浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1993-2012.DOI: 10.3969/j.issn.1004-1524.20236105

• 综述 • 上一篇    下一篇

深度学习在作物及其近缘种抗病性智能鉴定上的研究进展

潘攀1,2(), 张建华1,2,*(), 郑晓明2,3, 周国民2,4, 胡林1,2, 冯全5, 柴秀娟1,2   

  1. 1.中国农业科学院 农业信息研究所,北京 100081
    2.中国农业科学院 国家南繁研究院,海南 三亚 572024
    3.中国农业科学院 作物科学研究所,北京 100081
    4.中国农业科学院 农田灌溉研究所,河南 新乡 453002
    5.甘肃农业大学 机电工程学院,甘肃 兰州 730070
  • 收稿日期:2023-02-05 出版日期:2023-08-25 发布日期:2023-08-29
  • 作者简介:潘攀(1997—),男,浙江台州人,硕士研究生,研究方向为视觉智能感知。E-mail:82101225584@caas.cn
  • 通讯作者: *张建华,E-mail:zhangjianhua@caas.cn
  • 基金资助:
    国家重点研发计划(2022YFF0711805);国家自然科学基金(31971792);国家自然科学基金(32160421);中国农业科学院创新工程(CAAS-ASTIP-2016-AII);中国农业科学院创新工程(CAAS-ASTIP-2023-AII);中央级公益性科研院所基本科研业务费专项(Y2022XK24);中央级公益性科研院所基本科研业务费专项(Y2022QC17);中央级公益性科研院所基本科研业务费专项(JBYW-AII-2022-14);中央级公益性科研院所基本科研业务费专项(JBYW-AII-2023-06);三亚中国农业科学院国家南繁研究院南繁专项(YDLH01);三亚中国农业科学院国家南繁研究院南繁专项(YDLH07);三亚中国农业科学院国家南繁研究院南繁专项(YBXM10);三亚中国农业科学院国家南繁研究院南繁专项(ZDXM23011);三亚中国农业科学院国家南繁研究院南繁专项(YBXM2312)

Research progress of deep learning in intelligent identification of disease resistance of crops and their related species

PAN Pan1,2(), ZHANG Jianhua1,2,*(), ZHENG Xiaoming2,3, ZHOU Guomin2,4, HU Lin1,2, FENG Quan5, CHAI Xiujuan1,2   

  1. 1. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2. National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
    3. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    4. Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, Henan, China
    5. School of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
  • Received:2023-02-05 Online:2023-08-25 Published:2023-08-29

摘要:

作物及其近缘种抗病性的精准鉴定是筛选和培育作物抗病性品种的关键环节,是安全有效防治作物病害的重要方式,也是野生种质资源异位保存和开发利用的重要基础。传统的抗病性鉴定方法工作量巨大,且严重依赖于调查人员的主观判断,快速、准确的作物及其近缘种抗病性智能化鉴定方式是未来的发展方向。近年来,随着深度学习方法的快速发展与大量应用,基于深度学习的作物及其近缘种抗病性智能鉴定成为可能。本文首先以水稻3大病害(稻瘟病、白叶枯病、纹枯病)为例,从阐述其抗病性鉴定的规范标准和传统抗病性鉴定方法出发,随后从病害检测、病害分割和病害危害程度评估3方面综述了深度学习在作物及其近缘种抗病性智能鉴定中的研究进展,凝练了深度学习在抗病性鉴定上的应用情况和面临的难点与挑战,并对未来进一步研究的方向与发展趋势进行展望,旨在为深度学习在作物及其近缘种抗病性鉴定中的进一步研究应用提供参考。

关键词: 作物, 近缘种, 种质资源鉴定, 抗病性, 智能鉴定, 精准鉴定, 深度学习

Abstract:

Accurate identification of disease resistance of crops and their related species is the critical link in screening and breeding disease resistant varieties of crops, an important way to safely and effectively control crop diseases, and an essential basis for the ex-situ conservation and exploitation of wild germplasm resources. The traditional disease resistance identification methods rely heavily on the subjective judgment of investigators, which is time-consuming and laborious.Rapid, accurate and intelligent identification of disease resistance of crops and their related species is in great need. In recent years, with the rapid development and application of deep learning methods, the intelligent identification of disease resistance of crops and their related species based on deep learning has become possible. In the present assay, we firstly introduced the traditional disease resistance identification methods and standards by taking three main diseases in rice (rice blast, rice leaf blight and rice sheath blight) as an example, then reviewed the progress of deep learning in intelligent identification of disease resistance in crops and their related species from three aspects of disease detection, disease segmentation, and diseases index assessment. Finally, we summarized difficulties and challenges in the application of deep learning in disease resistance identification, and discussed the feasibility and development trend to provide references for further research on deep learning in disease resistance identification of crops and their related species.

Key words: crops, related species, identification of germplasm resources, disease resistance, intelligent identification, accurate identification, deep learning

中图分类号: