浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 308-318.DOI: 3969/j.issn.1004-1524.2023.02.08
李苹芳1,2(), 姚协丰2,*(
), 徐锦华2, 朱凌丽2, 羊杏平2,*(
)
收稿日期:
2022-05-20
出版日期:
2023-02-25
发布日期:
2023-03-14
通讯作者:
姚协丰,羊杏平
作者简介:
羊杏平,E-mail: 1394654153@qq.com基金资助:
LI Pingfang1,2(), YAO Xiefeng2,*(
), XU Jinhua2, ZHU Lingli2, YANG Xingping2,*(
)
Received:
2022-05-20
Online:
2023-02-25
Published:
2023-03-14
Contact:
YAO Xiefeng,YANG Xingping
摘要:
甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SWEET糖转运蛋白在果实发育中可能起调控作用。本研究从甜瓜基因组中鉴定获得18个SWEETs糖转运蛋白基因,进一步通过RT-PCR并结合实时荧光定量PCR(quantitative real-time PCR,qPCR)方法,筛选到3个SWEETs基因在整个果实发育期内或某个发育时期表达量较高。亚细胞定位显示,两个SWEETs基因(CmSWEET3,CmSWEET7a)定位在细胞膜上。进一步通过酵母表达发现,甜瓜CmSWEET7a在体外具有转运葡萄糖和果糖的功能。本研究为揭示SWEET糖转运蛋白在甜瓜果实发育过程的调控作用奠定了基础。
中图分类号:
李苹芳, 姚协丰, 徐锦华, 朱凌丽, 羊杏平. 甜瓜果实发育相关SWEET糖转运蛋白基因的鉴定与功能初步分析[J]. 浙江农业学报, 2023, 35(2): 308-318.
LI Pingfang, YAO Xiefeng, XU Jinhua, ZHU Lingli, YANG Xingping. Identification and preliminary functional characterization of SWEET sugar transporters involved in fruit development of melon (Cucumis melo L.)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 308-318.
引物名称 | 上游引物序列 | 下游引物序列 |
---|---|---|
Primer name | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
CmSWEET1 | TCTTGGAAATGCAACTGCTC | GGCAATTCAACATCGTCATC |
CmSWEET2 | AAAGTGTGGAGTTTATGCCATTT | CCCAACATAGTTCCTATTCCATT |
CmSWEET3 | CTCCGCAAGTTCCTTATGGT | CAATGGGCTTCCCACTAGAT |
CmSWEET5d | GGCCTCTTTCTGTCACCAGT | GCATTCCATAGAACACCCAA |
CmSWEET7a | GAGGGAAGGTAAAGGGAAGG | TGTTGCGAGTCCTATCAAGC |
CmSWEET7c | ATGGAAGAAGGGATCAGTGG | CCGTACAATGTCCACACCAT |
CmSWEET10 | TTCTTCAGCCAAACATGGAC | CGGGTGCAATAGATCAGATG |
CmSWEET12a | ACGCGGATGAGTTCTTTCTT | GAGCCTTCTTGGGAGCATAG |
CmSWEET12c | TCGATACTCATCACCCTGGA | AAGTGCCACCACATATGGAA |
CmSWEET12d | TCGAAAGAGAGTTTCTTCCTTACA | GCAGCAGGGTTATGGGTATT |
CmSWEET15 | CTCCTTTGGTTGTGTCATCG | AATGAAGTGAATGGCCACAA |
CmSWEET17c | AACGGAGATGATGGAGGAAG | TTGGCTTTGGAAGGCTTAAC |
Actin7 | TGCCCAGAAGTTCTATTCCAGC | CATAGTTGAACCACCACTGAGGAC |
TOPO-SWEET7a | CAC CAT GGT TTC TTT GGT GC | TCAAGCTCCATGGACCTCAG |
TOPO-SWEET3 | CACCATGAGATCTCTCTACACCAT | CTAGGAGTTATTTTGATGTGGA |
TOPO-SWEET17c | CACCATGGCTGCTAGTTTGAGCT | TCAAAATTTTCCATCTTCCACC |
NEV-SWEET7a: | GCGGCCGC AAGCTTGTAAAAGAA AT GGT TTC TTT GGT GC | GCGGCCGCTCAAGCTCCATGGACCTC |
NEV-SWEET3: | GCGGCCGC AAGCTTGTAAAAGAA ATGAGATCTCTCTACACC | GCGGCCGCCTAGGAGTTATTTTGATG |
表1 RT-PCR、qPCR和克隆所用引物
Table 1 Primers used in RT-PCR, qPCR and cloning
引物名称 | 上游引物序列 | 下游引物序列 |
---|---|---|
Primer name | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
CmSWEET1 | TCTTGGAAATGCAACTGCTC | GGCAATTCAACATCGTCATC |
CmSWEET2 | AAAGTGTGGAGTTTATGCCATTT | CCCAACATAGTTCCTATTCCATT |
CmSWEET3 | CTCCGCAAGTTCCTTATGGT | CAATGGGCTTCCCACTAGAT |
CmSWEET5d | GGCCTCTTTCTGTCACCAGT | GCATTCCATAGAACACCCAA |
CmSWEET7a | GAGGGAAGGTAAAGGGAAGG | TGTTGCGAGTCCTATCAAGC |
CmSWEET7c | ATGGAAGAAGGGATCAGTGG | CCGTACAATGTCCACACCAT |
CmSWEET10 | TTCTTCAGCCAAACATGGAC | CGGGTGCAATAGATCAGATG |
CmSWEET12a | ACGCGGATGAGTTCTTTCTT | GAGCCTTCTTGGGAGCATAG |
CmSWEET12c | TCGATACTCATCACCCTGGA | AAGTGCCACCACATATGGAA |
CmSWEET12d | TCGAAAGAGAGTTTCTTCCTTACA | GCAGCAGGGTTATGGGTATT |
CmSWEET15 | CTCCTTTGGTTGTGTCATCG | AATGAAGTGAATGGCCACAA |
CmSWEET17c | AACGGAGATGATGGAGGAAG | TTGGCTTTGGAAGGCTTAAC |
Actin7 | TGCCCAGAAGTTCTATTCCAGC | CATAGTTGAACCACCACTGAGGAC |
TOPO-SWEET7a | CAC CAT GGT TTC TTT GGT GC | TCAAGCTCCATGGACCTCAG |
TOPO-SWEET3 | CACCATGAGATCTCTCTACACCAT | CTAGGAGTTATTTTGATGTGGA |
TOPO-SWEET17c | CACCATGGCTGCTAGTTTGAGCT | TCAAAATTTTCCATCTTCCACC |
NEV-SWEET7a: | GCGGCCGC AAGCTTGTAAAAGAA AT GGT TTC TTT GGT GC | GCGGCCGCTCAAGCTCCATGGACCTC |
NEV-SWEET3: | GCGGCCGC AAGCTTGTAAAAGAA ATGAGATCTCTCTACACC | GCGGCCGCCTAGGAGTTATTTTGATG |
基因名 Gene name | 甜瓜基因组ID Melon genome IDs | 拟南芥同源基因 Arabidopsis hits | E值 E-value | 开放阅读框 ORF length/bp | 多肽Deduced polypeptide | |||
---|---|---|---|---|---|---|---|---|
长度 | 分子量 | 等电点 | 跨膜区域 | |||||
Length/aa | MW/ku | pI | TM | |||||
CmSWEET1 | MELO3C008417.2.1 | AtSWEET1 | 6.00×10-94 | 759 | 252 | 27.7 | 9.25 | 7 |
CmSWEET3 | MELO3C005869.2.1 | AtSWEET3 | 3.00×10-43 | 627 | 208 | 23.5 | 9.06 | 5 |
CmSWEET5a | MELO3C002256.2.1 | AtSWEET5 | 2.00×10-72 | 552 | 183 | 21 | 9.42 | 5 |
CmSWEET5b | MELO3C009951.2.1 | AtSWEET5 | 9.00×10-67 | 747 | 248 | 28.2 | 8.91 | 7 |
CmSWEET5c | MELO3C009950.2.1 | AtSWEET5 | 5.00×10-63 | 705 | 234 | 26 | 8.72 | 7 |
CmSWEET7a | MELO3C016259.2.1 | AtSWEET7 | 3.00×10-74 | 789 | 262 | 29.1 | 9.1 | 7 |
CmSWEET7b | MELO3C005758.2.1 | AtSWEET7 | 3.00×10-39 | 504 | 265 | 29.1 | 9.66 | 7 |
CmSWEET9a | MELO3C008674.2.1 | AtSWEET9 | 4.00×10-76 | 798 | 262 | 30.1 | 9.07 | 7 |
CmSWEET9b | MELO3C031232.2.1 | AtSWEET9 | 4.00×10-59 | 639 | 212 | 24.3 | 9.8 | 6 |
CmSWEET10 | MELO3C026184.2.1 | AtSWEET10 | 5.00×10-82 | 891 | 296 | 33 | 9.23 | 7 |
CmSWEET12a | MELO3C026183.2.1 | AtSWEET12 | 1.00×10-79 | 894 | 297 | 33.3 | 8.85 | 7 |
CmSWEET12b | MELO3C002381.2.1 | AtSWEET12 | 2.00×10-72 | 876 | 291 | 32.9 | 6.44 | 7 |
CmSWEET12c | MELO3C002380.2.1 | AtSWEET12 | 3.00×10-38 | 729 | 242 | 27.4 | 8.97 | 5 |
CmSWEET15 | MELO3C022341.2.1 | AtSWEET15 | 2.00×10-74 | 822 | 273 | 30.9 | 9.19 | 6 |
CmSWEET17a | MELO3C000200.2.1 | AtSWEET17 | 2.00×10-42 | 582 | 193 | 21.6 | 7.66 | 4 |
CmSWEET17b | MELO3C004222.2.1 | AtSWEET17 | 1.00×10-31 | 456 | 151 | 16.6 | 8.67 | 5 |
CmSWEET17c | MELO3C027076.2.1 | AtSWEET17 | 2.00×10-27 | 615 | 204 | 22.5 | 7.8 | 4 |
CmSWEET17d | MELO3C031734.2.1 | AtSWEET17 | 4.00×10-16 | 501 | 166 | 19.5 | 9.86 | 2 |
表2 甜瓜SWEETs家族基因的生物信息学分析
Table 2 Bioinformatics analysis of SWEETs family genes in melon
基因名 Gene name | 甜瓜基因组ID Melon genome IDs | 拟南芥同源基因 Arabidopsis hits | E值 E-value | 开放阅读框 ORF length/bp | 多肽Deduced polypeptide | |||
---|---|---|---|---|---|---|---|---|
长度 | 分子量 | 等电点 | 跨膜区域 | |||||
Length/aa | MW/ku | pI | TM | |||||
CmSWEET1 | MELO3C008417.2.1 | AtSWEET1 | 6.00×10-94 | 759 | 252 | 27.7 | 9.25 | 7 |
CmSWEET3 | MELO3C005869.2.1 | AtSWEET3 | 3.00×10-43 | 627 | 208 | 23.5 | 9.06 | 5 |
CmSWEET5a | MELO3C002256.2.1 | AtSWEET5 | 2.00×10-72 | 552 | 183 | 21 | 9.42 | 5 |
CmSWEET5b | MELO3C009951.2.1 | AtSWEET5 | 9.00×10-67 | 747 | 248 | 28.2 | 8.91 | 7 |
CmSWEET5c | MELO3C009950.2.1 | AtSWEET5 | 5.00×10-63 | 705 | 234 | 26 | 8.72 | 7 |
CmSWEET7a | MELO3C016259.2.1 | AtSWEET7 | 3.00×10-74 | 789 | 262 | 29.1 | 9.1 | 7 |
CmSWEET7b | MELO3C005758.2.1 | AtSWEET7 | 3.00×10-39 | 504 | 265 | 29.1 | 9.66 | 7 |
CmSWEET9a | MELO3C008674.2.1 | AtSWEET9 | 4.00×10-76 | 798 | 262 | 30.1 | 9.07 | 7 |
CmSWEET9b | MELO3C031232.2.1 | AtSWEET9 | 4.00×10-59 | 639 | 212 | 24.3 | 9.8 | 6 |
CmSWEET10 | MELO3C026184.2.1 | AtSWEET10 | 5.00×10-82 | 891 | 296 | 33 | 9.23 | 7 |
CmSWEET12a | MELO3C026183.2.1 | AtSWEET12 | 1.00×10-79 | 894 | 297 | 33.3 | 8.85 | 7 |
CmSWEET12b | MELO3C002381.2.1 | AtSWEET12 | 2.00×10-72 | 876 | 291 | 32.9 | 6.44 | 7 |
CmSWEET12c | MELO3C002380.2.1 | AtSWEET12 | 3.00×10-38 | 729 | 242 | 27.4 | 8.97 | 5 |
CmSWEET15 | MELO3C022341.2.1 | AtSWEET15 | 2.00×10-74 | 822 | 273 | 30.9 | 9.19 | 6 |
CmSWEET17a | MELO3C000200.2.1 | AtSWEET17 | 2.00×10-42 | 582 | 193 | 21.6 | 7.66 | 4 |
CmSWEET17b | MELO3C004222.2.1 | AtSWEET17 | 1.00×10-31 | 456 | 151 | 16.6 | 8.67 | 5 |
CmSWEET17c | MELO3C027076.2.1 | AtSWEET17 | 2.00×10-27 | 615 | 204 | 22.5 | 7.8 | 4 |
CmSWEET17d | MELO3C031734.2.1 | AtSWEET17 | 4.00×10-16 | 501 | 166 | 19.5 | 9.86 | 2 |
图3 甜瓜SWEETs家族基因在不同营养器官(A)与不同果实发育阶段(B)的表达
Fig.3 Expression pattern of SWEETs family genes in different vegetative organs (A) and fruits in different developmental stages(B) of melon
图4 三个CmSWEETs基因在不同果实发育期的qPCR表达分析 每个果实作为一个重复,数据来自3个独立的重复,图中的每个值表示均值±SD。qPCR产生的表达量与对照的比值为1.0。
Fig.4 qPCR analysis of 3 CmSWEETs genes during different fruit developmental stages in melon plants Each fruit was set as one replicate, the data were obtained from three separate replicates, each value in the graph showed means ± SD. Expression levels produced by qPCR were expressed as a ratio to the control. which was set at 1.0.
[1] | CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323): 527-532. |
[2] | BÜTTNER M, et al. Monosaccharide transporters in plants: structure, function and physiology[J]. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2000, 1465(1/2): 263-274. |
[3] | KÜHN C, et al. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 287-297. |
[4] | ZHANG X Y, WANG X L, WANG X F, et al. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry[J]. Plant Physiology, 2006, 142(1): 220-232. |
[5] | NIE P X, WANG X Y, HU L P, et al. The predominance of the apoplasmic phloem-unloading pathway is interrupted by a symplasmic pathway during Chinese jujube fruit development[J]. Plant and Cell Physiology, 2010, 51(6): 1007-1018. |
[6] | ZHANG L Y, PENG Y B, PELLESCHI-TRAVIER S, et al. Evidence for apoplasmic phloem unloading in developing apple fruit[J]. Plant Physiology, 2004, 135(1): 574-586. |
[7] | HU L P, SUN H H, LI R F, et al. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage[J]. Plant, Cell & Environment, 2011, 34(11): 1835-1848. |
[8] | REN Y, GUO S G, ZHANG J, et al. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon[J]. Plant Physiology, 2018, 176(1): 836-850. |
[9] | CHEN L Q, QU X Q, HOU B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science, 2012, 335(6065): 207-211. |
[10] | KO H Y, HO L H, NEUHAUS H E, et al. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato[J]. Plant Physiology, 2021, 187(4): 2230-2245. |
[11] | XUAN Y H, HU Y B, CHEN L Q, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): E3685-E3694. |
[12] | BREIA R, CONDE A, BADIM H, et al. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles[J]. Plant Physiology, 2021, 186(2): 836-852. |
[13] | 胡丽萍, 张峰, 徐惠, 等. 植物SWEET基因家族结构、功能及调控研究进展[J]. 生物技术通报, 2017, 33(4): 27-37. |
HU L P, ZHANG F, XU H, et al. Research advances in the structure, function and regulation of SWEET gene family in plants[J]. Biotechnology Bulletin, 2017, 33(4): 27-37. (in Chinese with English abstract) | |
[14] | MANCK-GÖTZENBERGER J, REQUENA N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family[J]. Frontiers in Plant Science, 2016, 7: 487. |
[15] | 陈慧敏, 李威, 马雄风, 等. 植物SWEET基因家族的相关研究进展[J]. 中国农学通报, 2017, 33(19): 34-39. |
CHEN H M, LI W, MA X F, et al. SWEET gene family in plants: research advances[J]. Chinese Agricultural Science Bulletin, 2017, 33(19): 34-39. (in Chinese with English abstract) | |
[16] | MA L, ZHANG D C, MIAO Q S, et al. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling[J]. Plant and Cell Physiology, 2017, 58(5): 863-873. |
[17] | MATHAN J, SINGH A, RANJAN A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice[J]. Physiologia Plantarum, 2021, 171(4): 620-637. |
[18] | OLIVA R, JI C H, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37(11): 1344-1350. |
[19] | KANNO Y, OIKAWA T, CHIBA Y, et al. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J]. Nature Communications, 2016, 7: 13245. |
[20] | CHEN L Q, LIN I W, QU X Q, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J]. The Plant Cell, 2015, 27(3): 607-619. |
[21] | LIVAK K J, et al. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. |
[22] | ANJALI A, FATIMA U, SENTHIL-KUMAR M. The ins and outs of SWEETs in plants: current understanding of the basics and their prospects in crop improvement[J]. Journal of Biosciences, 2021, 46: 100. |
[23] | WEI X Y, LIU F L, CHEN C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars[J]. Frontiers in Plant Science, 2014, 5: 569. |
[24] | ZHEN Q L, FANG T, PENG Q, et al. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation[J]. Horticulture Research, 2018, 5(10.1038): s41438-18. |
[25] | FENG C Y, HAN J X, HAN X X, et al. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J]. Gene, 2015, 573(2): 261-272. |
[26] | ZHANG Z, ZOU L M, REN C, et al. VvSWEET10 mediates sugar accumulation in grapes[J]. Genes, 2019, 10(4): 255. |
[27] | HU L P, ZHANG F, SONG S H, et al. Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber[J]. Journal of Integrative Agriculture, 2017, 16(7): 1486-1501. |
[28] | HUANG S W, LI R Q, ZHANG Z H, et al. The genome of the cucumber, Cucumis sativus L[J]. Nature Genetics, 2009, 41(12): 1275-1281. |
[29] | 申长卫, 袁敬平. 南瓜SWEET蛋白家族的全基因组鉴定与进化分析[J]. 广西植物, 2021, 41(1): 40-54. |
SHEN C W, YUAN J P. Genome-wide identification and phylogenetic analysis of SWEET protein family in pumpkin[J]. Guihaia, 2021, 41(1): 40-54. (in Chinese with English abstract) | |
[30] | KÜHN C, GROF C P L. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 287-297. |
[31] | SEO P J, PARK J M, KANG S K, et al. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity[J]. Planta, 2011, 233(1): 189-200. |
[32] | CHARDON F, BEDU M, CALENGE F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis[J]. Current Biology, 2013, 23(8): 697-702. |
[33] | KLEMENS P A W, PATZKE K, DEITMER J, et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J]. Plant Physiology, 2013, 163(3): 1338-1352. |
[34] | 杨官显, 许海峰, 张静, 等. 苹果糖转运蛋白基因MdSWEET17的功能鉴定[J]. 植物生理学报, 2018, 54(11): 1737-1745. |
YANG G X, XU H F, ZHANG J, et al. Functional identification of a sugar transporter gene MdSWEET17 in apple[J]. Plant Physiology Journal, 2018, 54(11): 1737-1745. (in Chinese with English abstract) | |
[35] | NI J P, LI J M, ZHU R X, et al. Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves[J]. Gene, 2020, 743: 144582. |
[36] | LI Y X, LIU H, YAO X H, et al. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development[J]. Plant Physiology, 2021, 186(1): 640-654. |
[37] | SONNEWALD U. Sweets-the missing sugar efflux carriers[J]. Frontiers in Plant Science, 2011, 2: 7. |
[38] | CHEN L Q. SWEET sugar transporters for phloem transport and pathogen nutrition[J]. New Phytologist, 2014, 201(4): 1150-1155. |
[1] | 方明雅, 余宏伟, 武雅娴, 韩文炎, 李鑫, 刘海河. 外源表没食子儿茶素没食子酸酯对甜瓜幼苗白粉病抗性的影响[J]. 浙江农业学报, 2023, 35(1): 138-145. |
[2] | 梁成刚, 汪燕, 关志秀, 韦春玉, 邓娇, 黄娟, 孟子烨, 石桃雄. 苦荞蔗糖转运体家族FtSUCs的鉴定与生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1591-1598. |
[3] | 赵宇洪, 何文, 李根, 王强, 谢锐, 王燕, 陈清, 王小蓉. 四川地区琯溪蜜柚及其芽变品种的果实品质[J]. 浙江农业学报, 2022, 34(5): 995-1004. |
[4] | 蔡继业, 房祥军, 韩延超, 丁玉庭, 陈杭君, 吴伟杰, 郜海燕. 气调贮藏对东魁杨梅品质的影响[J]. 浙江农业学报, 2022, 34(2): 352-359. |
[5] | 陆玲鸿, 马媛媛, 古咸彬, 肖金平, 宋根华, 张慧琴. 猕猴桃果实软化过程中细胞壁多糖物质含量与果胶降解相关酶活性变化[J]. 浙江农业学报, 2022, 34(12): 2648-2658. |
[6] | 郝金莲, 杨钰琪, 王茹, 杨梦思, 廖晨宇, 陈虹, 虎海防. 不同采收期对温185和新新2核桃品质的影响[J]. 浙江农业学报, 2022, 34(10): 2188-2198. |
[7] | 熊雪, 赵丽娜, 杨森林, SAMIAH Arif, 张屹东. 甜瓜CmCIPK家族全基因组鉴定和逆境条件下的表达分析[J]. 浙江农业学报, 2021, 33(9): 1625-1639. |
[8] | 吴嘉维, 姚张良, 胡琪琪, 张杰, 陈轶, 蒋建荣, 周国鑫, 王霞. 浙北桐乡梨锈病防治适期和防治药剂研究[J]. 浙江农业学报, 2021, 33(9): 1668-1675. |
[9] | 张志刚, 刘玉芳, 李长城, 李宏, 程平, 杨璐. 不同成熟度对杏果实品质的影响[J]. 浙江农业学报, 2021, 33(8): 1402-1408. |
[10] | 王英珍, 潘芝梅. 二十二份毛花猕猴桃种质资源果实品质的主成分分析与综合评价[J]. 浙江农业学报, 2021, 33(5): 825-830. |
[11] | 李清斌, 秦奔奔, 李盈盈, 范凯锋, 杨栋, 陈磊, 刘鹍. 连阴雨寡日照对大棚草莓小气候、产量和品质的影响[J]. 浙江农业学报, 2021, 33(5): 831-839. |
[12] | 温明霞, 张顺昌, 吴韶辉, 胡丽鹏, 王鹏, 黄贝. 蛋白水解氨基酸肥料对红美人杂柑果实品质的影响[J]. 浙江农业学报, 2021, 33(3): 422-428. |
[13] | 岳文俊, 何文学, 丁春梅, 柏宇, 周英杰, 奚辉. 不同滴灌水肥处理对温室甜瓜养分吸收、产量和品质的影响[J]. 浙江农业学报, 2021, 33(12): 2370-2380. |
[14] | 梁乐, 刘娟, 李晓梅, 廖继超, 李焕秀, 唐懿. 三种基因型樱桃番茄混种对果实品质和硒含量的影响[J]. 浙江农业学报, 2021, 33(10): 1870-1878. |
[15] | 邓倩, 王羊, 邓群仙, 辛亚宁, 李雷, 龙星雨, 祝进, 张慧芬, 夏惠, 梁东. 蜀脆枣果实发育规律及品质积累特性分析[J]. 浙江农业学报, 2020, 32(4): 644-652. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 413
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 327
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||