HQMJ | DBQ | HQQ | JXQ | XQ |
---|---|---|---|---|---|---|---|---|
HQHH | 0.001 03 | |||||||
HQJD | 0.017 13 | 0.001 27 | ||||||
HQJX | 0.017 19 | 0.011 93 | 0.007 80 | |||||
HQMJ | 0.028 84 | 0.024 98 | 0.025 11 | 0.013 56 | ||||
DBQ | 0.001 59 | 0.017 36 | 0.017 45 | 0.028 98 | 0.001 74 | |||
HQQ | 0.135 76 | 0.134 12 | 0.133 94 | 0.131 88 | 0.135 99 | 0.001 00 | ||
JXQ | 0.128 40 | 0.137 85 | 0.132 57 | 0.131 41 | 0.129 88 | 0.065 47 | 0.001 94 | |
XQ | 0.148 29 | 0.143 67 | 0.140 44 | 0.135 06 | 0.148 53 | 0.133 86 | 0.140 44 | 0.025 27 |
表3 鳈属鱼类不同群体内(对角线,粗体)及群体间(对角线下)遗传距离
Table 3 Genetic distances within (highlighted in bold along the diagonal) and between different populations (below the diagonal) of Sarcocheilichthys fish species
群体Populations | HQHH | HQJD | HQJX | HQMJ | DBQ | HQQ | JXQ | XQ |
---|---|---|---|---|---|---|---|---|
HQHH | 0.001 03 | |||||||
HQJD | 0.017 13 | 0.001 27 | ||||||
HQJX | 0.017 19 | 0.011 93 | 0.007 80 | |||||
HQMJ | 0.028 84 | 0.024 98 | 0.025 11 | 0.013 56 | ||||
DBQ | 0.001 59 | 0.017 36 | 0.017 45 | 0.028 98 | 0.001 74 | |||
HQQ | 0.135 76 | 0.134 12 | 0.133 94 | 0.131 88 | 0.135 99 | 0.001 00 | ||
JXQ | 0.128 40 | 0.137 85 | 0.132 57 | 0.131 41 | 0.129 88 | 0.065 47 | 0.001 94 | |
XQ | 0.148 29 | 0.143 67 | 0.140 44 | 0.135 06 | 0.148 53 | 0.133 86 | 0.140 44 | 0.025 27 |
图2 基于COI序列片段构建的UPGMA系统发育树、分层聚类树和NeighborNet系统发育网络 A,利用UPGMA方法构建的系统发育树,数字代表Bootstrap概率值;B,利用分层聚类方法构建的聚类树,红色数字表示近似无偏P值,绿色数字表示Bootstrap概率值,支长度对应样本相关性的绝对值;C,利用NeighborNet方法构建的系统发育网络。
Fig.2 The UPGMA phylogenetic tree, the hierarchical clustering tree, and the NeighborNet phylogenetic network constructed based on the COI sequence segments A, The phylogenetic tree constructed using the UPGMA method. The numbers represent bootstrap probability values. B, The clustering tree constructed using the hierarchical clustering method. The red numbers indicate approximate unbiased P-values, while the green numbers represent bootstrap probability values. Branch lengths correspond to the absolute values of sample correlations. C, The phylogenetic network constructed using the NeighborNet method.
[1] | FROESE R, PAULY D. FishBase[EB/OL]. [2023-05-04]. https://fishbase.mnhn.fr/. |
[2] | LU Y R, FANG C C, HE S P. Cnfishbase: a cyber Chinese fish database[J]. Zoological Research, 2023, 44(5): 950-953. |
[3] | BETANCUR-R R, WILEY E O, ARRATIA G, et al. Phylogenetic classification of bony fishes[J]. BMC Evolutionary Biology, 2017, 17(1): 162. |
[4] | TAN M, ARMBRUSTER J W. Phylogenetic classification of extant Genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi)[J]. Zootaxa, 2018, 4476(1): 6-39. |
[5] | 刘思情, 唐琼英, 李小娟, 等. 基于线粒体细胞色素b基因的黑鳍鳈(Sarcocheilichthys nigripinnis)生物地理学过程分析[J]. 动物学研究, 2013, 34(5): 437-445. |
LIU S Q, TANG Q Y, LI X J, et al. Phylogeographic analyses of Sarcocheilichthys nigripinnis(Teleostei: Cyprinidae) based on mitochondrial DNA Cyt b gene sequences[J]. Zoological Research, 2013, 34(5): 437-445. (in Chinese with English abstract) | |
[6] | 朱传坤, 潘正军, 常国亮, 等. 基于线粒体DNA标记对3个华鳈群体的遗传结构分析[J]. 江苏农业科学, 2020, 48(5): 50-56. |
ZHU C K, PAN Z J, CHANG G L, et al. Genetic structure analysis of three Sarcocheilichthys sinensis populations based on mitochondrial DNA markers[J]. Jiangsu Agricultural Sciences, 2020, 48(5): 50-56. (in Chinese with English abstract) | |
[7] | HICKERSON M J, CARSTENS B C, CAVENDER-BARES J, et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000[J]. Molecular Phylogenetics and Evolution, 2010, 54(1): 291-301. |
[8] | HEBERT P D N, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes[J]. Proceedings Biological Sciences, 2003, 270(1512): 313-321. |
[9] | ZHANG L, TANG Q Y, LIU H Z. Phylogeny and speciation of the eastern Asian cyprinid genus Sarcocheilichthys[J]. Journal of Fish Biology, 2008, 72(5): 1122-1137. |
[10] | GREEN M R, SAMBROOK J. Isolation of high-molecular-weight DNA from suspension cultures of mammalian cells using proteinase K and phenol[J]. Cold Spring Harbor Protocols, 2018, 2018(4): 317-321. |
[11] | IVANOVA N V, ZEMLAK T S, HANNER R H, et al. Universal primer cocktails for fish DNA barcoding[J]. Molecular Ecology Notes, 2007, 7(4): 544-548. |
[12] | MENG G L, LI Y Y, YANG C T, et al. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization[J]. Nucleic Acids Research, 2019, 47(11): e63. |
[13] | KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780. |
[14] | ALI R H, BOGUSZ M, WHELAN S. Identifying clusters of high confidence homologies in multiple sequence alignments[J]. Molecular Biology and Evolution, 2019, 36(10): 2340-2351. |
[15] | PARADIS E, SCHLIEP K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R[J]. Bioinformatics, 2019, 35(3): 526-528. |
[16] | KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111-120. |
[17] | OKSANEN J, BLANCHET FG, KINDT R, et al. Vegan: Community Ecology Package[EB/OL].(2013-01-04). R Package Version 22-1. http://vegan.r-forge.r-project.org/. |
[18] | KAMVAR Z N, TABIMA J F, GRÜNWALD N J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction[J]. PeerJ, 2014, 2: e281. |
[19] | YU G C, SMITH D K, ZHU H C, et al. Ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data[J]. Methods in Ecology and Evolution, 2017, 8(1): 28-36. |
[20] | SUZUKI R, SHIMODAIRA H. Pvclust: Hierarchical clustering with p-values via multiscale bootstrap resampling[EB/OL]. [2019-11-19]. R Package Version 2.2- 0: The R Foundation. Vienna, 2019. https://cran.r-project.org/web/packages/pvclust/. |
[21] | HUSON D H, BRYANT D. Application of phylogenetic networks in evolutionary studies[J]. Molecular Biology and Evolution, 2006, 23(2): 254-267. |
[22] | LEIGH J W, BRYANT D. Popart: full-feature software for haplotype network construction[J]. Methods in Ecology and Evolution, 2015, 6(9): 1110-1116. |
[23] | ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299-3302. |
[24] | EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567. |
[25] | TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. |
[26] | MIELKE P W, BERRY K J. Description of MRPP[M]// Permutation methods. New York: Springer, 2001: 9-65. |
[27] | VAN SICKLE J, HUGHES R M. Classification strengths of ecoregions, catchments, and geographic clusters for aquatic vertebrates in Oregon[J]. Journal of the North American Benthological Society, 2000, 19(3): 370-384. |
[28] | 黄辉, 刘凯, 王宇希, 等. 不同群体日本沼虾的线粒体COI基因序列分析[J]. 湖北农业科学, 2023, 62(5): 179-182, 189. |
HUANG H, LIU K, WANG Y X, et al. Analysis of mitochondrial COI sequences from different populations of Macrobrachium nipponense japonicus[J]. Hubei Agricultural Sciences, 2023, 62(5): 179-182, 189. (in Chinese with English abstract) | |
[29] | 刘士力, 卞玉玲, 贾永义, 等. 基于线粒体COⅠ基因序列的红螯螯虾养殖群体遗传结构分析[J]. 浙江农业学报, 2021, 33(8): 1385-1392. |
LIU S L, BIAN Y L, JIA Y Y, et al. Genetics analysis based on mitochondrial COⅠ sequences in five cultured populations of red-claw crayfish (Cherax quadricarinatus)[J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1385-1392. (in Chinese with English abstract) | |
[30] | 余科, 安苗, 黄胜, 等. 清水江斑鳜COI基因序列分析[J]. 贵州畜牧兽医, 2020, 44(5): 5-10. |
YU K, AN M, HUANG S, et al. Sequence analysis of COI gene of Qingshuijiang Siniperca scherzeri[J]. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2020, 44(5): 5-10. (in Chinese with English abstract) | |
[31] | 陈琴, 彭超, 赵峰, 等. 基于COⅠ序列研究南海芋螺遗传多样性[J]. 基因组学与应用生物学, 2020, 39(9): 3955-3960. |
CHEN Q, PENG C, ZHAO F, et al. Study on genetic diversity of cone snail in South China Sea based on COⅠ sequences[J]. Genomics and Applied Biology, 2020, 39(9): 3955-3960. (in Chinese with English abstract) | |
[32] | STOLTZFUS A, NORRIS R W. On the causes of evolutionary transition: transversion bias[J]. Molecular Biology and Evolution, 2016, 33(3): 595-602. |
[33] | LANAVE C, TOMMASI S, PREPARATA G, et al. Transition and transversion rate in the evolution of animal mitochondrial DNA[J]. Bio Systems, 1986, 19(4): 273-283. |
[34] | KUMAR S. Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates[J]. Genetics, 1996, 143(1): 537-548. |
[35] | FÉRAL J P. How useful are the genetic markers in attempts to understand and manage marine biodiversity?[J]. Journal of Experimental Marine Biology and Ecology, 2002, 268(2): 121-145. |
[36] | GRANT W, BOWEN B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426. |
[37] | SKIBINSKI D O F. DNA tests of neutral theory: applications in marine genetics[M]// SOLÉ-CAVA A M, RUSSO C A M, THORPE J P. Marine genetics. Dordrecht: Springer, 2000: 137-152. |
[38] | HOLSINGER K. Lecture notes in population genetics[EB/OL].(2014-11-08). https://darwin1.eeb.uconn.edu/eeb348-notes/Lecture-Notes-in-Population-Genetics.pdf. |
[39] | TODISCO V, VODĂ R, PROSSER S W J, et al. Next generation sequencing-aided comprehensive geographic coverage sheds light on the status of rare and extinct populations ofAporiabutterflies (Lepidoptera: Pieridae)[J]. Scientific Reports, 2020, 10: 13970. |
[40] | WU J, CAO D C, LV W H, et al. The complete mitochondrial genome sequence of Sarcochellichthys lacustris (Dybowski)[J]. Mitochondrial DNA, 2015, 26(5): 795-796. |
[1] | 董莉莉, 徐志浩, 严灿龙, 范小平, 金泽兰, 王忠华. 基于表型与分子标记对浙贝母不同育种群体的分子鉴定与亲缘关系研究[J]. 浙江农业学报, 2024, 36(8): 1719-1730. |
[2] | 马黎, 兰艺, 谢冰心, 周春露, 罗舒元, 许文坤, 董新星, 严达伟. 杜撒×大长撒VRTN基因多态及其与生产性状的关联研究[J]. 浙江农业学报, 2024, 36(7): 1502-1510. |
[3] | 汪宝根, 陈小央, 吴健, 李潇, 汪颖, 王尖, 吴晓花, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴新义. 浙江豇豆地方品种的遗传多样性[J]. 浙江农业学报, 2024, 36(7): 1569-1582. |
[4] | 朱艳宇, 于文涛, 高水练, 吕水源, 王攀, 靳宛旻, 贵文静, 林浥, 叶乃兴. 福建安溪茶树种质资源遗传多样性与铁观音衍生品种遗传关系[J]. 浙江农业学报, 2024, 36(7): 1591-1601. |
[5] | 张婷, 王雪艳, 郭勤卫, 李朝森, 刘慧琴, 项小敏, 韦静, 赵东风, 万红建. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
[6] | 杨洋, 袁璐, 刘彬, 王挺进, 张爱珺, 刘柯, 李旭青, 道丽筠, 袁鑫, 陈利萍. 植物间水平基因转移——基因交流新途径及其农业利用潜力[J]. 浙江农业学报, 2024, 36(2): 455-469. |
[7] | 杨天文, 王静, 李炯, 徐彬其, 程蛟文, 洪宇, 曹毅, 崔竣杰. 大顶苦瓜种质资源的遗传多样性分析与指纹图谱构建[J]. 浙江农业学报, 2024, 36(1): 103-114. |
[8] | 吴倩, 汤紫依, 田盛野, 何海叶, 潘伟伟, 王军峰, 鲍洪华, 张慧娟, 蒋明. 基于SRAP分子标记的华顶杜鹃遗传多样性[J]. 浙江农业学报, 2024, 36(1): 127-133. |
[9] | 张小利, 朱灵龙, 李付振, 唐秀梅, 夏友霖, 游宇, 钟瑞春. 115份花生种质资源农艺与品质性状鉴评及分析[J]. 浙江农业学报, 2023, 35(9): 2033-2044. |
[10] | 袁晔, 刘睿, 王凌云, 沈盟, 叶雪莲, 权新华, 王瑞森, 姚祥坦. 江浙地区菱品种遗传多样性的SLAF-seq分析[J]. 浙江农业学报, 2023, 35(8): 1773-1781. |
[11] | 孟羽莎, 王寅, 赖齐贤, 刘雷, 项超, 吴永华, 郑嫣然, 顾兴国, 方豪, 苗苗, 吴列洪, 汤勇. 甘薯近缘野生种ISBP分子标记的开发及其在遗传多样性分析和品种鉴定中的应用[J]. 浙江农业学报, 2023, 35(3): 489-498. |
[12] | 杨秋蕾, 魏旭东, 马志杰, 陈生梅, 晁生玉, 乌兰巴特尔. 基于mtDNA Cyt b序列变异探究柴达木黄牛的母系遗传多样性及遗传背景[J]. 浙江农业学报, 2023, 35(2): 285-292. |
[13] | 刘士力, 练青平, 贾永义, 迟美丽, 李飞, 姜建湖, 刘一诺, 郑建波, 程顺, 顾志敏. 基于线粒体Cyt b基因序列的浙江省3个马口鱼群体遗传多样性分析[J]. 浙江农业学报, 2023, 35(2): 293-300. |
[14] | 李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋, 任延靖. 基于转录组序列的芜菁SSR标记开发及应用[J]. 浙江农业学报, 2023, 35(2): 319-328. |
[15] | 林兴雨, 宋南. 茸毛小长蝽的线粒体基因组测序和分析[J]. 浙江农业学报, 2023, 35(12): 2878-2889. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 311
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||