浙江农业学报 ›› 2023, Vol. 35 ›› Issue (11): 2655-2663.DOI: 10.3969/j.issn.1004-1524.20221854
收稿日期:
2022-12-30
出版日期:
2023-11-25
发布日期:
2023-12-04
作者简介:
宋盼盼(1998—),女,河南洛阳人,硕士研究生,主要从事环境污染修复研究。E-mail: 1362444583@qq.com
通讯作者:
* 常会庆,E-mail: hqchang@126.com
基金资助:
SONG Panpan(), CHANG Huiqing*(
), LI Lankun, WANG Qizhen
Received:
2022-12-30
Online:
2023-11-25
Published:
2023-12-04
摘要:
在轻度镉污染的石灰性潮土麦田上开展试验,以叶面喷施(分别在小麦拔节期、抽穗期和灌浆期各进行一次)3种自配阻控剂(ZP1、ZP2、ZP3)作为处理,以叶面喷施蒸馏水作为对照(CK),明确其对小麦镉转运和富集的影响,以便筛选出具有良好降镉效果的阻控剂,为轻度镉污染石灰性麦田的安全生产提供参考。结果表明:与CK相比,叶面喷施3种阻控剂对小麦的产量和品质指标无显著影响,显著(P<0.05)降低了小麦从茎到叶的镉转运系数和小麦叶片的镉富集系数,显著提高了小麦叶的铜、锌含量。此外,叶面喷施ZP3阻控剂还显著降低了小麦籽粒的镉含量,降幅为43.3%。综合对比,在轻度镉污染石灰性麦田上,可优选ZP3型叶面阻控剂进行喷施。
中图分类号:
宋盼盼, 常会庆, 李岚坤, 王启震. 叶面阻控剂在轻度镉污染石灰性麦田上的降镉效果[J]. 浙江农业学报, 2023, 35(11): 2655-2663.
SONG Panpan, CHANG Huiqing, LI Lankun, WANG Qizhen. Effects of foliar spraying inhibitor on reducing cadmium content of wheat under calcareous soil with slight cadmium pollution[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2655-2663.
处理 Treatment | 蛋白含量 Protein content/% | 灰分含量 Ash content/% | 湿面筋含量 Wet gluten content/% | 淀粉含量 Starch content/% | 沉降值 Settlement value/% | 产量 Yield/ (kg·hm-2) |
---|---|---|---|---|---|---|
CK | 12.36±0.44 a | 66.62±1.09 a | 23.54±0.91 a | 71.65±0.80 a | 17.27±3.04 a | 9 316.65±82.75 a |
ZP1 | 12.60±0.33 a | 66.15±0.95 a | 24.16±0.67 a | 71.42±0.71 a | 17.12±0.74 a | 9 483.45±32.03 a |
ZP2 | 12.94±0.70 a | 66.67±0.95 a | 24.81±1.56 a | 71.36±0.60 a | 18.65±2.95 a | 9 450.00±21.86 a |
ZP3 | 12.80±0.55 a | 65.51±0.73 a | 24.66±0.87 a | 71.60±0.94 a | 18.06±2.48 a | 9 616.65±46.71 a |
表1 不同处理的小麦品质与产量
Table 1 Quality and yield of wheat under different treatments
处理 Treatment | 蛋白含量 Protein content/% | 灰分含量 Ash content/% | 湿面筋含量 Wet gluten content/% | 淀粉含量 Starch content/% | 沉降值 Settlement value/% | 产量 Yield/ (kg·hm-2) |
---|---|---|---|---|---|---|
CK | 12.36±0.44 a | 66.62±1.09 a | 23.54±0.91 a | 71.65±0.80 a | 17.27±3.04 a | 9 316.65±82.75 a |
ZP1 | 12.60±0.33 a | 66.15±0.95 a | 24.16±0.67 a | 71.42±0.71 a | 17.12±0.74 a | 9 483.45±32.03 a |
ZP2 | 12.94±0.70 a | 66.67±0.95 a | 24.81±1.56 a | 71.36±0.60 a | 18.65±2.95 a | 9 450.00±21.86 a |
ZP3 | 12.80±0.55 a | 65.51±0.73 a | 24.66±0.87 a | 71.60±0.94 a | 18.06±2.48 a | 9 616.65±46.71 a |
图1 不同处理小麦各部位的镉含量 柱上无相同字母的表示同一部位各处理间差异显著(P<0.05)。
Fig.1 Cadmium content in different parts of wheat under different treatments Bars marked without the same letters indicate significant (P<0.05) difference within treatments in the same part of wheat.
处理 Treatment | 根-茎 Root-stem | 茎-叶 Stem-leaf | 颖壳-籽粒 Glume-grain | 叶-颖壳 Leaf-glume | 叶-籽粒 Leaf-grain |
---|---|---|---|---|---|
CK | 0.15 ± 0.01 a | 2.68 ± 0.32 a | 0.87 ± 0.19 a | 0.63±0.04 a | 0.50±0.09 a |
ZP1 | 0.15 ± 0.02 a | 1.31 ± 0.14 b | 0.56 ± 0.15 a | 0.55±0.09 a | 0.39±0.10 a |
ZP2 | 0.18 ± 0.02 a | 1.42 ± 0.14 b | 0.76 ± 0.04 a | 0.60±0.08 a | 0.43±0.10 a |
ZP3 | 0.14 ± 0.01 a | 1.62 ± 0.17 b | 0.80 ± 0.06 a | 0.31±0.02 b | 0.43±0.04 a |
表2 不同处理小麦各部位的镉转运系数
Table 2 Cadmium translocation factor in different parts of wheat under different treatments
处理 Treatment | 根-茎 Root-stem | 茎-叶 Stem-leaf | 颖壳-籽粒 Glume-grain | 叶-颖壳 Leaf-glume | 叶-籽粒 Leaf-grain |
---|---|---|---|---|---|
CK | 0.15 ± 0.01 a | 2.68 ± 0.32 a | 0.87 ± 0.19 a | 0.63±0.04 a | 0.50±0.09 a |
ZP1 | 0.15 ± 0.02 a | 1.31 ± 0.14 b | 0.56 ± 0.15 a | 0.55±0.09 a | 0.39±0.10 a |
ZP2 | 0.18 ± 0.02 a | 1.42 ± 0.14 b | 0.76 ± 0.04 a | 0.60±0.08 a | 0.43±0.10 a |
ZP3 | 0.14 ± 0.01 a | 1.62 ± 0.17 b | 0.80 ± 0.06 a | 0.31±0.02 b | 0.43±0.04 a |
处理Treatment | 根Root | 茎Stem | 叶Leaf | 颖壳Glume | 籽粒Grain |
---|---|---|---|---|---|
CK | 0.91±0.10 b | 0.10±0.02 b | 0.33±0.03 a | 0.11±0.02 a | 0.09±0.01 a |
ZP1 | 0.90±0.09 b | 0.14±0.01 b | 0.17±0.01 c | 0.08±0.01 b | 0.07±0.01 a |
ZP2 | 1.08±0.07 a | 0.19±0.03 a | 0.22±0.01 b | 0.11±0.01 ab | 0.08±0.01 a |
ZP3 | 0.96±0.07 ab | 0.13±0.01 b | 0.18±0.01 c | 0.10±0.01 ab | 0.05±0.01 b |
表3 不同处理小麦各部位镉富集系数
Table 3 Cadmium bioconcentration factor in different parts of wheat under different treatments
处理Treatment | 根Root | 茎Stem | 叶Leaf | 颖壳Glume | 籽粒Grain |
---|---|---|---|---|---|
CK | 0.91±0.10 b | 0.10±0.02 b | 0.33±0.03 a | 0.11±0.02 a | 0.09±0.01 a |
ZP1 | 0.90±0.09 b | 0.14±0.01 b | 0.17±0.01 c | 0.08±0.01 b | 0.07±0.01 a |
ZP2 | 1.08±0.07 a | 0.19±0.03 a | 0.22±0.01 b | 0.11±0.01 ab | 0.08±0.01 a |
ZP3 | 0.96±0.07 ab | 0.13±0.01 b | 0.18±0.01 c | 0.10±0.01 ab | 0.05±0.01 b |
处理Treatment | Si | Cu | Mn | Zn |
---|---|---|---|---|
CK | 9.792±2.806 a | 2.513±0.267 c | 22.228±3.091 b | 4.967±0.900 b |
ZP1 | 10.980±2.660 a | 8.584±1.103 b | 18.950±0.718 b | 10.275±2.760 a |
ZP2 | 10.269±1.774 a | 8.474±0.709 b | 20.832±2.304 b | 10.716±2.906 a |
ZP3 | 10.589±0.963 a | 12.145±0.697 a | 39.713±4.248 a | 12.749±1.206 a |
表4 不同处理小麦叶片的硅、铜、锰、锌含量
Table 4 Silicon, copper, manganese, zinc content in wheat leaves uner different treatments mg·kg-1
处理Treatment | Si | Cu | Mn | Zn |
---|---|---|---|---|
CK | 9.792±2.806 a | 2.513±0.267 c | 22.228±3.091 b | 4.967±0.900 b |
ZP1 | 10.980±2.660 a | 8.584±1.103 b | 18.950±0.718 b | 10.275±2.760 a |
ZP2 | 10.269±1.774 a | 8.474±0.709 b | 20.832±2.304 b | 10.716±2.906 a |
ZP3 | 10.589±0.963 a | 12.145±0.697 a | 39.713±4.248 a | 12.749±1.206 a |
[1] | 吴婧, 董欣敏, 郑燕芳, 等. 镉致癌的分子机制研究进展[J]. 生态毒理学报, 2015, 10(6): 54-61. |
WU J, DONG X M, ZHENG Y F, et al. Recent research progress in molecular mechanisms of cadmium induced carcinogenesis[J]. Asian Journal of Ecotoxicology, 2015, 10(6): 54-61. (in Chinese with English abstract) | |
[2] | LUO L, MA Y B, ZHANG S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530. |
[3] | SCHLEGEL H, GODBOLD D L, HÜTTERMANN A. Whole plant aspects of heavy metal induced changes in CO2, uptake and water relations of spruce (Picea abies) seedlings[J]. Physiologia Plantarum, 1987, 69(2): 265-270. |
[4] | 罗秋红, 吴俊, 柏斌, 等. 水稻镉吸收与转运机理的研究进展[J]. 土壤, 2021, 53(6): 1142-1151. |
LUO Q H, WU J, BAI B, et al. Research progresses on mechanism of cadmium absorption and transport in rice[J]. Soils, 2021, 53(6): 1142-1151. (in Chinese with English abstract) | |
[5] | YAN Y, SUN Q Q, YANG J J, et al. Source attributions of cadmium contamination in rice grains by cadmium isotope composition analysis: a field study[J]. Ecotoxicology and Environmental Safety, 2021, 210: 111865. |
[6] | KHANAM R, KUMAR A, NAYAK A K, et al. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: bioavailability and potential risk to human health[J]. Science of the Total Environment, 2020, 699: 134330. |
[7] | 王怡雯, 芮玉奎, 李中阳, 等. 冬小麦吸收重金属特征及与影响因素的定量关系[J]. 环境科学, 2020, 41(3): 1482-1490. |
WANG Y W, RUI Y K, LI Z Y, et al. Characteristics of heavy metal absorption by winter wheat and its quantitative relationship with influencing factors[J]. Environmental Science, 2020, 41(3): 1482-1490. (in Chinese with English abstract) | |
[8] | 肖冰, 薛培英, 韦亮, 等. 基于田块尺度的农田土壤和小麦籽粒镉砷铅污染特征及健康风险评价[J]. 环境科学, 2020, 41(6): 2869-2877. |
XIAO B, XUE P Y, WEI L, et al. Characteristics of Cd, As, and Pb in soil and wheat grains and health risk assessment of grain-Cd/As/Pb on the field scale[J]. Environmental Science, 2020, 41(6): 2869-2877. (in Chinese with English abstract) | |
[9] | 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. (in Chinese with English abstract) | |
[10] | 王玉军, 刘存, 周东美, 等. 客观地看待我国耕地土壤环境质量的现状: 关于《全国土壤污染状况调查公报》中有关问题的讨论和建议[J]. 农业环境科学学报, 2014, 33(8): 1465-1473. |
WANG Y J, LIU C, ZHOU D M, et al. A critical view on the status quo of the farmland soil environmental quality in China: discussion and suggestion of relevant issues on Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2014, 33(8): 1465-1473. (in Chinese with English abstract) | |
[11] | 林智, 李伯欣, 周自强, 等. 不同阻控剂对珠三角稻田镉污染修复的效果探究[J]. 南方农业, 2020, 14(8): 136-140. |
LIN Z, LI B X, ZHOU Z Q, et al. Effect of different inhibitors on remediation of cadmium pollution in rice fields in Pearl River Delta[J]. South China Agriculture, 2020, 14(8): 136-140. (in Chinese) | |
[12] | 徐建明, 孟俊, 刘杏梅, 等. 我国农田土壤重金属污染防治与粮食安全保障[J]. 中国科学院院刊, 2018, 33(2): 153-159. |
XU J M, MENG J, LIU X M, et al. Control of heavy metal pollution in farmland of China in terms of food security[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 153-159. (in Chinese with English abstract) | |
[13] | 李丹, 李俊华, 何婷, 等. 不同改良剂对石灰性镉污染土壤的镉形态和小白菜镉吸收的影响[J]. 农业环境科学学报, 2015, 34(9): 1679-1685. |
LI D, LI J H, HE T, et al. Effects of different amendments on soil Cd forms and Cd uptake by Chinese cabbage in Cd-contaminated calcareous soils[J]. Journal of Agro-Environment Science, 2015, 34(9): 1679-1685. (in Chinese with English abstract) | |
[14] | 邢维芹, 张红毅, SCHECKEL K G, 等. 铅冶炼污染区小麦籽粒镉含量及低积累品种筛选[J]. 农业环境科学学报, 2015, 34(10): 2039-2040. |
XING W Q, ZHANG H Y, SCHECKEL K G, et al. Grain Cd concentrations of 100 wheat (Triticum aestivum Linn)varieties and strains grown on lead-smelting contaminated soils and screening for low Cd varieties[J]. Journal of Agro-Environment Science, 2015, 34(10): 2039-2040. (in Chinese) | |
[15] | CHEN R, ZHANG C B, ZHAO Y L, et al. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants[J]. Environmental Science and Pollution Research, 2018, 25(3): 2361-2368. |
[16] | 王艳丽, 王京, 刘国顺, 等. 磷胁迫对烤烟高亲和磷转运蛋白基因表达及磷素吸收利用的影响[J]. 西北植物学报, 2015, 35(7): 1403-1408. |
WANG Y L, WANG J, LIU G S, et al. Expression of high-affinity phosphate transporter genes, phosphorus absorption and utilization in flue-cured tobacco under deficient phosphorus stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(7): 1403-1408. (in Chinese with English abstract) | |
[17] | 杨志敏, 郑绍健, 胡霭堂. 不同磷水平下植物体内镉的积累、化学形态及生理特性[J]. 应用与环境生物学报, 2000, 6(2): 121-126. |
YANG Z M, ZHENG S J, HU A T. Accumulation, chemical forms and physiological characterization of cadmium in plants affected by phosphorus[J]. Chinese Journal of Applied and Environmental Biology, 2000, 6(2): 121-126. (in English) | |
[18] | TIAN S K, LU L L, ZHANG J, et al. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress[J]. Chemosphere, 2011, 84(1): 63-69. |
[19] | HAN Y, LING Q, DONG F Q, et al. Iron and copper micronutrients influences cadmium accumulation in rice grains by altering its transport and allocation[J]. Science of the Total Environment, 2021, 777: 146118. |
[20] | 唐守寅, 胡露, 熊琪, 等. 掺杂硒·硫的硅基叶面阻控剂对水稻富集镉的影响[J]. 安徽农业科学, 2021, 49(17): 61-64. |
TANG S Y, HU L, XIONG Q, et al. Effects of selenium and sulfur doped silica-based leaf surface inhibitor on cadmium enrichment in rice[J]. Journal of Anhui Agricultural Sciences, 2021, 49(17): 61-64. (in Chinese with English abstract) | |
[21] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[22] | 陈喆, 铁柏清, 雷鸣, 等. 施硅方式对稻米镉阻隔潜力研究[J]. 环境科学, 2014, 35(7): 2762-2770. |
CHEN Z, TIE B Q, LEI M, et al. Phytoexclusion potential studies of Si fertilization modes on rice cadmium[J]. Environmental Science, 2014, 35(7): 2762-2770. (in Chinese with English abstract) | |
[23] | 杨惟薇, 刘敏, 曹美珠, 等. 不同玉米品种对重金属铅镉的富集和转运能力[J]. 生态与农村环境学报, 2014, 30(6): 774-779. |
YANG W W, LIU M, CAO M Z, et al. Accumulation and transfer of lead (Pb) and cadmium (Cd) on different species of maize[J]. Journal of Ecology and Rural Environment, 2014, 30(6): 774-779. (in Chinese with English abstract) | |
[24] | 陈京都, 何理, 林忠成, 等. 不同生育期类型水稻对镉积累的研究[J]. 生态与农村环境学报, 2013, 29(3): 390-393. |
CHEN J D, HE L, LIN Z C, et al. Cd accumulation in japonica rice relative to growth type[J]. Journal of Ecology and Rural Environment, 2013, 29(3): 390-393. (in Chinese with English abstract) | |
[25] | 龙思斯, 杨益新, 宋正国, 等. 三种类型阻控剂对不同品种水稻富集镉的影响[J]. 农业资源与环境学报, 2016, 33(5): 459-465. |
LONG S S, YANG Y X, SONG Z G, et al. Effects of three inhibitors on the accumulation of cadmium in rice (Oryza sativa L.)[J]. Journal of Agricultural Resources and Environment, 2016, 33(5): 459-465. (in Chinese with English abstract) | |
[26] | 董如茵, 徐应明, 王林, 等. 土施和喷施锌肥对镉低积累油菜吸收镉的影响[J]. 环境科学学报, 2015, 35(8): 2589-2596. |
DONG R Y, XU Y M, WANG L, et al. Effects of soil application and foliar spray of zinc fertilizer on cadmium uptake in a pakchoi cultivar with low cadmium accumulation[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2589-2596. (in Chinese with English abstract) | |
[27] | QASWAR M, HUSSAIN S, RENGEL Z. Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar[J]. Science of the Total Environment, 2017, 605/606: 454-460. |
[28] | 文志琦, 赵艳玲, 崔冠男, 等. 水稻营养器官镉积累特性对稻米镉含量的影响[J]. 植物生理学报, 2015, 51(8): 1280-1286. |
WEN Z Q, ZHAO Y L, CUI G N, et al. Effects of cadmium accumulation characteristics in vegetative organs on cadmium content in grains of rice[J]. Plant Physiology Journal, 2015, 51(8): 1280-1286. (in Chinese with English abstract) | |
[29] | 赵步洪, 张洪熙, 奚岭林, 等. 杂交水稻不同器官镉浓度与累积量[J]. 中国水稻科学, 2006, 20(3): 306-312. |
ZHAO B H, ZHANG H X, XI L L, et al. Concentrations and accumulation of cadmium in different organs of hybrid rice[J]. Chinese Journal of Rice Science, 2006, 20(3): 306-312. (in Chinese with English abstract) | |
[30] | URAGUCHI S, MORI S, KURAMATA M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009, 60(9): 2677-2688. |
[31] | FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806. |
[32] | TANAKA K, FUJIMAKI S, FUJIWARA T, et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.)[J]. Soil Science and Plant Nutrition, 2007, 53(1): 72-77. |
[33] | 陈喆, 铁柏清, 刘孝利, 等. 改良-农艺综合措施对水稻吸收积累镉的影响[J]. 农业环境科学学报, 2013, 32(7): 1302-1308. |
CHEN Z, TIE B Q, LIU X L, et al. Impacts of optimized agronomic regulation management on cadmium absorption and accumulation by late rice[J]. Journal of Agro-Environment Science, 2013, 32(7): 1302-1308. (in Chinese with English abstract) | |
[34] | 程钊, 江俊杰, 李丹, 等. 鄱阳湖及周边经济区土壤镉的含量与分布[J]. 地球与环境, 2015, 43(4): 464-468. |
CHENG Z, JIANG J J, LI D, et al. Content and distribution of cadmium in soils of Poyang Lake and its surrounding economic zones[J]. Earth and Environment, 2015, 43(4): 464-468. (in Chinese with English abstract) | |
[35] | 艾金华, 廖晓勇, 王凌青, 等. 镉胁迫下小麦镉低累积品种筛选[J]. 南昌大学学报(理科版), 2019, 43(2): 175-181. |
AI J H, LIAO X Y, WANG L Q, et al. The selection of low cadmium accumulation wheat varieties under cadmium stress[J]. Journal of Nanchang University (Natural Science), 2019, 43(2): 175-181. (in Chinese with English abstract) | |
[36] | WANG C, JI J F, YANG Z F, et al. Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River Delta region, China: a typical industry-agriculture transition area[J]. Biological Trace Element Research, 2012, 148(2): 264-274. |
[37] | 邵金秋, 刘楚琛, 阎秀兰, 等. 河北省典型污灌区农田镉污染特征及环境风险评价[J]. 环境科学学报, 2019, 39(3): 917-927. |
SHAO J Q, LIU C C, YAN X L, et al. Cadmium distribution characteristics and environmental risk assessment in typical sewage irrigation area of Hebei Province[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 917-927. (in Chinese with English abstract) | |
[38] | LV G H, WANG H, XU C, et al. Effectiveness of simultaneous foliar application of Zn and Mn or P to reduce Cd concentration in rice grains: a field study[J]. Environmental Science and Pollution Research, 2019, 26(9): 9305-9313. |
[39] | 于焕云, 崔江虎, 乔江涛, 等. 稻田镉砷污染阻控原理与技术应用[J]. 农业环境科学学报, 2018, 37(7): 1418-1426. |
YU H Y, CUI J H, QIAO J T, et al. Principle and technique of arsenic and cadmium pollution control in paddy field[J]. Journal of Agro-Environment Science, 2018, 37(7): 1418-1426. (in Chinese with English abstract) | |
[40] | TAKAHASHI R, ISHIMARU Y, SHIMO H, et al. From laboratory to field: OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields[J]. PLoS One, 2014, 9(6): e98816. |
[41] | NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469. |
[42] | 吕光辉, 许超, 王辉, 等. 叶面喷施不同浓度锌对水稻锌镉积累的影响[J]. 农业环境科学学报, 2018, 37(7): 1521-1528. |
LÜ G H, XU C, WANG H, et al. Effect of foliar spraying zinc on the accumulation of zinc and cadmium in rice[J]. Journal of Agro-Environment Science, 2018, 37(7): 1521-1528. (in Chinese with English abstract) | |
[43] | 胡坤, 喻华, 冯文强, 等. 中微量元素和有益元素对水稻生长和吸收镉的影响[J]. 生态学报, 2011, 31(8): 2341-2348. |
HU K, YU H, FENG W Q, et al. Effects of secondary, micro- and beneficial elements on rice growth and cadmium uptake[J]. Acta Ecologica Sinica, 2011, 31(8): 2341-2348. (in Chinese with English abstract) | |
[44] | 汪鹏, 王静, 陈宏坪, 等. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报, 2018, 37(7): 1409-1417. |
WANG P, WANG J, CHEN H P, et al. Cadmium risk and mitigation in paddy systems in China[J]. Journal of Agro-Environment Science, 2018, 37(7): 1409-1417. (in Chinese with English abstract) | |
[45] | 虞银江, 廖海兵, 陈文荣, 等. 水稻吸收、运输锌及其籽粒富集锌的机制[J]. 中国水稻科学, 2012, 26(3): 365-372. |
YU Y J, LIAO H B, CHEN W R, et al. Mechanism of Zn uptake, translocation in rice plant and Zn-enrichment in rice grain[J]. Chinese Journal of Rice Science, 2012, 26(3): 365-372. (in Chinese with English abstract) | |
[46] | 陈世宝, 朱永官, 杨俊诚. 土壤-植物系统中磷对重金属生物有效性的影响机制[J]. 环境污染治理技术与设备, 2003(8): 1-7. |
CHEN S B, ZHU Y G, YANG J C. Mechanism of the effect of phosphorus on bioavailability of heavy metals in soil-plant systems[J]. Techniques and Equipment for Environmental Pollution Control, 2003(8): 1-7. (in Chinese with English abstract) | |
[47] | CUI J H, LIU T X, LI F B, et al. Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects[J]. Environmental Pollution, 2017, 228: 363-369. |
[1] | 娄渊根, 李闯, 李晶晶, 邢国珍, 路亚南, 郑文明. 小麦HP基因家族鉴定和分析[J]. 浙江农业学报, 2023, 35(9): 2023-2032. |
[2] | 余桂红, 宋桂成, 张鹏, 王化敦, 范祥云. 十八个小麦品种(系)拔节期耐渍性的综合评价[J]. 浙江农业学报, 2023, 35(6): 1235-1242. |
[3] | 杨凯, 陈凯, 李红梅, 赵忠娟, 扈进冬, 李纪顺, 杨合同. 哈茨木霉LTR-2与产脲节杆菌DnL1-1协同对小麦茎基腐病的防治效果与机理[J]. 浙江农业学报, 2023, 35(6): 1385-1395. |
[4] | 任开明, 王犇, 杨文俊, 樊永惠, 张文静, 马尚宇, 黄正来. 施氮对稻茬弱筋小麦生长特性、品质与产量的影响[J]. 浙江农业学报, 2023, 35(4): 769-779. |
[5] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
[6] | 白卫卫, 赵雪妮, 罗斌, 赵薇, 黄硕, 张晗. 基于YOLOv5的小麦种子发芽检测方法研究[J]. 浙江农业学报, 2023, 35(2): 445-454. |
[7] | 林小兵, 张鸿燕, 张秋梅, 周利军, 徐德胜, 郭乃嘉, 邱祥凤, 黄海平. 基于多指标的镉低积累水稻品种筛选[J]. 浙江农业学报, 2023, 35(11): 2507-2515. |
[8] | 王建兵, 王金涛, 颜可昕, 郭小兰, 王盾, 戴洪文. 豆瓣菜在镉铅复合污染条件下的镉铅积累特性[J]. 浙江农业学报, 2023, 35(11): 2664-2672. |
[9] | 耿兵婕, 叶苗苗, 陈研, 王孟昌, 马尚宇, 黄正来, 张文静, 樊永惠. 外源6-BA和KH2PO4对花后受渍小麦根系抗氧化酶和无氧呼吸酶活性的影响[J]. 浙江农业学报, 2023, 35(10): 2275-2285. |
[10] | 范丽莹, 范婷婷, 仝宗军, 梁立韵, 赵志勇, 陈辉, 周昌艳, 赵晓燕. 镉胁迫对不同品种羊肚菌镉富集规律与抗氧化系统的影响[J]. 浙江农业学报, 2023, 35(10): 2321-2331. |
[11] | 王犇, 李宇星, 李哲, 姜沣溢, 黄正来, 樊永惠, 张文静, 马尚宇. 海藻糖处理对花后高温胁迫弱筋小麦生选6号产量形成及品质的影响[J]. 浙江农业学报, 2023, 35(1): 1-9. |
[12] | 董飞燕, 宋婧含, 张华东, 吴昊天, 李雅倩, 刘孟伟, 高春保, 方正武, 刘易科. 小麦TaPAT1-2D基因的克隆与表达分析[J]. 浙江农业学报, 2023, 35(1): 23-32. |
[13] | 郭晗, 陆洲, 徐飞飞, 罗明, 张序. 基于全局敏感性分析与机器学习的冬小麦叶面积指数估算[J]. 浙江农业学报, 2022, 34(9): 2020-2031. |
[14] | 姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590. |
[15] | 黄锋, 邢建平, 符少怀, 潘攀, 吴琳, 刘贝贝, 陈淼. 不同安全利用技术对琼北地区稻菜轮作系统镉削减的效果[J]. 浙江农业学报, 2022, 34(8): 1725-1733. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 480
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 181
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||