浙江农业学报 ›› 2025, Vol. 37 ›› Issue (6): 1233-1243.DOI: 10.3969/j.issn.1004-1524.20240717

• 园艺科学 • 上一篇    下一篇

姜种质资源遗传多样性分析与核心种质资源库的构建

洪霞a(), 卢基来b, 漆慧娟c, 陈孝赏b,*()   

  1. 台州市农业科学研究院 a. 生物技术研究所;b. 蔬菜研究所;c. 科研管理与科技开发处,浙江 台州 318014
  • 收稿日期:2024-08-07 出版日期:2025-06-25 发布日期:2025-07-08
  • 作者简介:洪霞(1987—),女,浙江台州人,硕士,农艺师,主要从事作物遗传育种研究。E-mail:hongxia6010@163.com
  • 通讯作者: *陈孝赏,E-mail:taizhouagri@126.com
  • 基金资助:
    台州市科技计划项目(21nya11);浙江省“三农九方”科技协作计划项目(2024SNJF015);浙江省第三次全国农作物种质资源普查与收集行动(111821301354052030)

Genetic diversity analysis and core collection construction of ginger (Zingiber officinale Rosc.) germplasm accessions

HONG Xiaa(), LU Jilaib, QI Huijuanc, CHEN Xiaoshangb,*()   

  1. Institute of Biotechnology; b. Institute of Vegetable Research; c. Division of Scientific Research Management and Development, Taizhou Academy of Agricultural Sciences, Taizhou 318014, Zhejiang, China
  • Received:2024-08-07 Online:2025-06-25 Published:2025-07-08

摘要:

探讨浙江省不同姜种质资源的亲缘关系,以更好地保护与利用姜种质资源,并为品种选育提供基础材料。利用收集到的80份姜种质资源,采用遗传变异分析、相关性分析、主成分分析、聚类分析等方法研究30个表型性状的遗传多样性,并构建核心种质资源库。结果表明,15个质量性状的遗传多样性指数为0~0.85,其中叶色的遗传多样性指数最大;15个数量性状的变异系数为7.84%~44.56%,变异系数最大的为分枝数。相关性分析表明,单株根状茎质量与株高、株幅、叶长、叶宽、主茎叶片数、地上茎高、地上茎粗、子姜长、子姜茎节数等呈极显著正相关(P<0.01),表明长势旺盛的资源具有较高产量。主成分分析提取出的前6个主成分的累计贡献率为62.423%。聚类分析将80份姜种质资源分为6个类群,其中第Ⅱ、Ⅲ类群的植株较为高大、长势旺,产量高。采用系统逐步聚类、优先取样策略筛选出36份种质作为姜资源核心库优异材料,占总体样本的45%,t检验表明该核心库能够代表原种质资源库的遗传变异。

关键词: 姜, 遗传多样性, 表型性状, 核心种质

Abstract:

To explore the genetic relationships of different ginger (Zingiber officinale Rosc.) germplasm accessions in Zhejiang Province to enhance their conservation, utilization, and provide foundational materials for breeding programs, the genetic diversity of 30 phenotypic traits for 80 ginger germplasm accessions were analyzed by correlation analysis, principal component analysis(PCA) and cluster analysis. Moreover, the core collection was constructed. The results showed that the genetic diversity index of 15 qualitative traits ranged from 0 to 0.85, with leaf color exhibiting the highest diversity. For 15 quantitative traits, the coefficient of variation (CV) ranged from 7.84% to 44.56%, with branch number showing the highest CV. Correlation analysis revealed that rhizome weight per plant showed highly significant positive correlation (P<0.01) with plant height, plant width, leaf length, leaf width, number of leaves on main stem, aboveground stem height, aboveground stem diameter, sub-rhizome length, and node number of sub-rhizomes, indicating that germplasm accessions with strong growth had higher yield. PCA extracted six principal components with a cumulative contribution rate of 62.423%. Cluster analysis classified the 80 accessions into six groups, with Groups Ⅱ and Ⅲ exhibiting taller plants, vigorous growth, and higher yields. A core collection comprising 36 superior accessions (45% of the total) was established through systematic stepwise clustering and priority sampling strategies. t-test confirmed that this core collection effectively represents the genetic variation of the original germplasms.

Key words: ginger, genetic diversity, phenotypic trait, core collection

中图分类号: