浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 319-328.DOI: 10.3969/j.issn.1004-1524.2023.02.09
李晓娟1,2(), 赵文菊1,2, 赵孟良1,2, 邵登魁1,2, 马一栋1,2, 任延靖1,2,*(
)
收稿日期:
2021-11-02
出版日期:
2023-02-25
发布日期:
2023-03-14
通讯作者:
任延靖
作者简介:
*任延靖,E-mail: renyan0202@163.com基金资助:
LI Xiaojuan1,2(), ZHAO Wenju1,2, ZHAO Mengliang1,2, SHAO Dengkui1,2, MA Yidong1,2, REN Yanjing1,2,*(
)
Received:
2021-11-02
Online:
2023-02-25
Published:
2023-03-14
Contact:
REN Yanjing
摘要:
为了研究芜菁(Brassica rapa L.)种质资源的多样性水平,本研究采用转录组测序的方法挖掘芜菁的SSR分子标记。结果表明:转录组测序分析共获得了253 720条unigene,其中13 247条unigene序列中含有2个或2个以上SSR位点,SSR的发生频率为25.05%,平均每3.15 kb出现1个SSR,分布频率为31.42%。30对引物最终均获得了多态性高、条带清晰的结果,共扩增出多态性条带有126条,平均每对引物扩增出4.2条,平均多态率100%。根据电泳检测扩增结果,最终得到24对多态性高、条带清晰的芜菁SSR引物,24对SSR引物在50份芜菁材料中共扩增获得了101个等位基因,平均每个位点等位基因数4.21个,分析显示,平均有效等位基因数(Ne)为1.481 7个,有效等位变异率为35.19%,这些结果表明,筛选出的引物能较好地表现50份芜菁的遗传多样性,同时对于更多芜菁品种的DNA指纹图谱构建和杂交种鉴定均具有重要意义。
中图分类号:
李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋, 任延靖. 基于转录组序列的芜菁SSR标记开发及应用[J]. 浙江农业学报, 2023, 35(2): 319-328.
LI Xiaojuan, ZHAO Wenju, ZHAO Mengliang, SHAO Dengkui, MA Yidong, REN Yanjing. Development and application of SSR markers based on transcriptome sequencing of turnip (Brassica rapa ssp. rapa)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 319-328.
编号No. | 名称Name | 产地Production area | 编号No. | 名称Name | 产地Production area |
---|---|---|---|---|---|
1 | 1401 | 青海Qinghai | 26 | W29 | 青海Qinghai |
2 | 1402 | 青海Qinghai | 27 | W30 | 青海Qinghai |
3 | 1403 | 西藏Tibet | 28 | W31 | 青海Qinghai |
4 | 1404 | 青海Qinghai | 29 | T1 | 河北Hebei |
5 | 1405 | 青海Qinghai | 30 | T2 | 河北Hebei |
6 | 1406 | 四川Sichuan | 31 | T4 | 黑龙江Heilongjiang |
7 | 1407 | 四川Sichuan | 32 | T5 | 内蒙古Inner Mongolia |
8 | 1408 | 新疆Xinjiang | 33 | T6 | 内蒙古Inner Mongolia |
9 | 1409 | 新疆Xinjiang | 34 | T11 | 日本Japan |
10 | 1410 | 青海Qinghai | 35 | T14 | 日本Japan |
11 | 1411 | 西藏Tibet | 36 | T15 | 日本Japan |
12 | 1412 | 云南Yunnan | 37 | T16 | 青海Qinghai |
13 | 1413 | 云南Yunnan | 38 | T17 | 青海Qinghai |
14 | G1 | 青海Qinghai | 39 | T18 | 甘肃Gansu |
15 | G2 | 青海Qinghai | 40 | IC9 | 国家种质资源库The National Germplasm Bank |
16 | G3 | 青海Qinghai | 41 | IC22 | 国家种质资源库The National Germplasm Bank |
17 | G4 | 青海Qinghai | 42 | IC23 | 国家种质资源库The National Germplasm Bank |
18 | W21 | 北京Beijing | 43 | IC28 | 国家种质资源库The National Germplasm Bank |
19 | W22 | 河南Henan | 44 | IC39 | 国家种质资源库The National Germplasm Bank |
20 | W23 | 河北Hebei | 45 | IC40 | 国家种质资源库The National Germplasm Bank |
21 | W24 | 河北Hebei | 46 | IC43 | 国家种质资源库The National Germplasm Bank |
22 | W25 | 河北Hebei | 47 | IC44 | 国家种质资源库The National Germplasm Bank |
23 | W26 | 内蒙古Inner Mongolia | 48 | BLK | 内蒙古Inner Mongolia |
24 | W27 | 北京Beijing | 49 | SK | 黑龙江Heilongjiang |
25 | W28 | 内蒙古Inner Mongolia | 50 | NS1 | 内蒙古Inner Mongolia |
表1 供试材料信息
Table 1 Information of materials tested
编号No. | 名称Name | 产地Production area | 编号No. | 名称Name | 产地Production area |
---|---|---|---|---|---|
1 | 1401 | 青海Qinghai | 26 | W29 | 青海Qinghai |
2 | 1402 | 青海Qinghai | 27 | W30 | 青海Qinghai |
3 | 1403 | 西藏Tibet | 28 | W31 | 青海Qinghai |
4 | 1404 | 青海Qinghai | 29 | T1 | 河北Hebei |
5 | 1405 | 青海Qinghai | 30 | T2 | 河北Hebei |
6 | 1406 | 四川Sichuan | 31 | T4 | 黑龙江Heilongjiang |
7 | 1407 | 四川Sichuan | 32 | T5 | 内蒙古Inner Mongolia |
8 | 1408 | 新疆Xinjiang | 33 | T6 | 内蒙古Inner Mongolia |
9 | 1409 | 新疆Xinjiang | 34 | T11 | 日本Japan |
10 | 1410 | 青海Qinghai | 35 | T14 | 日本Japan |
11 | 1411 | 西藏Tibet | 36 | T15 | 日本Japan |
12 | 1412 | 云南Yunnan | 37 | T16 | 青海Qinghai |
13 | 1413 | 云南Yunnan | 38 | T17 | 青海Qinghai |
14 | G1 | 青海Qinghai | 39 | T18 | 甘肃Gansu |
15 | G2 | 青海Qinghai | 40 | IC9 | 国家种质资源库The National Germplasm Bank |
16 | G3 | 青海Qinghai | 41 | IC22 | 国家种质资源库The National Germplasm Bank |
17 | G4 | 青海Qinghai | 42 | IC23 | 国家种质资源库The National Germplasm Bank |
18 | W21 | 北京Beijing | 43 | IC28 | 国家种质资源库The National Germplasm Bank |
19 | W22 | 河南Henan | 44 | IC39 | 国家种质资源库The National Germplasm Bank |
20 | W23 | 河北Hebei | 45 | IC40 | 国家种质资源库The National Germplasm Bank |
21 | W24 | 河北Hebei | 46 | IC43 | 国家种质资源库The National Germplasm Bank |
22 | W25 | 河北Hebei | 47 | IC44 | 国家种质资源库The National Germplasm Bank |
23 | W26 | 内蒙古Inner Mongolia | 48 | BLK | 内蒙古Inner Mongolia |
24 | W27 | 北京Beijing | 49 | SK | 黑龙江Heilongjiang |
25 | W28 | 内蒙古Inner Mongolia | 50 | NS1 | 内蒙古Inner Mongolia |
重复基元 Repeat motif length | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | ||||||
---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | >10 | |||
单核苷酸Mononucleotide | 0 | 0 | 0 | 0 | 0 | 16 975 | 7 820 | 24 795 | 45.50 |
二核苷酸Dinucleotide | 0 | 6 174 | 3 311 | 2 421 | 1 550 | 0 | 0 | 13 456 | 24.70 |
三核苷酸Trinucleotide | 9 813 | 3 591 | 1 388 | 620 | 97 | 0 | 0 | 15 509 | 28.47 |
四核苷酸Tetranucleotide | 342 | 94 | 12 | 7 | 2 | 0 | 6 | 461 | 0.85 |
五核苷酸Pentanucleotide | 95 | 18 | 5 | 2 | 0 | 4 | 0 | 124 | 0.23 |
六核苷酸Hexanucleotide | 77 | 32 | 17 | 6 | 1 | 0 | 5 | 137 | 0.25 |
合计Total | 10 327 | 9 909 | 4 733 | 3 056 | 1 650 | 16 979 | 7 831 | 54 482 | 100 |
合计占比Total proportion/% | 18.95 | 18.19 | 8.69 | 5.61 | 3.03 | 31.16 | 14.37 |
表2 芜菁单一SSR的类型、数量及分布特征
Table 2 Number and ratio of SSR in turnip
重复基元 Repeat motif length | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | ||||||
---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | >10 | |||
单核苷酸Mononucleotide | 0 | 0 | 0 | 0 | 0 | 16 975 | 7 820 | 24 795 | 45.50 |
二核苷酸Dinucleotide | 0 | 6 174 | 3 311 | 2 421 | 1 550 | 0 | 0 | 13 456 | 24.70 |
三核苷酸Trinucleotide | 9 813 | 3 591 | 1 388 | 620 | 97 | 0 | 0 | 15 509 | 28.47 |
四核苷酸Tetranucleotide | 342 | 94 | 12 | 7 | 2 | 0 | 6 | 461 | 0.85 |
五核苷酸Pentanucleotide | 95 | 18 | 5 | 2 | 0 | 4 | 0 | 124 | 0.23 |
六核苷酸Hexanucleotide | 77 | 32 | 17 | 6 | 1 | 0 | 5 | 137 | 0.25 |
合计Total | 10 327 | 9 909 | 4 733 | 3 056 | 1 650 | 16 979 | 7 831 | 54 482 | 100 |
合计占比Total proportion/% | 18.95 | 18.19 | 8.69 | 5.61 | 3.03 | 31.16 | 14.37 |
重复类型 Repeat type | 基序类型数 Number of motif type | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% |
---|---|---|---|---|---|---|---|
单核苷酸Mononucleotide | 2 | A/T | 24 649 | 45.24 | C/G | 146 | 0.27 |
二核苷酸Dinucleotide | 4 | AT/AT | 2 585 | 4.74 | AG/CT | 9 288 | 17.05 |
AC/GT | 1 551 | 2.85 | CG/CG | 32 | 0.06 | ||
三核苷酸Trinucleotide | 10 | AAT/ATT | 553 | 1.02 | ACC/GGT | 1 216 | 2.23 |
AAC/GTT | 1 535 | 2.82 | ACG/CGT | 517 | 0.95 | ||
AAG/CTT | 5 054 | 9.28 | AGC/GCT | 713 | 1.31 | ||
ATC/GAT | 1 381 | 2.53 | AGG/CCT | 2656 | 4.88 | ||
ATG/CAT | 1 511 | 2.77 | CCG/TCC | 464 | 0.85 | ||
四核苷酸Tetranucleotide | 26 | AAAC/GTTT | 96 | 0.18 | AAAG/CTTT | 112 | 0.21 |
AAAT/ATTT | 80 | 0.15 | 其他Others | 173 | 0.32 | ||
五核苷酸Pentanucleotide | 26 | AAAAT/ATTTT | 24 | 0.04 | AAAAG/CTTTT | 13 | 0.02 |
AACCA/TGGTT | 16 | 0.03 | 其他Others | 71 | 0.13 | ||
六核苷酸Hexanucleotide | 44 | GGCTGT/ACAGCC | 14 | 0.03 | CCAGCT/AGCTGG | 13 | 0.02 |
TTTTTG/CAAAAA | 11 | 0.02 | 其他Others | 99 | 0.18 |
表3 芜菁SSR基序类型分布
Table 3 SSR repeat motifs, number and their ratio of turnip
重复类型 Repeat type | 基序类型数 Number of motif type | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% |
---|---|---|---|---|---|---|---|
单核苷酸Mononucleotide | 2 | A/T | 24 649 | 45.24 | C/G | 146 | 0.27 |
二核苷酸Dinucleotide | 4 | AT/AT | 2 585 | 4.74 | AG/CT | 9 288 | 17.05 |
AC/GT | 1 551 | 2.85 | CG/CG | 32 | 0.06 | ||
三核苷酸Trinucleotide | 10 | AAT/ATT | 553 | 1.02 | ACC/GGT | 1 216 | 2.23 |
AAC/GTT | 1 535 | 2.82 | ACG/CGT | 517 | 0.95 | ||
AAG/CTT | 5 054 | 9.28 | AGC/GCT | 713 | 1.31 | ||
ATC/GAT | 1 381 | 2.53 | AGG/CCT | 2656 | 4.88 | ||
ATG/CAT | 1 511 | 2.77 | CCG/TCC | 464 | 0.85 | ||
四核苷酸Tetranucleotide | 26 | AAAC/GTTT | 96 | 0.18 | AAAG/CTTT | 112 | 0.21 |
AAAT/ATTT | 80 | 0.15 | 其他Others | 173 | 0.32 | ||
五核苷酸Pentanucleotide | 26 | AAAAT/ATTTT | 24 | 0.04 | AAAAG/CTTTT | 13 | 0.02 |
AACCA/TGGTT | 16 | 0.03 | 其他Others | 71 | 0.13 | ||
六核苷酸Hexanucleotide | 44 | GGCTGT/ACAGCC | 14 | 0.03 | CCAGCT/AGCTGG | 13 | 0.02 |
TTTTTG/CAAAAA | 11 | 0.02 | 其他Others | 99 | 0.18 |
序号 No. | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 预期产物大小 Expected product size/bp | 退火温度 Annealing temperature/ ℃ | GC含量 GC content | 扩增条带数 Number of amplification bands | 多态性条带数 Number of polymorphism bands | 多态性比例 Percentage of polymorphism/ % |
---|---|---|---|---|---|---|---|---|
1 | Cluster-10000.0 | TTAATCGATCTCCGGTGGCG | 217 | 60.00 | 55.00 | 3 | 3 | 100 |
TCTACGTATGGGACCAGCCA | ||||||||
2 | Cluster-27140.0 | GACTGATGAGATGCCTCGGG | 209 | 59.97 | 60.00 | 3 | 3 | 100 |
CCGGAGATCCAATGTACCCG | ||||||||
3 | Cluster-30924.104122 | CGGTTGTCTCCCCGGTTTAA | 200 | 59.97 | 57.50 | 1 | 1 | 100 |
CCCAGTAGATTCTCGCGTCC | ||||||||
4 | Cluster-30924.109584 | GGACGCACCAATCTCCTTGA | 204 | 60.00 | 57.50 | 1 | 1 | 100 |
GCCCAATCTACCGAGTCGAG | ||||||||
5 | Cluster-30924.114983 | AAGGAGACGTCTTGCGAAGG | 208 | 60.04 | 52.50 | 6 | 6 | 100 |
ATGCCGTTCCGAGTTTCCAT | ||||||||
6 | Cluster-30924.120390 | CCTTGTGTTGCAAAGAGGGC | 211 | 59.97 | 55.00 | 1 | 1 | 100 |
CTGGTGCGCATTTATCTGCC | ||||||||
7 | Cluster-30924.126255 | TGATGATGATGGCTGGGCTG | 211 | 60.11 | 52.50 | 8 | 8 | 100 |
GCGCTAGGCTTTGCTTTTGT | ||||||||
8 | Cluster-30924.132245 | TCGGCATATGCTAGCTGGTG | 209 | 59.97 | 55.00 | 2 | 2 | 100 |
GACCACGCTCCTTCAGACAA | ||||||||
9 | Cluster-30924.138446 | TCCGTTTGAACCACACCCAA | 213 | 59.96 | 50.00 | 5 | 5 | 100 |
TAACAGCAACCTCGTTGGCT | ||||||||
10 | Cluster-30924.144894 | CGGAGCGGATGCAAGACTAT | 221 | 59.93 | 55.00 | 6 | 6 | 100 |
TCCCTCAGGACCAAAAGTGC | ||||||||
11 | Cluster-30924.151200 | AAGGAGGCTGCAAGAGTGAC | 221 | 59.96 | 57.50 | 6 | 6 | 100 |
CCAGTGGGTGTCTCAGGTTC | ||||||||
12 | Cluster-30924.157883 | CATTCGACCCGCTCTCTCTC | 206 | 59.97 | 60.00 | 2 | 2 | 100 |
CACCCGACAGTATACGTCCG | ||||||||
13 | Cluster-30924.164312 | GGAGACTGAGGGGATGAGGT | 219 | 60.03 | 57.50 | 4 | 4 | 100 |
AGAAATCGGACCCGGGTTTC | ||||||||
14 | Cluster-30924.171259 | TGTGAACCCAAGCTCCGTAC | 228 | 59.97 | 55.00 | 3 | 3 | 100 |
GCCGTCTTCATCACATTCGC | ||||||||
15 | Cluster-30924.22191 | TGGCTATCATCCCCTGTCCA | 207 | 60.03 | 55.00 | 1 | 1 | 100 |
GGGGATCAAGAAACGCCTGA | ||||||||
16 | Cluster-30924.28557 | TCTTCATGCGGCTTCCTCTG | 229 | 60.07 | 55.00 | 7 | 7 | 100 |
AGCAAAGCTCCCATCAGACC | ||||||||
17 | Cluster-30924.35340 | AGAGAGGCTATTGGCGCATC | 218 | 59.97 | 55.00 | 6 | 6 | 100 |
TCGGACAAGACACGGTGAAG | ||||||||
18 | Cluster-30924.41968 | CGCAGTTGGTTGTCACACAG | 203 | 59.97 | 55.00 | 3 | 3 | 100 |
CGTCTCACTCGGTGTTCCAA | ||||||||
19 | Cluster-30924.48364 | GAAGGGTGGAGTCGACAAGG | 206 | 59.97 | 60.00 | 1 | 1 | 100 |
GGTGGCTCTAATCGGTGGAG | ||||||||
20 | Cluster-30924.54426 | CTGCTTCTCCTCTTGCACCA | 257 | 59.97 | 55.00 | 3 | 3 | 100 |
TGTCGGAGGAGCTGAAACAC | ||||||||
21 | Cluster-30924.60140 | AGGTGGGGATAAGCACAAGC | 203 | 60.04 | 57.50 | 12 | 12 | 100 |
GTTCTCCACTGCCTCTGTCC | ||||||||
22 | Cluster-30924.65654 | GCCATCTCCGACTTCCCAAA | 224 | 60.04 | 55.00 | 2 | 2 | 100 |
GTCCAGTTCTCGCCATTCCA | ||||||||
23 | Cluster-30924.71367 | GCTGTCGGTGGTGTTCAAAC | 245 | 59.97 | 55.00 | 4 | 4 | 100 |
TAACAGGGACCGGCAAAGAC | ||||||||
24 | Cluster-30924.76636 | AGAGATGGCTGTGTTGGTGG | 203 | 60.00 | 55.00 | 13 | 13 | 100 |
ATGAGCGTCTTCCTCCTCCT | ||||||||
25 | Cluster-30924.82553 | ATTCGAGTTGGTGCCTGAGG | 241 | 60.04 | 55.00 | 2 | 2 | 100 |
AACGGAAAGCTCGAGGTCTG | ||||||||
26 | Cluster-30924.87846 | GAGCAATCGGTTCCCTGGAA | 217 | 60.03 | 55.00 | 2 | 2 | 100 |
TCATCTGGTACCTCGGAGCA | ||||||||
27 | Cluster-30924.93982 | CCAACTTGACGGTCGAAGGA | 218 | 60.00 | 55.00 | 1 | 1 | 100 |
TCAGATAACTCGAGGGGGC | ||||||||
28 | Cluster-30924.99449 | GCTCTGCCTGTTTTGGAAGC | 217 | 60.00 | 55.00 | 6 | 6 | 100 |
TGCTCTCTTCAACAGCCTGG | ||||||||
29 | Cluster-62597.0 | TGGACAAGGTGAAGTCTCCG | 212 | 59.57 | 55.00 | 6 | 6 | 100 |
ATTCGGAGAGCGAGGTTGAC | ||||||||
30 | Cluster-9993.0 | GCGAGTCAGGCCTAAAGGTT | 228 | 60.04 | 55.00 | 6 | 6 | 100 |
TCAATTTCCCTGGCGTCTCC |
表4 芜菁SSR引物序列及扩增结果
Table 4 Primer sequences and amplification information of turnip
序号 No. | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 预期产物大小 Expected product size/bp | 退火温度 Annealing temperature/ ℃ | GC含量 GC content | 扩增条带数 Number of amplification bands | 多态性条带数 Number of polymorphism bands | 多态性比例 Percentage of polymorphism/ % |
---|---|---|---|---|---|---|---|---|
1 | Cluster-10000.0 | TTAATCGATCTCCGGTGGCG | 217 | 60.00 | 55.00 | 3 | 3 | 100 |
TCTACGTATGGGACCAGCCA | ||||||||
2 | Cluster-27140.0 | GACTGATGAGATGCCTCGGG | 209 | 59.97 | 60.00 | 3 | 3 | 100 |
CCGGAGATCCAATGTACCCG | ||||||||
3 | Cluster-30924.104122 | CGGTTGTCTCCCCGGTTTAA | 200 | 59.97 | 57.50 | 1 | 1 | 100 |
CCCAGTAGATTCTCGCGTCC | ||||||||
4 | Cluster-30924.109584 | GGACGCACCAATCTCCTTGA | 204 | 60.00 | 57.50 | 1 | 1 | 100 |
GCCCAATCTACCGAGTCGAG | ||||||||
5 | Cluster-30924.114983 | AAGGAGACGTCTTGCGAAGG | 208 | 60.04 | 52.50 | 6 | 6 | 100 |
ATGCCGTTCCGAGTTTCCAT | ||||||||
6 | Cluster-30924.120390 | CCTTGTGTTGCAAAGAGGGC | 211 | 59.97 | 55.00 | 1 | 1 | 100 |
CTGGTGCGCATTTATCTGCC | ||||||||
7 | Cluster-30924.126255 | TGATGATGATGGCTGGGCTG | 211 | 60.11 | 52.50 | 8 | 8 | 100 |
GCGCTAGGCTTTGCTTTTGT | ||||||||
8 | Cluster-30924.132245 | TCGGCATATGCTAGCTGGTG | 209 | 59.97 | 55.00 | 2 | 2 | 100 |
GACCACGCTCCTTCAGACAA | ||||||||
9 | Cluster-30924.138446 | TCCGTTTGAACCACACCCAA | 213 | 59.96 | 50.00 | 5 | 5 | 100 |
TAACAGCAACCTCGTTGGCT | ||||||||
10 | Cluster-30924.144894 | CGGAGCGGATGCAAGACTAT | 221 | 59.93 | 55.00 | 6 | 6 | 100 |
TCCCTCAGGACCAAAAGTGC | ||||||||
11 | Cluster-30924.151200 | AAGGAGGCTGCAAGAGTGAC | 221 | 59.96 | 57.50 | 6 | 6 | 100 |
CCAGTGGGTGTCTCAGGTTC | ||||||||
12 | Cluster-30924.157883 | CATTCGACCCGCTCTCTCTC | 206 | 59.97 | 60.00 | 2 | 2 | 100 |
CACCCGACAGTATACGTCCG | ||||||||
13 | Cluster-30924.164312 | GGAGACTGAGGGGATGAGGT | 219 | 60.03 | 57.50 | 4 | 4 | 100 |
AGAAATCGGACCCGGGTTTC | ||||||||
14 | Cluster-30924.171259 | TGTGAACCCAAGCTCCGTAC | 228 | 59.97 | 55.00 | 3 | 3 | 100 |
GCCGTCTTCATCACATTCGC | ||||||||
15 | Cluster-30924.22191 | TGGCTATCATCCCCTGTCCA | 207 | 60.03 | 55.00 | 1 | 1 | 100 |
GGGGATCAAGAAACGCCTGA | ||||||||
16 | Cluster-30924.28557 | TCTTCATGCGGCTTCCTCTG | 229 | 60.07 | 55.00 | 7 | 7 | 100 |
AGCAAAGCTCCCATCAGACC | ||||||||
17 | Cluster-30924.35340 | AGAGAGGCTATTGGCGCATC | 218 | 59.97 | 55.00 | 6 | 6 | 100 |
TCGGACAAGACACGGTGAAG | ||||||||
18 | Cluster-30924.41968 | CGCAGTTGGTTGTCACACAG | 203 | 59.97 | 55.00 | 3 | 3 | 100 |
CGTCTCACTCGGTGTTCCAA | ||||||||
19 | Cluster-30924.48364 | GAAGGGTGGAGTCGACAAGG | 206 | 59.97 | 60.00 | 1 | 1 | 100 |
GGTGGCTCTAATCGGTGGAG | ||||||||
20 | Cluster-30924.54426 | CTGCTTCTCCTCTTGCACCA | 257 | 59.97 | 55.00 | 3 | 3 | 100 |
TGTCGGAGGAGCTGAAACAC | ||||||||
21 | Cluster-30924.60140 | AGGTGGGGATAAGCACAAGC | 203 | 60.04 | 57.50 | 12 | 12 | 100 |
GTTCTCCACTGCCTCTGTCC | ||||||||
22 | Cluster-30924.65654 | GCCATCTCCGACTTCCCAAA | 224 | 60.04 | 55.00 | 2 | 2 | 100 |
GTCCAGTTCTCGCCATTCCA | ||||||||
23 | Cluster-30924.71367 | GCTGTCGGTGGTGTTCAAAC | 245 | 59.97 | 55.00 | 4 | 4 | 100 |
TAACAGGGACCGGCAAAGAC | ||||||||
24 | Cluster-30924.76636 | AGAGATGGCTGTGTTGGTGG | 203 | 60.00 | 55.00 | 13 | 13 | 100 |
ATGAGCGTCTTCCTCCTCCT | ||||||||
25 | Cluster-30924.82553 | ATTCGAGTTGGTGCCTGAGG | 241 | 60.04 | 55.00 | 2 | 2 | 100 |
AACGGAAAGCTCGAGGTCTG | ||||||||
26 | Cluster-30924.87846 | GAGCAATCGGTTCCCTGGAA | 217 | 60.03 | 55.00 | 2 | 2 | 100 |
TCATCTGGTACCTCGGAGCA | ||||||||
27 | Cluster-30924.93982 | CCAACTTGACGGTCGAAGGA | 218 | 60.00 | 55.00 | 1 | 1 | 100 |
TCAGATAACTCGAGGGGGC | ||||||||
28 | Cluster-30924.99449 | GCTCTGCCTGTTTTGGAAGC | 217 | 60.00 | 55.00 | 6 | 6 | 100 |
TGCTCTCTTCAACAGCCTGG | ||||||||
29 | Cluster-62597.0 | TGGACAAGGTGAAGTCTCCG | 212 | 59.57 | 55.00 | 6 | 6 | 100 |
ATTCGGAGAGCGAGGTTGAC | ||||||||
30 | Cluster-9993.0 | GCGAGTCAGGCCTAAAGGTT | 228 | 60.04 | 55.00 | 6 | 6 | 100 |
TCAATTTCCCTGGCGTCTCC |
引物 Primer | 观测等位基因数 Na | 有效等位基因数 Ne | Nei’s期望杂合度 h | 多样性指数 I | 多态性信息含量 PIC |
---|---|---|---|---|---|
Cluster-30924.35340 | 6 | 1.167 4 | 0.140 3 | 0.265 4 | 0.438 1 |
Cluster-30924.171259 | 3 | 1.408 7 | 0.277 3 | 0.443 3 | 0.698 6 |
Cluster-30924.151200 | 6 | 1.665 4 | 0.365 3 | 0.536 1 | 0.866 8 |
Cluster-30924.41968 | 3 | 1.701 0 | 0.377 6 | 0.551 1 | 0.689 3 |
Cluster-30924.28557 | 7 | 1.328 8 | 0.239 2 | 0.397 8 | 0.616 9 |
Cluster-30924.164312 | 4 | 1.856 3 | 0.455 1 | 0.646 0 | 0.737 0 |
Cluster-30924.157883 | 2 | 1.336 0 | 0.224 1 | 0.363 7 | 0.235 6 |
Cluster-9993.0 | 6 | 1.662 7 | 0.373 2 | 0.549 9 | 0.825 7 |
Cluster-62597.0 | 6 | 1.220 0 | 0.136 7 | 0.234 0 | 0.459 9 |
Cluster-30924.65654 | 2 | 1.456 3 | 0.265 6 | 0.407 9 | 0.312 4 |
Cluster-30924.71367 | 4 | 1.338 1 | 0.218 4 | 0.348 8 | 0.572 3 |
Cluster-30924.76636 | 6 | 1.761 2 | 0.428 9 | 0.619 4 | 0.858 5 |
Cluster-30924.99449 | 3 | 1.698 9 | 0.411 4 | 0.601 7 | 0.497 6 |
Cluster-30924.82553 | 2 | 1.423 5 | 0.255 4 | 0.397 3 | 0.289 0 |
Cluster-30924.87846 | 2 | 1.020 3 | 0.019 9 | 0.056 2 | 0.038 4 |
Cluster-30924.60140 | 6 | 1.742 9 | 0.422 9 | 0.613 1 | 0.639 7 |
Cluster-10000.0 | 3 | 1.366 2 | 0.198 8 | 0.306 1 | 0.439 9 |
Cluster-27140.0 | 3 | 1.796 7 | 0.442 2 | 0.633 9 | 0.575 0 |
Cluster-30924.54426 | 3 | 1.577 0 | 0.346 9 | 0.525 7 | 0.592 2 |
Cluster-30924.114983 | 6 | 1.181 4 | 0.111 0 | 0.190 9 | 0.310 7 |
Cluster-30924.126255 | 5 | 1.618 5 | 0.370 8 | 0.554 1 | 0.914 7 |
Cluster-30924.132245 | 2 | 1.197 9 | 0.160 5 | 0.292 7 | 0.404 7 |
Cluster-30924.138446 | 5 | 1.529 6 | 0.322 4 | 0.489 9 | 0.875 8 |
Cluster-30924.144894 | 6 | 1.505 7 | 0.322 9 | 0.498 8 | 0.769 0 |
平均值Mean | 4.208 3 | 1.481 7 | 0.287 0 | 0.438 5 | 0.569 1 |
标准差Standard deviation | 1.718 9 | 0.230 0 | 0.118 7 | 0.157 3 | 0.232 3 |
表5 二十四对SSR引物的遗传参数
Table 5 Genetic parameters of 24 pairs of primers for SSR
引物 Primer | 观测等位基因数 Na | 有效等位基因数 Ne | Nei’s期望杂合度 h | 多样性指数 I | 多态性信息含量 PIC |
---|---|---|---|---|---|
Cluster-30924.35340 | 6 | 1.167 4 | 0.140 3 | 0.265 4 | 0.438 1 |
Cluster-30924.171259 | 3 | 1.408 7 | 0.277 3 | 0.443 3 | 0.698 6 |
Cluster-30924.151200 | 6 | 1.665 4 | 0.365 3 | 0.536 1 | 0.866 8 |
Cluster-30924.41968 | 3 | 1.701 0 | 0.377 6 | 0.551 1 | 0.689 3 |
Cluster-30924.28557 | 7 | 1.328 8 | 0.239 2 | 0.397 8 | 0.616 9 |
Cluster-30924.164312 | 4 | 1.856 3 | 0.455 1 | 0.646 0 | 0.737 0 |
Cluster-30924.157883 | 2 | 1.336 0 | 0.224 1 | 0.363 7 | 0.235 6 |
Cluster-9993.0 | 6 | 1.662 7 | 0.373 2 | 0.549 9 | 0.825 7 |
Cluster-62597.0 | 6 | 1.220 0 | 0.136 7 | 0.234 0 | 0.459 9 |
Cluster-30924.65654 | 2 | 1.456 3 | 0.265 6 | 0.407 9 | 0.312 4 |
Cluster-30924.71367 | 4 | 1.338 1 | 0.218 4 | 0.348 8 | 0.572 3 |
Cluster-30924.76636 | 6 | 1.761 2 | 0.428 9 | 0.619 4 | 0.858 5 |
Cluster-30924.99449 | 3 | 1.698 9 | 0.411 4 | 0.601 7 | 0.497 6 |
Cluster-30924.82553 | 2 | 1.423 5 | 0.255 4 | 0.397 3 | 0.289 0 |
Cluster-30924.87846 | 2 | 1.020 3 | 0.019 9 | 0.056 2 | 0.038 4 |
Cluster-30924.60140 | 6 | 1.742 9 | 0.422 9 | 0.613 1 | 0.639 7 |
Cluster-10000.0 | 3 | 1.366 2 | 0.198 8 | 0.306 1 | 0.439 9 |
Cluster-27140.0 | 3 | 1.796 7 | 0.442 2 | 0.633 9 | 0.575 0 |
Cluster-30924.54426 | 3 | 1.577 0 | 0.346 9 | 0.525 7 | 0.592 2 |
Cluster-30924.114983 | 6 | 1.181 4 | 0.111 0 | 0.190 9 | 0.310 7 |
Cluster-30924.126255 | 5 | 1.618 5 | 0.370 8 | 0.554 1 | 0.914 7 |
Cluster-30924.132245 | 2 | 1.197 9 | 0.160 5 | 0.292 7 | 0.404 7 |
Cluster-30924.138446 | 5 | 1.529 6 | 0.322 4 | 0.489 9 | 0.875 8 |
Cluster-30924.144894 | 6 | 1.505 7 | 0.322 9 | 0.498 8 | 0.769 0 |
平均值Mean | 4.208 3 | 1.481 7 | 0.287 0 | 0.438 5 | 0.569 1 |
标准差Standard deviation | 1.718 9 | 0.230 0 | 0.118 7 | 0.157 3 | 0.232 3 |
[1] | 任延靖, 韩睿, 赵孟良. 芜菁实时荧光定量PCR内参基因筛选[J]. 青海农林科技, 2021(3): 1-6. |
REN Y J, HAN R, ZHAO M L. Internal reference genes screening of turnip by real-time fluorescence quantiative PCR[J]. Science and Technology of Qinghai Agriculture and Forestry, 2021(3): 1-6. (in Chinese with English abstract) | |
[2] | 李欢欢, 陈春丽, 海力茜·陶尔大洪. 芜菁中性多糖对D-半乳糖致衰老小鼠的抗氧化作用[J]. 食品科技, 2021, 46(5): 168-173. |
LI H H, CHEN C L, HAILIQIAN T D. Antioxidant effect of turnip neutral polysaccharide on D-galactose-induced aging mice[J]. Food Science and Technology, 2021, 46(5): 168-173. (in Chinese with English abstract) | |
[3] | 张丽静, 付劢, 张文会, 等. 芜菁膏超声提取工艺优化及其抗氧化活性研究[J]. 西北农林科技大学学报(自然科学版), 2021, 49(10): 111-119. |
ZHANG L J, FU M, ZHANG W H, et al. Optimization of ultrasonic extraction technology of Brassica radix and its antioxidant activity[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(10): 111-119. (in Chinese with English abstract) | |
[4] | 刘建兵, 林风, 林军, 等. 芜菁的降血脂活性评价及作用机制探讨[J]. 海南医学院学报, 2022, 28(3):171-180. |
LIU J B, LIN F, LIN J, et al. Evaluation of hypolipidemic activity of Brassica rapa and its mechanism analysis[J]. Journal of Hainan Medical University, 2022, 28(3):171-180. (in Chinese with English abstract) | |
[5] | DEJANOVIC G M, ASLLANAJ E, GAMBA M, et al. Phytochemical characterization of turnip greens (Brassica rapa ssp. rapa): a systematic review[J]. PLoS One, 2021, 16(2): e0247032. |
[6] | 乔舒婷, 董文其, 胡齐赞, 等. 基于丝瓜全基因组序列SSR分子标记开发[J/OL]. 分子植物育种: 1-18[2021-10-13].http://kns.cnki.net/kcms/detail/46.1068.S.20210414.0946.004.html. |
QIAO S T, DONG W Q, HU Q Z, et al. Development of SSR molecular markers based on whole genome sequences of sponge gourd[J/OL]. Molecular Plant Breeding: 1-18[2021-10-13].http://kns.cnki.net/kcms/detail/46.1068.S.20210414.0946.004.html. (in Chinese with English abstract) | |
[7] | 刘美娟, 郑司浩, 赵莎, 等. 不同产区黄芩SSR分子标记鉴别研究[J]. 中国现代中药, 2021, 23(11):1876-1882. |
LIU M J, ZHENG S H, ZHAO S, et al, Research on identification of SSR molecular markers about Scutellaria baicalensis in different producing areas[J]. Modern Chinese Medicine, 2021, 23(11):1876-1882. (in Chinese with English abstract) | |
[8] | 李桂花, 陈汉才, 张艳, 等. 小白菜种质遗传多样性与亲缘关系的SRAP和SSR分析[J]. 广东农业科学, 2017, 44(5): 37-45. |
LI G H, CHEN H C, ZHANG Y, et al. Genetic diversity and phylogenetic relationships analysis of Chinese cabbage germplasm resources by SRAP and SSR[J]. Guangdong Agricultural Sciences, 2017, 44(5): 37-45. (in Chinese with English abstract) | |
[9] | 徐营莉, 华德平, 张红, 等. 白菜类蔬菜种子纯度SSR分子标记鉴定[J]. 分子植物育种, 2020, 18(1): 187-192. |
XU Y L, HUA D P, ZHANG H, et al. Identification of SSR molecular markers for purity of Chinese cabbage seeds[J]. Molecular Plant Breeding, 2020, 18(1): 187-192. (in Chinese with English abstract) | |
[10] | 何晓丽, 杨丹青, 杜志杰, 等. 不结球白菜形态性状及SSR遗传多样性关联分析[J]. 分子植物育种, 2021, 19(6): 1919-1927. |
HE X L, YANG D Q, DU Z J, et al. Association analysis of morphological traits and SSR genetic diversity in non-heading Chinese cabbage[J]. Molecular Plant Breeding, 2021, 19(6): 1919-1927. (in Chinese with English abstract) | |
[11] | 李永平, 张双照, 薛珠政, 等. 利用芥菜转录组信息挖掘SSR标记及用于种质分析[J]. 福建农业学报, 2020, 35(2): 169-177. |
LI Y P, ZHANG S Z, XUE Z Z, et al. Using SSR markers from Brassica juncea transcriptome for germplasm analysis[J]. Fujian Journal of Agricultural Sciences, 2020, 35(2): 169-177. (in Chinese with English abstract) | |
[12] | 颜新林, 管中荣, 温雯, 等. 基于SSR标记的芥菜品种鉴定技术体系建立及应用[J]. 植物遗传资源学报, 2021, 22(3): 758-770. |
YAN X L, GUAN Z R, WEN W, et al. Establishment and application of mustard variety identification system based on SSR markers(Brassica juncea L.)[J]. Journal of Plant Genetic Resources, 2021, 22(3): 758-770. (in Chinese with English abstract) | |
[13] | 胡齐赞, 乔舒婷, 董文其, 等. 浙江地方芥菜种质资源表型鉴定及遗传多样性分析[J/OL]. 分子植物育种:1-20[2021-09-10]. http://kns.cnki.net/kcms/detail/46.1068.S.20210331.1339.011.html. |
HU Q Z, QIAO S T, DONG W Q, et al. Phenotype identification and genetic diversity analysis of mustard local germplasm resources in Zhejiang[J/OL]. Molecular Plant Breeding: 1-20[2021-09-10].http://kns.cnki.net/kcms/detail/46.1068.S.20210331.1339.011.html. (in Chinese with English abstract) | |
[14] | ZHAO M, ZHONG Q, TIAN M, et al. Comparative transcriptome analysis reveals differentially expressed genes associated with the development of Jerusalem artichoke tuber (Helianthus tuberosus L.)[J]. Industrial Crops & Products, 2020, 151, 112455. |
[15] | POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 1997, 15(1): 8-15. |
[16] | 栾生, 孔杰, 王清印, 等. 日本囊对虾(Marsupenaeus japonicus)基因组微卫星特征分析[J]. 自然科学进展, 2007, 17(6): 731-740. |
LUAN S, KONG J, WANG Q Y, et al. Analysis of mirosatellites in the genome of Kuruma prawn Marsupenaeus japonicus[J]. Progress in Natural Science, 2007, 17(6): 731-740. (in Chinese) | |
[17] | ALI M E, WALIULLAH S. A Core35S promoter of cauliflower mosaic virus drives more efficient replication of turnip crinkle virus[J]. Plants, 2021, 10(8): 1700. |
[18] | 原静云, 李小军, 任翠翠, 等. 基于SSR标记的49个大白菜自交系遗传多样性分析[J]. 河南农业科学, 2016, 45(11): 92-95. |
YUAN J Y, LI X J, REN C C, et al. Genetic diversity analysis of forty-nine Chinese cabbage varieties using SSR markers[J]. Journal of Henan Agricultural Sciences, 2016, 45(11): 92-95. (in Chinese with English abstract) | |
[19] | 李菊, 杨亮, 苗明军, 等. 大蒜农艺性状与SSR遗传多样性关联分析[J]. 分子植物育种, 2022, 20(23):7857-7867. |
LI J, YANG L, MIAO M J, et al. Association analysis of agronomic traits and SSR genetic diversity in garlic[J]. Molecular Plant Breeding, 2022, 20(23):7857-7867. (in Chinese with English abstract) | |
[20] | 赵湘, 于拴仓, 薛林宝, 等. 利用SSR和InDel标记构建白菜×芜菁分子遗传图谱[J]. 西北农业学报, 2011, 20(12): 111-115. |
ZHAO X, YU S C, XUE L B, et al. Construction of a genetic linkage map in Chinese cabbage × turnip based on SSR and InDel markers[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(12): 111-115. (in Chinese with English abstract) | |
[21] | 陈春艳, 马杰, 屈雯, 等. 基于转录组序列的胡萝卜EST-SSR标记开发及遗传多样性分析[J/OL]. 分子植物育种: 1-12[2021-10-21]. http://kns.cnki.net/kcms/detail/46.1068.S.20210318.1142.016.html. |
CHENG C Y, MA J, QU W, et al. Development of EST-SSR markers based on transcriptome sequencing and genetic diversity analysis of carrot[J/OL]. Molecular Plant Breeding: 1-12[2021-10-21].http://kns.cnki.net/kcms/detail/46.1068.S.20210318.1142.016.html. (in Chinese with English abstract) | |
[22] | 张春红, 黄正金, 樊苏帆, 等. 不同栽培类型蓝莓遗传多样性的SSR分析[J]. 中国南方果树, 2021, 50(2): 154-160. |
ZHANG C H, HUANG Z J, FAN S F, et al. SSR analysis of the genetic diversity of blueberry in different cultivated types[J]. South China Fruits, 2021, 50(2): 154-160. (in Chinese) | |
[23] | 刘新雨, 田洁. 大蒜转录组简单重复序列标记分析与分子标记开发[J]. 浙江农业学报, 2020, 32(9): 1615-1625. |
LIU X Y, TIAN J. Analysis of simple sequence repeats in transcriptome of garlic (Allium sativum L.) and development of molecular markers[J]. Acta Agriculturae Zhejiangensis, 2020, 32(9): 1615-1625. (in Chinese with English abstract) | |
[24] | 杨亮, 李菊, 李志, 等. 基于SSR分子标记的番茄遗传多样性分析[J]. 分子植物育种, 2022, 20(22):7511-7521. |
YANG L, LI J, LI Z, et al. Genetic diversity analysis of tomato based on SSR molecular markers[J]. Molecular Plant Breeding, 2022, 20(22):7511-7521. (in Chinese with English abstract) | |
[25] | 李延龙, 张华敏, 崔蕴刚, 等. 韭菜全长转录组SSR信息分析及分子标记开发[J]. 园艺学报, 2020, 47(4): 759-768. |
LI Y L, ZHANG H M, CUI Y G, et al. Analysis on SSR information in full-length transcriptome and development of molecular markers in Allium tuberosum[J]. Acta Horticulturae Sinica, 2020, 47(4): 759-768. (in Chinese with English abstract) |
[1] | 杨秋蕾, 魏旭东, 马志杰, 陈生梅, 晁生玉, 乌兰巴特尔. 基于mtDNA Cyt b序列变异探究柴达木黄牛的母系遗传多样性及遗传背景[J]. 浙江农业学报, 2023, 35(2): 285-292. |
[2] | 刘士力, 练青平, 贾永义, 迟美丽, 李飞, 姜建湖, 刘一诺, 郑建波, 程顺, 顾志敏. 基于线粒体Cyt b基因序列的浙江省3个马口鱼群体遗传多样性分析[J]. 浙江农业学报, 2023, 35(2): 293-300. |
[3] | 叶梅荣, 黄守程, 王晓鹏, 刘爱荣, 崔峰, 康健. 基于Iso-Seq技术的野生马齿苋叶片转录组分析[J]. 浙江农业学报, 2023, 35(1): 67-78. |
[4] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
[5] | 郭丹丹, 刘峰, 牛宝龙, 楼宝. 基于线粒体Cytb基因和D-loop区的野生与养殖小黄鱼群体遗传多样性[J]. 浙江农业学报, 2022, 34(9): 1856-1865. |
[6] | 古咸彬, 陆玲鸿, 宋根华, 肖金平, 张慧琴. 褪黑素预处理对桃耐涝性的调控效应[J]. 浙江农业学报, 2022, 34(9): 1911-1924. |
[7] | 姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590. |
[8] | 王斯亮, 邵越, 闫成进. 草地贪夜蛾在玉米-小麦寄主转换中的转录组分析[J]. 浙江农业学报, 2022, 34(6): 1236-1247. |
[9] | 刘苡含, 牟青山, 陈珊宇, 阮关海, 胡晋, 关亚静. 基于SSR-HRM技术的向日葵DNA指纹图谱构建[J]. 浙江农业学报, 2022, 34(4): 678-686. |
[10] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[11] | 王乾昆, 张小辉, 庞有志, 祁艳霞, 雷莹, 白俊艳, 户运奇, 赵毅威, 苑志文, 王涛. 基于RNA-seq技术挖掘鹌鹑羽色自别雌雄相关基因[J]. 浙江农业学报, 2022, 34(3): 498-506. |
[12] | 兰国湘, 金思琪, 李星润, 刘喜雨, 李国美, 董新星. 高原雨点鸽与詹森鸽胸肌转录组差异表达基因筛选与功能分析[J]. 浙江农业学报, 2022, 34(3): 507-516. |
[13] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[14] | 裴芸, 徐秀红, 陆锦彪, 陈阿敏, 张万萍. 151份贵州地方樱桃番茄资源的遗传多样性分析[J]. 浙江农业学报, 2022, 34(2): 310-316. |
[15] | 谌婕, 左之才, 才冬杰, 付星鑫, 刘玲利, 张义琳, 苟丽萍, 王娅, 任志华, 邓俊良. 牛病毒性腹泻病毒全球基因型与亚型流行情况[J]. 浙江农业学报, 2022, 34(12): 2622-2628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||