浙江农业学报 ›› 2024, Vol. 36 ›› Issue (4): 729-737.DOI: 10.3969/j.issn.1004-1524.20230048
收稿日期:
2023-01-05
出版日期:
2024-04-25
发布日期:
2024-04-29
作者简介:
李晶晶(1989—),女,河南安阳人,硕士,研究方向为生物化学与分子生物学。E-mail:371702918@qq.com
通讯作者:
*郑文明,E-mail:基金资助:
LI Jingjing1(), LI Chuang2, LU Yanan2, ZHENG Wenming2,*(
)
Received:
2023-01-05
Online:
2024-04-25
Published:
2024-04-29
Contact:
ZHENG Wenming
摘要:
类硫素(thionin-like,Thil)在植物应对病原微生物侵染的防御反应中具有重要生物学功能。本研究通过拟南芥(Arabidopsis thaliana)的Thil基因序列,利用同源搜寻及生物信息学方法初步鉴定到普通小麦(Triticum aestivum L.)的Thil基因家族。结果表明,Thil基因家族在普通小麦中包含26个成员。基因序列结构分析得到Thil家族存在保守的基序结构,家族各成员基因编码的蛋白质序列包含79~196个氨基酸,大部分蛋白质的氨基酸数量少于140,其中20个蛋白质包含信号肽。顺式作用元件预测分析结果显示,小麦Thil基因的启动子调控元件受到脱落酸等逆境胁迫相应激素的影响,同时基因表达谱呈现出受到病原菌胁迫诱导后的多样性表达。通过进一步qRT-PCR验证分析表明, 普通小麦的TaThil-4A、TaThil-4B和TaThil-4D等3个基因在叶锈病菌早期侵染中被诱导表达。本研究结果可为小麦抗病育种及Thil基因家族的功能鉴定与应用提供参考。
中图分类号:
李晶晶, 李闯, 路亚南, 郑文明. 小麦类硫素基因家族鉴定及表达分析[J]. 浙江农业学报, 2024, 36(4): 729-737.
LI Jingjing, LI Chuang, LU Yanan, ZHENG Wenming. Identification and expression analysis of Thionin-like gene family in wheat[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 729-737.
基因名称 | 正向引物(5'→3') | 反向引物(5'→3') |
---|---|---|
Gene name | Forward primer(5'→3') | Reverse primer(5'→3') |
TaThil-4A | CCGTCCCAGCCATCGTG | TCTTGAGCATCCGCTTGGAG |
TaThil-4B | GCAGCGGAGGATTGGAGAAT | AAGGGTCAAACCAAGCCTCA |
TaThil-4D | GCGGAGGAGTGGAGAATCTG | ACGCCTACCAAATCAGGACA |
Ta26S | GAAGAAGGTCCCAAGGGTTC | TCTCCCTTTAACACCAACGG |
表1 实时荧光定量PCR引物
Table 1 Primers of qRT-PCR
基因名称 | 正向引物(5'→3') | 反向引物(5'→3') |
---|---|---|
Gene name | Forward primer(5'→3') | Reverse primer(5'→3') |
TaThil-4A | CCGTCCCAGCCATCGTG | TCTTGAGCATCCGCTTGGAG |
TaThil-4B | GCAGCGGAGGATTGGAGAAT | AAGGGTCAAACCAAGCCTCA |
TaThil-4D | GCGGAGGAGTGGAGAATCTG | ACGCCTACCAAATCAGGACA |
Ta26S | GAAGAAGGTCCCAAGGGTTC | TCTCCCTTTAACACCAACGG |
基因名称 | 基因ID | 染色体位置 | 氨基酸数量 | 半胱氨酸数量 | 编码蛋白 | 等电点 | 亚细胞定位 | 信号肽 |
---|---|---|---|---|---|---|---|---|
Gene name | Gene ID | Chromosome position | Number of amino acids | Number of cysteines | 分子量 Molecular mass/ku | pI | Subcellular location | Signal peptide |
TaThil-1B;1 | TraesCS1B03G1120400LC.1 | 1B:648189213-648189524 | 103 | 5 | 11.95 | 10.45 | 细胞核Nucleus | - |
TaThil-1B;2 | TraesCS1B03G1155100.1 | 1B:659630413-659631542 | 130 | 13 | 13.63 | 4.39 | 细胞外Extracellular | √ |
TaThil-2B | TraesCS2B03G0504400LC.1 | 2B:198179489-198179953 | 154 | 6 | 16.54 | 11.51 | 细胞核Extracellular | - |
TaThil-3A;1 | TraesCS3A03G0552900.1 | 3A:395791412-395792540 | 195 | 13 | 20.09 | 4.42 | 细胞外Extracellular | √ |
TaThil-3A;2 | TraesCS3A03G0553000.1 | 3A:395835980-395837038 | 158 | 14 | 16.96 | 8.92 | 细胞外Extracellular | √ |
TaThil-3A;3 | TraesCS3A03G1150100LC.1 | 3A:718510414-718510833 | 139 | 5 | 15.37 | 7.68 | 细胞外Extracellular | √ |
TaThil-3B;1 | TraesCS3B03G0636600.1 | 3B:396308838-396309889 | 173 | 13 | 17.98 | 4.93 | 细胞外Extracellular | - |
TaThil-3B;2 | TraesCS3B03G0636800.1 | 3B:396354614-396355551 | 168 | 13 | 18.10 | 9.23 | 细胞外Extracellular | √ |
TaThil-3D;1 | TraesCS3D03G0514500.1 | 3D:293341730-293342870 | 196 | 13 | 20.30 | 4.36 | 细胞外Extracellular | √ |
TaThil-3D;2 | TraesCS3D03G0514700.1 | 3D:293354488-293355046 | 155 | 14 | 16.48 | 8.64 | 细胞外Extracellular | √ |
TaThil-4A | TraesCS4A03G0005400.1 | 4A:2778918-2779295 | 125 | 10 | 13.84 | 8.74 | 细胞外Extracellular | - |
TaThil-4B | TraesCS4B03G0791300.1 | 4B:587455267-587456199 | 125 | 10 | 13.87 | 8.74 | 细胞外Extracellular | - |
TaThil-4D | TraesCS4D03G0708500.1 | 4D:468863939-468864781 | 125 | 10 | 13.87 | 8.74 | 细胞外Extracellular | - |
TaThil-5A | TraesCS5A03G0585800.1 | 5A:445399009-445399659 | 139 | 15 | 14.94 | 7.38 | 细胞外Extracellular | √ |
TaThil-5B | TraesCS5B03G0129000.1 | 5B:56613644-56614396 | 79 | 9 | 8.48 | 8.09 | 细胞外Extracellular | √ |
TaThil-5D;1 | TraesCS5D03G0000700.1 | 5D:504194-504552 | 110 | 6 | 12.00 | 8.52 | 细胞外Extracellular | √ |
TaThil-5D;2 | TraesCS5D03G0000900.1 | 5D:716462-716794 | 110 | 6 | 12.00 | 8.52 | 细胞外Extracellular | √ |
TaThil-6A;1 | TraesCS6A03G0166000.1 | 6A:44857118-44857880 | 101 | 13 | 11.01 | 7.94 | 细胞外Extracellular | √ |
TaThil-6A;2 | TraesCS6A03G0803600LC.1 | 6A:543299654-543299977 | 107 | 6 | 11.55 | 8.26 | 细胞外Extracellular | √ |
TaThil-6B;1 | TraesCS6B03G0169000.1 | 6B:52931251-52932028 | 124 | 13 | 12.75 | 6.03 | 细胞外Extracellular | √ |
TaThil-6B;2 | TraesCS6B03G0171400.1 | 6B:54283983-54284834 | 109 | 12 | 11.76 | 8.76 | 细胞外Extracellular | √ |
TaThil-6D;1 | TraesCS6D03G0024500LC.1 | 6D:4597285-4597644 | 119 | 9 | 13.18 | 4.97 | 细胞外Extracellular | √ |
TaThil-6D;2 | TraesCS6D03G0117500.1 | 6D:33532140-33532823 | 113 | 13 | 11.83 | 7.44 | 细胞外Extracellular | √ |
TaThil-6D;3 | TraesCS6D03G0117700.1 | 6D:33587808-33588272 | 109 | 12 | 11.75 | 8.63 | 细胞外Extracellular | √ |
TaThil-7A | TraesCS7A03G1387900.1 | 7A:744208691-744208981 | 96 | 6 | 10.18 | 6.87 | 细胞外Extracellular | √ |
TaThil-7D | TraesCS7D03G1304800LC.1 | 7D:642451602-642451922 | 106 | 7 | 11.38 | 8.27 | 细胞外Extracellular | √ |
表2 小麦Thil基因家族成员的特征
Table 2 The characteristics of the Thil gene family in wheat
基因名称 | 基因ID | 染色体位置 | 氨基酸数量 | 半胱氨酸数量 | 编码蛋白 | 等电点 | 亚细胞定位 | 信号肽 |
---|---|---|---|---|---|---|---|---|
Gene name | Gene ID | Chromosome position | Number of amino acids | Number of cysteines | 分子量 Molecular mass/ku | pI | Subcellular location | Signal peptide |
TaThil-1B;1 | TraesCS1B03G1120400LC.1 | 1B:648189213-648189524 | 103 | 5 | 11.95 | 10.45 | 细胞核Nucleus | - |
TaThil-1B;2 | TraesCS1B03G1155100.1 | 1B:659630413-659631542 | 130 | 13 | 13.63 | 4.39 | 细胞外Extracellular | √ |
TaThil-2B | TraesCS2B03G0504400LC.1 | 2B:198179489-198179953 | 154 | 6 | 16.54 | 11.51 | 细胞核Extracellular | - |
TaThil-3A;1 | TraesCS3A03G0552900.1 | 3A:395791412-395792540 | 195 | 13 | 20.09 | 4.42 | 细胞外Extracellular | √ |
TaThil-3A;2 | TraesCS3A03G0553000.1 | 3A:395835980-395837038 | 158 | 14 | 16.96 | 8.92 | 细胞外Extracellular | √ |
TaThil-3A;3 | TraesCS3A03G1150100LC.1 | 3A:718510414-718510833 | 139 | 5 | 15.37 | 7.68 | 细胞外Extracellular | √ |
TaThil-3B;1 | TraesCS3B03G0636600.1 | 3B:396308838-396309889 | 173 | 13 | 17.98 | 4.93 | 细胞外Extracellular | - |
TaThil-3B;2 | TraesCS3B03G0636800.1 | 3B:396354614-396355551 | 168 | 13 | 18.10 | 9.23 | 细胞外Extracellular | √ |
TaThil-3D;1 | TraesCS3D03G0514500.1 | 3D:293341730-293342870 | 196 | 13 | 20.30 | 4.36 | 细胞外Extracellular | √ |
TaThil-3D;2 | TraesCS3D03G0514700.1 | 3D:293354488-293355046 | 155 | 14 | 16.48 | 8.64 | 细胞外Extracellular | √ |
TaThil-4A | TraesCS4A03G0005400.1 | 4A:2778918-2779295 | 125 | 10 | 13.84 | 8.74 | 细胞外Extracellular | - |
TaThil-4B | TraesCS4B03G0791300.1 | 4B:587455267-587456199 | 125 | 10 | 13.87 | 8.74 | 细胞外Extracellular | - |
TaThil-4D | TraesCS4D03G0708500.1 | 4D:468863939-468864781 | 125 | 10 | 13.87 | 8.74 | 细胞外Extracellular | - |
TaThil-5A | TraesCS5A03G0585800.1 | 5A:445399009-445399659 | 139 | 15 | 14.94 | 7.38 | 细胞外Extracellular | √ |
TaThil-5B | TraesCS5B03G0129000.1 | 5B:56613644-56614396 | 79 | 9 | 8.48 | 8.09 | 细胞外Extracellular | √ |
TaThil-5D;1 | TraesCS5D03G0000700.1 | 5D:504194-504552 | 110 | 6 | 12.00 | 8.52 | 细胞外Extracellular | √ |
TaThil-5D;2 | TraesCS5D03G0000900.1 | 5D:716462-716794 | 110 | 6 | 12.00 | 8.52 | 细胞外Extracellular | √ |
TaThil-6A;1 | TraesCS6A03G0166000.1 | 6A:44857118-44857880 | 101 | 13 | 11.01 | 7.94 | 细胞外Extracellular | √ |
TaThil-6A;2 | TraesCS6A03G0803600LC.1 | 6A:543299654-543299977 | 107 | 6 | 11.55 | 8.26 | 细胞外Extracellular | √ |
TaThil-6B;1 | TraesCS6B03G0169000.1 | 6B:52931251-52932028 | 124 | 13 | 12.75 | 6.03 | 细胞外Extracellular | √ |
TaThil-6B;2 | TraesCS6B03G0171400.1 | 6B:54283983-54284834 | 109 | 12 | 11.76 | 8.76 | 细胞外Extracellular | √ |
TaThil-6D;1 | TraesCS6D03G0024500LC.1 | 6D:4597285-4597644 | 119 | 9 | 13.18 | 4.97 | 细胞外Extracellular | √ |
TaThil-6D;2 | TraesCS6D03G0117500.1 | 6D:33532140-33532823 | 113 | 13 | 11.83 | 7.44 | 细胞外Extracellular | √ |
TaThil-6D;3 | TraesCS6D03G0117700.1 | 6D:33587808-33588272 | 109 | 12 | 11.75 | 8.63 | 细胞外Extracellular | √ |
TaThil-7A | TraesCS7A03G1387900.1 | 7A:744208691-744208981 | 96 | 6 | 10.18 | 6.87 | 细胞外Extracellular | √ |
TaThil-7D | TraesCS7D03G1304800LC.1 | 7D:642451602-642451922 | 106 | 7 | 11.38 | 8.27 | 细胞外Extracellular | √ |
图4 热图分析展示小麦Thil家族基因在病原真菌侵染下的表达模式 log2(tpm) 颜色从左到右表示基因表达量从低到高。
Fig.4 Heatmap analysis showing the expression patterns of the Thil family genes in wheat in response to fungal infections log2(tpm) color from left to right represents expression levels from low to high.
图5 不同抗性小麦-叶锈菌组合下 Thil基因的表达水平 YM34,云麦34;JM17,济麦17;XM18,新麦18;AK58,矮抗58。
Fig.5 Expression levels of the Thil genes in different interactions of wheat and Puccinia triticina YM34, Yunmai 34; JM17, Jimai 17;XM18, Jimai 18; AK58, Aikang 58.
[1] | HAN G Z. Origin and evolution of the plant immune system[J]. The New Phytologist, 2019, 222(1): 70-83. |
[2] | LI P, LU Y J, CHEN H, et al. The lifecycle of the plant immune system[J]. Critical Reviews in Plant Sciences, 2020, 39(1): 72-100. |
[3] | JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444: 323-329. |
[4] | YUAN M H, JIANG Z Y, BI G Z, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity[J]. Nature, 2021, 592: 105-109. |
[5] | YUAN M H, NGOU B P M, DING P T, et al. PTI-ETI crosstalk: an integrative view of plant immunity[J]. Current Opinion in Plant Biology, 2021, 62: 102030. |
[6] | SILVERSTEIN K A T, MOSKAL W A Jr, WU H C, et al. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants[J]. The Plant Journal, 2007, 51(2): 262-280. |
[7] | DOS SANTOS-SILVA C A, ZUPIN L, OLIVEIRA-LIMA M, et al. Plant antimicrobial peptides: state of the art, in silico prediction and perspectives in the omics era[J]. Bioinformatics and Biology Insights, 2020, 14: 1177932220952739. |
[8] | HÖNG K, AUSTERLITZ T, BOHLMANN T, et al. The thionin family of antimicrobial peptides[J]. PLoS One, 2021, 16(7): e0254549. |
[9] | STEC B. Plant thionins-the structural perspective[J]. Cellular and Molecular Life Sciences CMLS, 2006, 63(12): 1370-1385. |
[10] | ALMAGHRABI B, ALI M A, ZAHOOR A, et al. Arabidopsis thionin-like genes are involved in resistance against the beet-cyst nematode (Heterodera schachtii)[J]. Plant Physiology and Biochemistry, 2019, 140: 55-67. |
[11] | TAVEIRA G B, MATHIAS L S, DA MOTTA O V, et al. Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts[J]. Biopolymers, 2014, 102(1): 30-39. |
[12] | TAVEIRA G B, CARVALHO A O, RODRIGUES R, et al. Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species[J]. BMC Microbiology, 2016, 16: 12. |
[13] | 杨宏亮, 袁桢, 钱徐佳志, 等. 大麦Thionin-like基因家族基因表达谱分析[J]. 生物技术通报, 2022, 38(10): 140-147. |
YANG H L, YUAN Z, QIAN X, et al. Expression profile analysis of thionin-like gene family in barley[J]. Biotechnology Bulletin, 2022, 38(10): 140-147. (in Chinese with English abstract) | |
[14] | LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948. |
[15] | FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(Web Server issue): W29-W37. |
[16] | ZHU T T, WANG L, RIMBERT H, et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly[J]. The Plant Journal, 2021, 107(1): 303-314. |
[17] | YU C S, CHEN Y C, LU C H, et al. Prediction of protein subcellular localization[J]. Proteins: Structure, Function, and Bioinformatics, 2006, 64(3): 643-651. |
[18] | ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SØNDERBY C K, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks[J]. Nature Biotechnology, 2019, 37: 420-423. |
[19] | HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297. |
[20] | KUMAR S, STECHER G, LI M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. |
[21] | BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME suite[J]. Nucleic Acids Research, 2015, 43(W1): W39-W49. |
[22] | LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327. |
[23] | CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. |
[24] | BORRILL P, RAMIREZ-GONZALEZ R, UAUY C. expVIP: a customizable RNA-seq data analysis and visualization platform[J]. Plant Physiology, 2016, 170(4): 2172-2186. |
[25] | WANG Y, TAO X, TANG X M, et al. Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid[J]. BMC Genomics, 2013, 14(1): 841. |
[26] | BJORNSON M, PIMPRIKAR P, NÜRNBERGER T, et al. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity[J]. Nature Plants, 2021, 7: 579-586. |
[27] | LI W, DENG Y W, NING Y S, et al. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding[J]. Annual Review of Plant Biology, 2020, 71: 575-603. |
[28] | 袁娜, 李阳, 杨郁文, 等. 棉花CLE多肽家族的全基因组鉴定与生物信息学分析[J]. 棉花学报, 2019, 31(4): 263-281. |
YUAN N, LI Y, YANG Y W, et al. Genome-wide identification and characterization of CLE family in cotton (Gossypium spp.)[J]. Cotton Science, 2019, 31(4): 263-281. (in Chinese with English abstract) | |
[29] | WANG S, TIAN L, LIU H, et al. Large-scale discovery of non-conventional peptides in maize and Arabidopsis through an integrated peptidogenornic pipeline[J]. Mol Plant, 2020, 13(7):1078-1093. |
[30] | NIRMALA J, DRADER T, LAWRENCE P K, et al. Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35): 14676-14681. |
[31] | SHEN Y L, LIU N, LI C, et al. The early response during the interaction of fungal phytopathogen and host plant[J]. Open Biology, 2017, 7(5): 170057. |
[1] | 宋鹏, 李理想, 江厚龙, 王茹, 李慧, 赵鹏宇, 张均, 秦平伟, 任江波, 陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响[J]. 浙江农业学报, 2024, 36(3): 494-502. |
[2] | 娄渊根, 李闯, 李晶晶, 邢国珍, 路亚南, 郑文明. 小麦HP基因家族鉴定和分析[J]. 浙江农业学报, 2023, 35(9): 2023-2032. |
[3] | 潘攀, 张建华, 郑晓明, 周国民, 胡林, 冯全, 柴秀娟. 深度学习在作物及其近缘种抗病性智能鉴定上的研究进展[J]. 浙江农业学报, 2023, 35(8): 1993-2012. |
[4] | 余桂红, 宋桂成, 张鹏, 王化敦, 范祥云. 十八个小麦品种(系)拔节期耐渍性的综合评价[J]. 浙江农业学报, 2023, 35(6): 1235-1242. |
[5] | 杨凯, 陈凯, 李红梅, 赵忠娟, 扈进冬, 李纪顺, 杨合同. 哈茨木霉LTR-2与产脲节杆菌DnL1-1协同对小麦茎基腐病的防治效果与机理[J]. 浙江农业学报, 2023, 35(6): 1385-1395. |
[6] | 任开明, 王犇, 杨文俊, 樊永惠, 张文静, 马尚宇, 黄正来. 施氮对稻茬弱筋小麦生长特性、品质与产量的影响[J]. 浙江农业学报, 2023, 35(4): 769-779. |
[7] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
[8] | 白卫卫, 赵雪妮, 罗斌, 赵薇, 黄硕, 张晗. 基于YOLOv5的小麦种子发芽检测方法研究[J]. 浙江农业学报, 2023, 35(2): 445-454. |
[9] | 朱永基, 陶新宇, 陈小芳, 苏祥祥, 刘吉凯, 李新伟. 基于无人机多光谱影像植被指数与纹理特征的冬小麦地上部生物量估算[J]. 浙江农业学报, 2023, 35(12): 2966-2976. |
[10] | 宋盼盼, 常会庆, 李岚坤, 王启震. 叶面阻控剂在轻度镉污染石灰性麦田上的降镉效果[J]. 浙江农业学报, 2023, 35(11): 2655-2663. |
[11] | 耿兵婕, 叶苗苗, 陈研, 王孟昌, 马尚宇, 黄正来, 张文静, 樊永惠. 外源6-BA和KH2PO4对花后受渍小麦根系抗氧化酶和无氧呼吸酶活性的影响[J]. 浙江农业学报, 2023, 35(10): 2275-2285. |
[12] | 王犇, 李宇星, 李哲, 姜沣溢, 黄正来, 樊永惠, 张文静, 马尚宇. 海藻糖处理对花后高温胁迫弱筋小麦生选6号产量形成及品质的影响[J]. 浙江农业学报, 2023, 35(1): 1-9. |
[13] | 李永晖, 李捷, 冯丽丹, 何静, 张煦, 刘祥林. 不同植物免疫诱抗剂对枸杞鲜果产量、抗病性和贮藏能力的差异比较[J]. 浙江农业学报, 2023, 35(1): 164-174. |
[14] | 董飞燕, 宋婧含, 张华东, 吴昊天, 李雅倩, 刘孟伟, 高春保, 方正武, 刘易科. 小麦TaPAT1-2D基因的克隆与表达分析[J]. 浙江农业学报, 2023, 35(1): 23-32. |
[15] | 宋天浩, 庞莲凤, 陈凌霜, 邓惠丹, 徐志文, 朱玲, 任志华, 邓俊良. 百里香酚体外抗伪狂犬病毒活性评价及其作用方式[J]. 浙江农业学报, 2023, 35(1): 41-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||