浙江农业学报 ›› 2025, Vol. 37 ›› Issue (9): 1825-1839.DOI: 10.3969/j.issn.1004-1524.20240599
张均1(
), 张博1, 胡碧博1, 刘京亮1, 张晓宇1, 李春阳1, 熊盛婷1, 郭彬彬1, 王秀存2, 马超1,*(
)
收稿日期:2024-07-09
出版日期:2025-09-25
发布日期:2025-10-15
作者简介:马超,E-mail:machao840508@163.com通讯作者:
马超
基金资助:
ZHANG Jun1(
), ZHANG Bo1, HU Bibo1, LIU Jingliang1, ZHANG Xiaoyu1, LI Chunyang1, XIONG Shengting1, GUO Binbin1, WANG Xiucun2, MA Chao1,*(
)
Received:2024-07-09
Online:2025-09-25
Published:2025-10-15
Contact:
MA Chao
摘要:
糖外排转运蛋白(sugars will eventually be exported transporter, SWEET)和蔗糖转运蛋白(sucrose transporter, SUT)是植物的2种糖转运蛋白。为分析TaSWEET和TaSUT基因在小麦基因组中的进化特征、功能及其对外源糖的响应,本研究对小麦TaSWEET和TaSUT家族成员进行了全基因组鉴定,并对其系统发育关系、基因结构、启动子顺式作用元件和表达特性进行了分析。结果表明,小麦中包含101个TaSWEET基因和16个TaSUT基因,二者均分为4个亚家族。基因结构显示,TaSWEET和TaSUT家族成员的外显子和内含子数量存在差异,数量为4~18个。保守基序分析显示,TaSWEET家族和TaSUT家族成员中存在20个基序,各亚家族内的基序结构相似。染色体分布模式和同源性分析表明,TaSWEET家族和TaSUT家族成员在3个亚基因组上数量分布均匀,全基因组片段重复和串联重复促进了小麦TaSWEET扩增。亚细胞定位预测显示,多数TaSWEET家族成员和全部TaSUT家族成员定位于质膜上,TaSWEET家族成员含4~7个跨膜螺旋结构,TaSUT家族成员含8~12个跨膜螺旋结构。启动子元件分析表明,TaSWEET和TaSUT家族成员的启动子区富含大量生长发育类、激素响应类和非生物胁迫类顺式作用元件。小麦基因表达模式分析显示,大部分TaSWEET和TaSUT家族成员在小麦叶片中表达量较低,在叶、芽、根、穗和籽粒中分别有28、25、33、39、21个成员高表达。通过qRT-PCR检测发现,经外源糖处理后,TaSWEET和TaSUT家族基因在根中表达量全部下调,在叶中有3个基因在果糖处理下表达量上调,1个基因在3种外源糖处理表达量均上调。上述结果为深入研究TaSWEET和TaSUT基因在调控小麦生长发育与在外源糖处理下的响应提供了理论依据。
中图分类号:
张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839.
ZHANG Jun, ZHANG Bo, HU Bibo, LIU Jingliang, ZHANG Xiaoyu, LI Chunyang, XIONG Shengting, GUO Binbin, WANG Xiucun, MA Chao. Identification and expression analysis of members of the SWEET and SUT families in wheat (Triticum aestivum L.)[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1825-1839.
| 登录号 Accession number | 基因名称 Gene name | 正向引物序列 Forward primer sequence(5'→3') | 反向引物序列 Reverse primer sequence(5'→3') |
|---|---|---|---|
| TraesCS4A02G016400.1 | TaSUT6 | GTGGTGTGGGTGTCAAGCA | GGGCGAGGGAGACGATCT |
| TraesCSU02G136300.1 | TaSUT16 | GTCGCCGCTTCCCTCA | GACTTGCAGCCATCGCATAT |
| TraesCS3D02G403300.1 | TaSWEET30 | AAGACCAAGAGCGTGGAGTACA | GGTAGATGGCGTAGAGGATGA |
| TraesCS4A02G140500.1 | TaSWEET32 | TCTCTGCTCCGCTCTCACC | GTAGACGCTCCAGATGCCG |
| TraesCS6A02G218800.1 | TaSWEET50 | ACCGTCATCGGCGTCATAG | GTACTGCTCCACCGTCTTCTTT |
| TraesCS6B02G421800.1 | TaSWEET62 | CAAGACCAAGAGTGTGGAGTACA | CTCCTTGACCTCGCTTGC |
| TraesCS7A02G147300.1 | TaSWEET72 | AGCTGCCTGCTGTGGATG | GTGACGAGGGCGATGAGG |
| TraesCS1B02G283900.1 | Actin | GTTCCAATCTATGAGGGATACACGC | GAACCTCCACTGAGAACAACATTACC |
表1 部分TaSWEET和TaSUT家族基因qRT-PCR所用的引物
Table 1 Primers used for qRT-PCR analysis of partial TaSWEET family and TaSUT family genes
| 登录号 Accession number | 基因名称 Gene name | 正向引物序列 Forward primer sequence(5'→3') | 反向引物序列 Reverse primer sequence(5'→3') |
|---|---|---|---|
| TraesCS4A02G016400.1 | TaSUT6 | GTGGTGTGGGTGTCAAGCA | GGGCGAGGGAGACGATCT |
| TraesCSU02G136300.1 | TaSUT16 | GTCGCCGCTTCCCTCA | GACTTGCAGCCATCGCATAT |
| TraesCS3D02G403300.1 | TaSWEET30 | AAGACCAAGAGCGTGGAGTACA | GGTAGATGGCGTAGAGGATGA |
| TraesCS4A02G140500.1 | TaSWEET32 | TCTCTGCTCCGCTCTCACC | GTAGACGCTCCAGATGCCG |
| TraesCS6A02G218800.1 | TaSWEET50 | ACCGTCATCGGCGTCATAG | GTACTGCTCCACCGTCTTCTTT |
| TraesCS6B02G421800.1 | TaSWEET62 | CAAGACCAAGAGTGTGGAGTACA | CTCCTTGACCTCGCTTGC |
| TraesCS7A02G147300.1 | TaSWEET72 | AGCTGCCTGCTGTGGATG | GTGACGAGGGCGATGAGG |
| TraesCS1B02G283900.1 | Actin | GTTCCAATCTATGAGGGATACACGC | GAACCTCCACTGAGAACAACATTACC |
图2 小麦TaSWEET和TaSUT家族的基因结构与蛋白质保守基序 A,TaSWEET和TaSUT家族基因的系统进化树;B,TaSWEET和TaSUT家族蛋白的保守基序;C,TaSWEET和TaSUT家族基因的结构。CDS,编码序列;UTR,非翻译区。
Fig.2 Gene structure and conserved protein motifs in the TaSWEET family and TaSUT family of wheat A, Phylogenetic tree of the TaSWEET and TaSUT family genes; B, Conserved motifs of TaSWEET and TaSUT family proteins; C, Gene structure of TaSWEET and TaSUT family. CDS, Coding sequence; UTR, Untranslated region.
图4 小麦TaSWEET和TaSUT家庭基因的染色体分布 红色曲线代表基因之间的串联复制。染色体条带颜色深浅表示基因密度的高低。Un指染色体位置未知。
Fig.4 Chromosomal distribution of TaSWEET family and TaSUT family genes in wheat The red curve represents tandem duplication between genes. The color of the chromosome bands indicates the density of the genes. Un indicates that the chromosomal position is unknown.
图5 小麦TaSWEET和TaSUT家族基因的区域共线性关系 红线连接TaSWEET和TaSUT基因中具有同源性的染色体区域。环1和环2的条纹和线表示碱基缺失的位置。环3为基因密度热图。
Fig.5 Regional colinearity relationships of TaSWEET family and TaSUT family genes in wheat The red line connects the chromosomal regions of the TaSWEET and TaSUT genes with homology. The bar and lines of rings 1 and 2 indicate the location of base deletions. Ring 3 is the gene density heatmap.
| 序列1 Sequence 1 | 序列2 Sequence 2 | 非同义替换率 Ka | 同义替换率 Ks | 非同义替换/同义替换 Ka/Ks | 平均S位点 Average S-sites | 平均N位点 Average N-sites |
|---|---|---|---|---|---|---|
| TaSWEET46 | TaSWEET85 | 0.333 0 | 0.287 9 | 1.156 6 | 217.500 0 | 628.500 0 |
| TaSWEET46 | TaSWEET91 | 0.333 1 | 0.287 6 | 1.158 1 | 217.666 7 | 628.333 3 |
| TaSWEET39 | TaSWEET85 | 0.335 2 | 0.288 8 | 1.160 8 | 217.666 7 | 628.333 3 |
| TaSWEET39 | TaSWEET91 | 0.335 7 | 0.287 4 | 1.168 2 | 217.833 3 | 628.166 7 |
| TaSWEET42 | TaSWEET91 | 0.347 2 | 0.283 5 | 1.224 9 | 218.166 7 | 627.833 3 |
| TaSWEET42 | TaSWEET85 | 0.345 8 | 0.280 4 | 1.233 4 | 218.000 0 | 628.000 0 |
表2 小麦TaSWEET和TaSUT基因的Ka/Ks分析结果(Ka/Ks值>1)
Table 2 Ka/Ks analysis result of TaSWEET family and TaSUT family genes in wheat (Ka/Ks value>1)
| 序列1 Sequence 1 | 序列2 Sequence 2 | 非同义替换率 Ka | 同义替换率 Ks | 非同义替换/同义替换 Ka/Ks | 平均S位点 Average S-sites | 平均N位点 Average N-sites |
|---|---|---|---|---|---|---|
| TaSWEET46 | TaSWEET85 | 0.333 0 | 0.287 9 | 1.156 6 | 217.500 0 | 628.500 0 |
| TaSWEET46 | TaSWEET91 | 0.333 1 | 0.287 6 | 1.158 1 | 217.666 7 | 628.333 3 |
| TaSWEET39 | TaSWEET85 | 0.335 2 | 0.288 8 | 1.160 8 | 217.666 7 | 628.333 3 |
| TaSWEET39 | TaSWEET91 | 0.335 7 | 0.287 4 | 1.168 2 | 217.833 3 | 628.166 7 |
| TaSWEET42 | TaSWEET91 | 0.347 2 | 0.283 5 | 1.224 9 | 218.166 7 | 627.833 3 |
| TaSWEET42 | TaSWEET85 | 0.345 8 | 0.280 4 | 1.233 4 | 218.000 0 | 628.000 0 |
图6 小麦TaSWEET和TaSUT家族基因启动子的顺式作用元件 不同的顺式作用元件用不同颜色的圆点表示。
Fig.6 Cis-acting elements in the promoters of wheat TaSWEET family and TaSUT family genes Different cis-acting elements are represented by the dots of different colors.
图7 小麦TaSWEET和TaSUT家族基因在不同器官的表达水平 图例颜色从下到上表示基因表达量从低到高。
Fig.7 Relative expression levels of wheat TaSWEET family and TaSUT family genes in different organs The legend color from bottom to top indicates gene expression from low to high.
图8 外源糖处理下小麦根中TaSWEET和TaSUT家族基因的相对表达量 标“*”的表示与对照(CK)相比差异显著(p<0.05)。下同。
Fig.8 Relative expression levels of TaSWEET family and TaSUT family genes in response to exogenous sugar treatment in wheat roots “*” indicates significant (p<0.05) difference compared with the control (CK). The same as below.
图9 外源糖处理下小麦叶片中TaSWEET和TaSUT家族基因的相对表达量
Fig.9 Relative expression levels of TaSWEET family and TaSUT family genes in response to exogenous sugar treatment in wheat leaves
| [1] | PATIL G, VALLIYODAN B, DESHMUKH R, et al. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis[J]. BMC Genomics, 2015, 16(1): 520. |
| [2] | LALONDE S, FROMMER W B. SUT sucrose and MST monosaccharide transporter inventory of the Selaginella genome[J]. Frontiers in Plant Science, 2012, 3: 24. |
| [3] | KÜHN C, GROF C P. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 287-297. |
| [4] | PENG D, GU X, XUE L-J, et al. Bayesian phylogeny of sucrose transporters: ancient origins, differential expansion and convergent evolution in monocots and dicots[J]. Frontiers in Plant Science, 2014, 5: 615. |
| [5] | JENNIFER R GOTTWALD P J K. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25): 13979-13984. |
| [6] | WEISE A, BARKER L, KÜHN C, et al. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants[J]. The Plant Cell, 2000, 12(8): 1345-1355. |
| [7] | EOM J S, CHO J I, REINDERS A, et al. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth[J]. Plant Physiology, 2011, 157(1): 109-119. |
| [8] | CHEN L Q, QU X Q, HOU B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science, 2012, 335(6065): 207-211. |
| [9] | CHEN M, JIANG Q, YIN X R, et al. Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit[J]. Scientia Horticulturae, 2012, 147: 118-125. |
| [10] | WANG S D, LIU S L, WANG J, et al. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication[J]. National Science Review, 2020, 7(11): 1776-1786. |
| [11] | SHAMMAI A, PETREIKOV M, YESELSON Y, et al. Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum(tomato) determines the hexose composition of ripening tomato fruit[J]. The Plant Journal, 2018, 96(2): 343-357. |
| [12] | LEVIN I, GILBOA N, YESELSON E, et al. Fgr, a major locus that modulates the fructose to glucose ratio in mature tomato fruits[J]. Theoretical and Applied Genetics, 2000, 100(2): 256-262. |
| [13] | HO L H, KLEMENS P A W, NEUHAUS H E, et al. SlSWEET1a is involved in glucose import to young leaves in tomato plants[J]. Journal of Experimental Botany, 2019, 70(12): 3241-3254. |
| [14] | QIN J X, JIANG Y J, LU Y Z, et al. Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)[J]. Journal of Integrative Agriculture, 2020, 19(7): 1704-1720. |
| [15] | ZHANG R, NIU K J, MA H L. Identification and expression analysis of the SWEET gene family from Poa pratensis under abiotic stresses[J]. DNA and Cell Biology, 2020, 39(9): 1606-1620. |
| [16] | HAN X W, HAN S, ZHU Y X, et al. Genome-wide identification and expression analysis of the SWEET gene family in Capsicum annuum L[J]. International Journal of Molecular Sciences, 2023, 24(24): 17408. |
| [17] | XUAN C Q, LAN G P, SI F F, et al. Systematic genome-wide study and expression analysis of SWEET gene family: sugar transporter family contributes to biotic and abiotic stimuli in watermelon[J]. International Journal of Molecular Sciences, 2021, 22(16): 8407. |
| [18] | SUN L X, DENG R L, LIU J W, et al. An overview of sucrose transporter (SUT) genes family in rice[J]. Molecular Biology Reports, 2022, 49(6): 5685-5695. |
| [19] | POUDEL K, LUO X, CHEN L N, et al. Identification of the SUT gene family in pomegranate (Punica granatum L.) and functional analysis of PgL0145810.1[J]. International Journal of Molecular Sciences, 2020, 21(18): 6608. |
| [20] | 孙全喜, 苑翠玲, 牟艺菲, 等. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
| SUN Q X, YUAN C L, MOU Y F, et al. Genome-wide identification and expression analysis of SWEET genes from peanut genomes[J]. Acta Agronomica Sinica, 2023, 49(4): 938-954. (in Chinese with English abstract) | |
| [21] | FENG C Y, HAN J X, HAN X X, et al. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J]. Gene, 2015, 573(2): 261-272. |
| [22] | 徐馨, 李晶, 李泽锋, 等. 普通烟草SWEET基因家族的鉴定与表达分析[J]. 中国烟草学报, 2023, 29(2): 67-78. |
| XU X, LI J, LI Z F, et al. Identification and expression analysis of SWEET gene family in Nicotiana tabacum[J]. Acta Tabacaria Sinica, 2023, 29(2): 67-78. (in Chinese with English abstract) | |
| [23] | GAO Y, WANG Z Y, KUMAR V, et al. Genome-wide identification of the SWEET gene family in wheat[J]. Gene, 2018, 642: 284-292. |
| [24] | WAN L Y, REN W F, MIAO H C, et al. Genome-wide identification, expression, and association analysis of the monosaccharide transporter (MST) gene family in peanut (Arachis hypogaea L.)[J]. 3 Biotech, 2020, 10(3): 130. |
| [25] | LIU Q, DANG H J, CHEN Z J, et al. Genome-wide identification, expression, and functional analysis of the sugar transporter gene family in cassava (Manihot esculenta)[J]. International Journal of Molecular Sciences, 2018, 19(4): 987. |
| [26] | 尹跃, 秦小雅, 赵建华, 等. 枸杞SWEET基因家族鉴定及其与可溶性糖含量关系[J]. 西北植物学报, 2024, 44(3): 396-407. |
| YIN Y, QIN X Y, ZHAO J H, et al. Identification of the SWEET gene family and its relationship with soluble sugar content in wolfberry[J]. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(3): 396-407. (in Chinese with English abstract) | |
| [27] | GONG X, LIU M L, ZHANG L J, et al. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway[J]. Physiologia Plantarum, 2015, 153(1): 119-136. |
| [28] | CARPANETO A, GEIGER D, BAMBERG E, et al. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force[J]. Journal of Biological Chemistry, 2005, 280(22): 21437-21443. |
| [29] | 晁毛妮, 王斌, 陈煜, 等. 陆地棉蔗糖转运蛋白基因家族的鉴定及表达分析[J]. 西北植物学报, 2020, 40(8): 1303-1312. |
| CHAO M N, WANG B, CHEN Y, et al. Identification and expression analysis of sucrose transporter gene family in upland cotton (Gossypium hirsutum L.)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(8): 1303-1312. (in Chinese with English abstract) | |
| [30] | WU Y W, WANG Y P, SHAN Y X, et al. Characterization of SWEET family members from loquat and their responses to exogenous induction[J]. Tree Genetics & Genomes, 2017, 13(6): 123. |
| [1] | 杨晓雨, 马指挥, 魏青, 牛志鹏, 陈安琪, 胡正冲, 王林生. 一个小麦芒长基因的初步定位及候选基因预测[J]. 浙江农业学报, 2025, 37(1): 14-23. |
| [2] | 沈峥嵘, 戴远兴, 郭留明, 汪芷瑶, 张恒木. 中国小麦花叶病毒(CWMV)外壳蛋白(CP)特异性抗体的制备与应用[J]. 浙江农业学报, 2024, 36(9): 2042-2050. |
| [3] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
| [4] | 何昌熙, 郑建波, 马建波, 贾永义, 刘士力, 蒋文枰, 迟美丽, 程顺, 李飞. 翘嘴鲌Runx2b基因的克隆与表达特征分析[J]. 浙江农业学报, 2024, 36(5): 1024-1031. |
| [5] | 李晶晶, 李闯, 路亚南, 郑文明. 小麦类硫素基因家族鉴定及表达分析[J]. 浙江农业学报, 2024, 36(4): 729-737. |
| [6] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
| [7] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
| [8] | 刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357. |
| [9] | 张永彬, 李想, 满卫东, 刘明月, 樊继好, 胡皓然, 宋利杰, 刘玮佳. 融合Sentinel-1/2数据和机器学习算法的冬小麦产量估算方法研究[J]. 浙江农业学报, 2024, 36(12): 2812-2822. |
| [10] | 刘永安, 黄业昌, 岳高红, 高锡腾, 邓立章, 潘彬荣. 优质小麦品种温麦10号籽粒蛋白质组学分析[J]. 浙江农业学报, 2024, 36(11): 2437-2446. |
| [11] | 赵凌吉, 廖香娇, 刘德春, 胡威, 匡柳青, 宋杰, 易明亮, 刘勇, 杨莉. 桃溪蜜柚果实贮藏期有机酸含量变化及相关基因表达分析[J]. 浙江农业学报, 2024, 36(11): 2510-2520. |
| [12] | 寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102. |
| [13] | 娄渊根, 李闯, 李晶晶, 邢国珍, 路亚南, 郑文明. 小麦HP基因家族鉴定和分析[J]. 浙江农业学报, 2023, 35(9): 2023-2032. |
| [14] | 余桂红, 宋桂成, 张鹏, 王化敦, 范祥云. 十八个小麦品种(系)拔节期耐渍性的综合评价[J]. 浙江农业学报, 2023, 35(6): 1235-1242. |
| [15] | 杨凯, 陈凯, 李红梅, 赵忠娟, 扈进冬, 李纪顺, 杨合同. 哈茨木霉LTR-2与产脲节杆菌DnL1-1协同对小麦茎基腐病的防治效果与机理[J]. 浙江农业学报, 2023, 35(6): 1385-1395. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||