浙江农业学报 ›› 2023, Vol. 35 ›› Issue (3): 534-546.DOI: 10.3969/j.issn.1004-1524.2023.03.06
赵书慧1(), 张振华1, 欧张丹1, 田茂平1, 陈玉梅2, 赵紫薇1,*(
)
收稿日期:
2022-03-06
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
*赵紫薇,E-mail:zhaoziwei421@gmail.com
作者简介:
赵书慧(1996—),女,河南周口人,硕士研究生,主要从事作物根际微生物研究。E-mail:zhaoshuhuizh152@163.com
基金资助:
ZHAO Shuhui1(), ZHANG Zhenhua1, OU Zhangdan1, TIAN Maoping1, CHEN Yumei2, ZHAO Ziwei1,*(
)
Received:
2022-03-06
Online:
2023-03-25
Published:
2023-04-07
摘要:
综合中国知网、维普、万方数据库收录的2000—2021年发表的涉及农作物根系分泌物的中文试验性文章,搜索关键信息进行分析。结果显示:42%的研究涉及的农作物集中在小麦、大豆、玉米、水稻、蚕豆等粮食作物上。作物、微生物、土壤是探索外在环境与根系分泌物互作中所涉及的主要因素。互作研究主要包括农作物根系分泌物对外在环境的影响和根系分泌物对外在环境的响应。对农作物根系分泌物成分的分析在精度上主要可分为全量检测(占总研究的39%)、功能成分分析(占总研究的50%)和全成分分析(占总研究的11%)3个层次。尽管脂类、烷烃类、醇类等大分子量化合物在农作物根系分泌物中的种类占所有化合物种类的比例较高(41%),但对酸类、氨基酸类、糖类等低分子量且种类较少的初级代谢产物的研究数量占比较高(24%)。总的来看,粮食作物是我国农作物根系分泌物研究的重点,且根系分泌物的全成分分析尚处于发展初期。农作物根系分泌物中酸类、氨基酸和糖类等初级代谢物的功能与外在环境的互作是当前的研究热点。
中图分类号:
赵书慧, 张振华, 欧张丹, 田茂平, 陈玉梅, 赵紫薇. 国内农作物根系分泌物研究热点的初步探析[J]. 浙江农业学报, 2023, 35(3): 534-546.
ZHAO Shuhui, ZHANG Zhenhua, OU Zhangdan, TIAN Maoping, CHEN Yumei, ZHAO Ziwei. Preliminary analysis on research hotspot of crop root exudates in China[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 534-546.
图1 我国根系分泌物研究中涉及的农作物种类 文字后的数字代表其出现的次数。图3、图4同。
Fig.1 Crop types involved in root exudates research in China The figures after the crop are the number of literatures involved. The same as in Fig. 3 and Fig. 4.
图2 农作物根系分泌物研究中的生物与非生物因素 饼图中文字后的数字代表该类中的指标数量,百分数代表该类指标占整体的比例。
Fig.2 Biotic and abiotic factors in studies of crop root exudates The number after the words in the pie chart represents the number of indicators in the category, and the percentage represents the proportion of indicators in the overall category.
图5 农作物根系分泌物研究主题分类 图中根系分泌物两侧分别展示不同研究模式下的分类,左侧代表模式一,右侧代表模式二,矩形框两边的数字分别代表该类研究占其所属模式的比例。
Fig.5 Classification of crop root exudates studies based on literature theme Different categories under different research modes are shown in either side of the box labelled with root exudates. The left side represents mode one, and the right side represents mode two. The numbers on either side of the rectangular box represent the proportion of such studies to the number of articles in the corresponding research mode.
[1] |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298-310.
DOI |
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. (in Chinese with English abstract)
DOI URL |
|
[2] |
BERTIN C, YANG X H, WESTON L A. The role of root exudates and allelochemicals in the rhizosphere[J]. Plant and Soil, 2003, 256(1): 67-83.
DOI URL |
[3] |
QIAO Y F, MIAO S J, LI N, et al. Spatial distribution of rhizodeposit carbon of maize (Zea mays L.) in soil aggregates assessed by multiple pulse 13C labeling in the field[J]. Plant and Soil, 2014, 375(1/2): 317-329.
DOI URL |
[4] |
LANDI L, VALORI F, ASCHER J, et al. Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils[J]. Soil Biology and Biochemistry, 2006, 38(3): 509-516.
DOI URL |
[5] |
WEIR T L, PARK S W, VIVANCO J M. Biochemical and physiological mechanisms mediated by allelochemicals[J]. Current Opinion in Plant Biology, 2004, 7(4): 472-479.
DOI PMID |
[6] | BAIS H P, BROECKLING C D, VIVANCO J M. Root exudates modulate plant: microbe interactions in the rhizosphere[M]//KARLOVSKY P. Secondary metabolites in soil ecology. Heidelberg: Springer Berlin, 2008: 241-252. |
[7] |
DAM N M V, BOUWMEESTER H J. Metabolomics in the rhizosphere: tapping into belowground chemical communication[J]. Trends in Plant Science, 2016, 21(3): 256-265.
DOI PMID |
[8] |
KONG C H, ZHANG S Z, LI Y H, et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals[J]. Nature Communications, 2018, 9: 3867.
DOI |
[9] | ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4): 470-480. |
[10] |
陆玉芳, 施卫明. 根际化学信号物质与土壤养分转化[J]. 生物技术通报, 2020, 36(9): 14-24.
DOI |
LU Y F, SHI W M. Rhizospheric chemical signals and soil nutrient transformation[J]. Biotechnology Bulletin, 2020, 36(9): 14-24. (in Chinese with English abstract) | |
[11] | 兰忠明, 林新坚, 张伟光, 等. 缺磷对紫云英根系分泌物产生及难溶性磷活化的影响[J]. 中国农业科学, 2012, 45(8): 1521-1531. |
LAN Z M, LIN X J, ZHANG W G, et al. Effect of P deficiency on the emergence of Astragalus L. exudates and mobilization of sparingly soluble phosphorus[J]. Scientia Agricultura Sinica, 2012, 45(8): 1521-1531. (in Chinese with English abstract) | |
[12] | 徐炜杰, 郭佳, 赵敏, 等. 重金属污染土壤植物根系分泌物研究进展[J]. 浙江农林大学学报, 2017, 34(6): 1137-1148. |
XU W J, GUO J, ZHAO M, et al. Research progress of soil plant root exudates in heavy metal contaminated soil[J]. Journal of Zhejiang A & F University, 2017, 34(6): 1137-1148. (in Chinese with English abstract) | |
[13] |
RODRIGUES M, GANANÇA J F T, DA SILVA E M, et al. Evidences of organic acids exudation in aluminium stress responses of two Madeiran wheat (Triticum aestivum L.) landraces[J]. Genetic Resources and Crop Evolution, 2019, 66(4): 857-869.
DOI |
[14] |
WANG H W, MA C Y, XU F J, et al. Root endophyte-enhanced peanut-rhizobia interaction is associated with regulation of root exudates[J]. Microbiological Research, 2021, 250: 126765.
DOI URL |
[15] |
VORA S M, JOSHI P, BELWALKAR M, et al. Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea-maize intercropping system[J]. Rhizosphere, 2021, 18: 100331.
DOI URL |
[16] |
YE S F, YU J Q, PENG Y H, et al. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates[J]. Plant and Soil, 2004, 263(1): 143-150.
DOI URL |
[17] | YANG R X, GAO Z G, LIU X, et al. Root exudates from muskmelon (Cucumis melon. L) induce autotoxicity and promote growth of Fusarium oxysporum f. sp. melonis[J]. Allelopathy Journal, 2014, 33(2): 175-187. |
[18] | 任改弟, 王光飞, 马艳. 根系分泌物与土传病害的关系研究进展[J]. 土壤, 2021, 53(2): 229-235. |
REN G D, WANG G F, MA Y. Research progresses on relationship between plant root exudates and soil-borne diseases[J]. Soils, 2021, 53(2): 229-235. (in Chinese with English abstract) | |
[19] |
BRIMECOMBE M J, FA D L, LYNCH J M. Effect of introduced Pseudomonas fluorescens strains on soil nematode and protozoan populations in the rhizosphere of wheat and pea[J]. Microbial Ecology, 1999, 38(4): 387-397.
DOI URL |
[20] |
BEKKARA F, JAY M, VIRICEL M R, et al. Distribution of phenolic compounds within seed and seedlings of two Vicia faba cultivars differing in their seed tannin content, and study of their seed and root phenolic exudations[J]. Plant and Soil, 1998, 203: 27-36.
DOI URL |
[21] | ZHANG F S, MA J, CAO Y P. Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish (Raghanus satiuvs L.) and rape (Brassica napus L.) plants[M]// Plant nutrition for sustainable food production and environment. Dordrecht: Springer Netherlands, 1997: 301-304. |
[22] | 吴宇佳, 张文, 肖彤斌, 等. 缺钾对不同基因型香蕉根系分泌物产生及土壤钾活化的影响[J]. 西南农业学报, 2017, 30(3): 624-628. |
WU Y J, ZHANG W, XIAO T B, et al. Effect of K deficiency on emergence of root exudates and mobilization of soil potassium in different banana genotypes[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(3): 624-628. (in Chinese with English abstract) | |
[23] | 李廷轩, 马国瑞, 张锡洲. 富钾基因型籽粒苋主要根系分泌物及其对土壤矿物态钾的活化作用[J]. 应用生态学报, 2006, 17(3):368-372. |
LI T X, MA G R, ZHANG X Z. Root exudates of potassium-enrichment genotype grain amaranth and their activation on soil mineral potassium[J]. Chinese Journal of Applied Ecology, 2006, 17(3): 368-372. (in Chinese with English abstract) | |
[24] | 王吉秀, 湛方栋, 李元, 等. 铅胁迫下小花南芥与玉米间作对根系分泌物有机酸的影响[J]. 中国生态农业学报, 2016, 24(3): 365-372. |
WANG J X, ZHAN F D, LI Y, et al. Effects of Arabisalpina L. var. parviflora Franch and Zea mays L. intercropping system on root-exudated organic acids under lead stress[J]. Chinese Journal of Eco-Agriculture, 2016, 24(3): 365-372. (in Chinese with English abstract) | |
[25] | 王璐, 陈明霞, 邵云, 等. 作物根系分泌物对小麦种子萌发及幼苗生长的影响[J]. 河南农业科学, 2019, 48(1): 66-71. |
WANG L, CHEN M X, SHAO Y, et al. Effects of root exudates of crops on wheat seed germination and seedling growth[J]. Journal of Henan Agricultural Sciences, 2019, 48(1): 66-71. (in Chinese with English abstract) | |
[26] | CHAUDHARY R G, KUMAR L, DHAR V, et al. Effect of sorghum root exudates on pathogens of pulse crops[J]. Journal of Food Legumes, 2009, 22(4): 269-272. |
[27] |
DONG Y, DONG K, ZHENG Y, et al. Allelopathic effects and components analysis of root exudates of faba bean cultivars with different degrees of resistance to Fusarium oxysporum[J]. Chinese Journal of Eco-Agriculture, 2014, 22(3): 292-299.
DOI URL |
[28] |
LUO Y Q, ZHAO X Y, ANDRÉN O, et al. Artificial root exudates and soil organic carbon mineralization in a degraded sandy grassland in Northern China[J]. Journal of Arid Land, 2014, 6(4): 423-431.
DOI |
[29] |
UDDIN M R, WON O J, PYON J Y. Herbicidal effects and crop selectivity of sorgoleone, a Sorghum root exudate under greenhouse and field conditions[J]. Korean Journal of Weed Science, 2010, 30(4): 412-420.
DOI URL |
[30] | UDDIN R, PARK K, PYON J, et al. Combined herbicidal effect of two natural products (sorgoleone and hairy root extract of Tartary buckwheat) on crops and weeds[J]. Australian Journal of Crop Science, 2013, 7: 227-233. |
[31] |
TAO Q, ZHAO J W, LI J X, et al. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii[J]. Journal of Hazardous Materials, 2020, 383: 121177.
DOI URL |
[32] | 施积炎, 陈英旭, 林琦, 等. 根分泌物与微生物对污染土壤重金属活性的影响[J]. 中国环境科学, 2004, 24(3): 316-319. |
SHI J Y, CHEN Y X, LIN Q, et al. The influence of root exudates and microbe on heavy metal activity in contaminated soil[J]. China Environmental Science, 2004, 24(3): 316-319. (in Chinese with English abstract) | |
[33] |
SUN B Q, GAO Y Z, LIU J, et al. The impact of different root exudate components on phenanthrene availability in soil[J]. Soil Science Society of America Journal, 2012, 76(6): 2041-2050.
DOI URL |
[34] |
LING W T, REN L L, GAO Y Z, et al. Impact of low-molecular-weight organic acids on the availability of phenanthrene and pyrene in soil[J]. Soil Biology and Biochemistry, 2009, 41(10): 2187-2195.
DOI URL |
[35] |
GUO M X, GONG Z Q, MIAO R H, et al. The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure[J]. Ecological Engineering, 2017, 99: 22-30.
DOI URL |
[36] |
LIAO H, WAN H Y, SHAFF J, et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance: exudation of specific organic acids from different regions of the intact root system[J]. Plant Physiology, 2006, 141(2): 674-684.
DOI URL |
[37] |
WANG J W, KAO C H. Aluminum-inhibited root growth of rice seedlings is mediated through putrescine accumulation[J]. Plant and Soil, 2006, 288(1/2): 373-381.
DOI URL |
[38] |
NEUMANN G, MASSONNEAU A, MARTINOIA E, et al. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin[J]. Planta, 1999, 208(3): 373-382.
DOI URL |
[39] | 胡芳雨, 孟凡波, 张闻, 等. 黑麦草根系分泌物氨基酸组分对PAHs胁迫的响应[J]. 农业环境科学学报, 2020, 39(9): 1937-1945. |
HU F Y, MENG F B, ZHANG W, et al. Response of amino acids in ryegrass root exudates to polycyclic aromatic hydrocarbon stress[J]. Journal of Agro-Environment Science, 2020, 39(9): 1937-1945. (in Chinese with English abstract) | |
[40] | 郭平, 徐富凯, 刘亦博, 等. 根系分泌物对砷酸还原菌TS28活性及土壤中酶活性的影响[J]. 吉林大学学报(理学版), 2021, 59(1): 183-189. |
GUO P, XU F K, LIU Y B, et al. Effects of root exudates on activities of arsenic-reducing bacteria TS28 and enzyme activities in soil[J]. Journal of Jilin University (Science Edition), 2021, 59(1): 183-189. (in Chinese with English abstract) | |
[41] |
FAGERIA N K, STONE L F. Physical, chemical, and biological changes in the rhizosphere and nutrient availability[J]. Journal of Plant Nutrition, 2006, 29(7): 1327-1356.
DOI URL |
[42] |
LYNCH J P. Plant roots: their growth, activity, and interaction with soils[J]. Soil Science Society of America Journal, 2007, 71(2): 636.
DOI URL |
[43] |
FAN M S, SHEN J B, YUAN L X, et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China[J]. Journal of Experimental Botany, 2011, 63(1): 13-24.
DOI URL |
[44] | 王二涛. 植物-根瘤菌共生固氮[J]. 中国基础科学, 2016, 18(1): 21-27. |
WANG E T. Plant-Rhizobium symbiosis[J]. China Basic Science, 2016, 18(1): 21-27. (in Chinese with English abstract) | |
[45] |
董汝, 曹扬荣. 豆科植物-根瘤菌共生固氮的免疫调控机制[J]. 生物技术通报, 2019, 35(10): 25-33.
DOI |
DONG R, CAO Y R. Research progress on the immune regulation of symbiotic nitrogen fixation between legumes and rhizobia[J]. Biotechnology Bulletin, 2019, 35(10): 25-33. (in Chinese with English abstract)
DOI |
|
[46] |
UMALI-GARCIA M, HUBBELL D H, GASKINS M H, et al. Association of Azospirillum with grass roots[J]. Applied and Environmental Microbiology, 1980, 39(1): 219-226.
DOI URL |
[47] |
AULAKH M S, WASSMANN R, BUENO C, et al. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars[J]. Plant Biology, 2001, 3(2): 139-148.
DOI URL |
[48] |
CIESLINSKI G, VAN REES K C J, SZMIGIELSKA A M, et al. Low molecular weight organic acids released from roots of durum wheat and flax into sterile nutrient solutions[J]. Journal of Plant Nutrition, 1997, 20(6): 753-764.
DOI URL |
[49] | NAHER U A, OTHMAN R, SAUD H M, et al. Influence of root exudate carbon compounds of three rice genotypes on rhizosphere and endophytic diazotrophs[J]. Pertanika Journal of Tropical Agricultural Science, 2009, 32 (2): 209-223. |
[50] | 戢林, 李廷轩, 张锡洲, 等. 水稻氮高效基因型根系分泌物中有机酸和氨基酸的变化特征[J]. 植物营养与肥料学报, 2012, 18(5): 1046-1055. |
JI L, LI T X, ZHANG X Z, et al. Characteristics of organic acid and amino acid in root exudates of rice genotype with high nitrogen efficiency[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1046-1055. (in Chinese with English abstract) | |
[51] | 林新坚, 兰忠明, 张辉, 等. 不同紫云英基因型根系分泌物中有机酸成分分析[J]. 草业学报, 2014, 23(4): 146-152. |
LIN X J, LAN Z M, ZHANG H, et al. Organic acid composition analysis of root exudation of Chinese milk vetch genotypes[J]. Acta Prataculturae Sinica, 2014, 23(4): 146-152. (in Chinese with English abstract) | |
[52] |
MEI P P, GUI L G, WANG P, et al. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil[J]. Field Crops Research, 2012, 130: 19-27.
DOI URL |
[53] | 易艳灵, 吴丽英, 杨倩, 等. 柏木根系分泌物对盆栽香椿土壤养分和酶活性的影响[J]. 生态学杂志, 2019, 38(7): 2080-2086. |
YI Y L, WU L Y, YANG Q, et al. Effects of root exudates of Cupressus funebris on soil nutrients and enzyme activities of potted Toona sinensis[J]. Chinese Journal of Ecology, 2019, 38(7): 2080-2086. (in Chinese with English abstract) | |
[54] |
SHEN H, YAN X L, ZHAO M, et al. Exudation of organic acids in common bean as related to mobilization of aluminum-and iron-bound phosphates[J]. Environmental and Experimental Botany, 2002, 48(1): 1-9.
DOI URL |
[55] |
涂书新, 吴佳. 植物根系分泌物研究方法评述[J]. 生态环境学报, 2010, 19(10): 2493-2500.
DOI |
TU S X, WU J. A review on research methods of root exudates[J]. Ecology and Environmental Sciences, 2010, 19(10): 2493-2500. (in Chinese with English abstract) | |
[56] |
郭婉玑, 张子良, 刘庆, 等. 根系分泌物收集技术研究进展[J]. 应用生态学报, 2019, 30(11): 3951-3962.
DOI |
GUO W J, ZHANG Z L, LIU Q, et al. Research progress of root exudates collection technology[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3951-3962. (in Chinese with English abstract) | |
[57] | 李琳琳, 刘建国, 燕鹏, 等. 不同外源酚酸化感物质组合对棉花种子萌发和幼苗生长的化感效应[J]. 生态科学, 2019, 38(6): 115-119. |
LI L L, LIU J G, YAN P, et al. Allelopathic effects of different combinations of phenolic acid allelochemicals on cotton seed germination and seedling growth[J]. Ecological Science, 2019, 38(6): 115-119. (in Chinese with English abstract) | |
[58] |
XUE J Y, WANG S L, YOU X W, et al. Multi-residue determination of plant growth regulators in apples and tomatoes by liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry: RCM, 2011, 25(21): 3289-3297.
DOI PMID |
[59] |
董艳, 董坤, 杨智仙, 等. AM真菌控制蚕豆枯萎病发生的根际微生物效应[J]. 应用生态学报, 2016, 27(12): 4029-4038.
DOI |
DONG Y, DONG K, YANG Z X, et al. Rhizosphere microbial impacts of alleviating faba bean Fusarium wilt with inoculating AM fungi[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 4029-4038. (in Chinese with English abstract) | |
[60] | 王悦, 郭美霞, 金京华, 等. 三叶草根系分泌物对多环芳烃微生物降解及加氧酶的影响[J]. 应用生态学报, 2014, 25(11): 3145-3151. |
WANG Y, GUO M X, JIN J H, et al. Effects of root exudates of clover (Trifolium repens) on PAH microbial degradation and dioxygenase[J]. Chinese Journal of Applied Ecology, 2014, 25(11): 3145-3151. (in Chinese with English abstract) | |
[61] |
王亚君, 王腾琦, 侯志洁, 等. 根系分泌物对紫云英油菜间作的响应[J]. 应用生态学报, 2021, 32(5): 1783-1790.
DOI |
WANG Y J, WANG T Q, HOU Z J, et al. Responses of root exudates to intercropping of Chinese milk vetch with rape[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1783-1790. (in Chinese with English abstract) | |
[62] | 字淑慧, 吴开贤, 欧阳铖人, 等. 玉米和马铃薯根系分泌物对马铃薯生长的影响[J]. 干旱地区农业研究, 2019, 37(2): 88-94. |
ZI S H, WU K X, OUYANG C R, et al. Effects of root exudates of maize and potato on potato growth[J]. Agricultural Research in the Arid Areas, 2019, 37(2): 88-94. (in Chinese with English abstract) | |
[63] | 陈秋波, 彭黎旭, 贺利民, 等. 刚果12号桉树根及根际土壤中化感物质的成分分析[J]. 热带农业科学, 2002, 22(4): 28-34. |
CHEN Q B, PENG L X, HE L M, et al. Allelopathic substances in root and rhizosphere-soil of Eucalyputs 12ABL[J]. Chinese Journal of Tropical Agriculture, 2002, 22(4): 28-34. (in Chinese) | |
[64] |
YOSHITOMI K J, SHANN J R. Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization[J]. Soil Biology and Biochemistry, 2001, 33(12/13): 1769-1776.
DOI URL |
[65] |
TREMBLAY V, PLANTUREUX S, GUCKERT A. Influence of mechanical impedance on root exudation of maize seedlings at two development stages[J]. Plant and Soil, 1995, 172(2): 279-287.
DOI URL |
[66] | 孙萌. 三种植物次生代谢物结构及活性分子抗癌机制研究[D]. 兰州: 兰州大学, 2017. |
SUN M. Studies on the structures and the anticancer mechanism of active natural products from three plants[D]. Lanzhou: Lanzhou University, 2017. (in Chinese with English abstract) | |
[67] | 王娜, 马绍英, 马蕾, 等. 肉桂酸和棕榈酸对豌豆种子萌发和幼苗生长的化感效应[J]. 植物生理学报, 2021, 57(8): 1657-1667. |
WANG N, MA S Y, MA L, et al. Allelopathy effects of cinnamic acid and palmitic acid on seed germination and seedling growth of pea[J]. Plant Physiology Journal, 2021, 57(8): 1657-1667. (in Chinese with English abstract) | |
[68] |
VIVES-PERIS V, MOLINA L, SEGURA A, et al. Root exudates from Citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria[J]. Journal of Plant Physiology, 2018, 228: 208-217.
DOI URL |
[69] | 郝文雅, 沈其荣, 冉炜, 等. 西瓜和水稻根系分泌物中糖和氨基酸对西瓜枯萎病病原菌生长的影响[J]. 南京农业大学学报, 2011, 34(3): 77-82. |
HAO W Y, SHEN Q R, RAN W, et al. The effects of sugars and amino acids in watermelon and rice root exudates on the growth of Fusarium oxysporum f. sp. niveum[J]. Journal of Nanjing Agricultural University, 2011, 34(3): 77-82. (in Chinese with English abstract) | |
[70] | 孙立影, 于志晶, 李海云, 等. 植物次生代谢物研究进展[J]. 吉林农业科学, 2009, 34(4): 4-10. |
SUN L Y, YU Z J, LI H Y, et al. Advances in secondary metabolites of medicinal plant[J]. Journal of Jilin Agricultural Sciences, 2009, 34(4): 4-10. (in Chinese with English abstract) |
[1] | 赵丽仙, 张王菲, 李云, 张庭苇, 黄国然. 基于高分三号卫星数据与Η/Α/α-分解特征参数的农作物分类研究[J]. 浙江农业学报, 2022, 34(11): 2491-2503. |
[2] | 钱晓慧, 陈龙清, 李双琴, 施蕊. 两种可食用玫瑰生物碱代谢物差异分析[J]. 浙江农业学报, 2021, 33(3): 454-463. |
[3] | 王彦翔, 张艳, 杨成娅, 孟庆龙, 尚静. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报, 2019, 31(4): 669-676. |
[4] | 田晓静, 龙鸣, 王俊, 马忠仁, 韦真博, 陈士恩, 高丹丹, 丁波. 基于电子鼻气味信息和多元统计分析的枸杞子产地溯源研究[J]. 浙江农业学报, 2018, 30(9): 1604-1611. |
[5] | 拱健婷;张子龙*;王雄飞. 不同氮素水平下三七根系分泌物对小麦的化感作用[J]. , 2014, 26(2): 0-356361. |
[6] | 胡豹;楼洪兴;*. 我国农作物病虫害防治技术的专利战略与管理[J]. , 2014, 26(2): 0-495502. |
[7] | 贾花萍. 农作物虫情的模糊神经网络预测模型[J]. , 2013, 25(4): 0-822. |
[8] | 张演义;宋长年;房经贵;*;刘洪;王西成;李晓颖. 鲜食葡萄品种资源果实性状分析及育种目标的制定[J]. , 2012, 24(4): 0-573. |
[9] | 杨田甜;杜海荣;陈刚;*;邓鹏;甄伟伟 . 火柴头根系分泌物的化感效应[J]. , 2011, 23(6): 0-1083. |
[10] | 周翠;杨祥田;何贤彪;安玲瑶;刘领. 电子垃圾拆解区农作物可食部重金属污染评价[J]. , 2011, 23(4): 0-801. |
[11] | 周曙东;周文魁. 气候变化对长三角地区农业生产的影响及对策[J]. , 2009, 21(4): 0-310. |
[12] | 刘鹏;金婷婷;黄朝表;徐根娣;郑伟伟. 短期铝胁迫下大豆根系分泌物的初始分泌特征[J]. , 2008, 20(4): 0-224. |
[13] | 申屠旭萍;俞晓平. 银杏中抗病原真菌的内生真菌的分离筛选[J]. , 2006, 18(5): 0-320. |
[14] | 郑宏海;刘志龙;欧佐梁;赖朝晖;应正定;韩承祥 . 二氧化氯对作物害菌抑制作用的初步研究[J]. , 2000, 12(05): 0-824. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 609
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 469
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||