浙江农业学报 ›› 2021, Vol. 33 ›› Issue (3): 454-463.DOI: 10.3969/j.issn.1004-1524.2021.03.10
收稿日期:
2020-08-10
出版日期:
2021-04-02
发布日期:
2021-03-25
通讯作者:
施蕊
作者简介:
, 施蕊,E-mail: renee27@foxmail.com基金资助:
QIAN Xiaohui, CHEN Longqing, LI Shuangqin, SHI Rui*()
Received:
2020-08-10
Online:
2021-04-02
Published:
2021-03-25
Contact:
SHI Rui
摘要:
以云南滇红玫瑰(ZY)与墨红玫瑰(DH)两种云南主要的食用花卉品种为研究对象,采用超高效液相色谱-串联质谱(UPLC-MS/MS)方法比较两种玫瑰花次生代谢产物的差异性。结果表明,两种花瓣中共检测到82种代谢产物,包括55种氨基酸及其衍生物(67.07%)、16种生物碱(19.51%)、7种酚胺(8.54%)、4种吲哚类生物碱(4.88%),其中滇红玫瑰中谷胱甘肽含量是墨红玫瑰的26.35倍,具有较强的抗氧化能力;而L-天冬酰胺和S-(5'-腺苷)-L-高半胱氨酸却是墨红玫瑰中特有的物质,具有显著的降血压作用。与墨红玫瑰相比,滇红玫瑰15种差异代谢物显著下调,表明墨红玫瑰较滇红玫瑰有较高的营养保健功能,而滇红玫瑰高表达成分使其具有更强的抗氧化能力。
中图分类号:
钱晓慧, 陈龙清, 李双琴, 施蕊. 两种可食用玫瑰生物碱代谢物差异分析[J]. 浙江农业学报, 2021, 33(3): 454-463.
QIAN Xiaohui, CHEN Longqing, LI Shuangqin, SHI Rui. Analysis on alkaloids metabolites of two edible roses[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 454-463.
图1 各组样本的二维和三维主成分分析 ZY代表滇红,DH代表墨红,Mix01、Mix02和Mix03代表滇红和墨红提取物等量混合制备的样本。
Fig.1 2D PCA and 3D PCA of each sample ZY represented Rosa gallica L. cv. Dianhong, DH represented Rosa chinensis Jacq.cv. Crimson Glory, Mix01, Mix02 and Mix03 represented equivalent mixtures sample of ZY and DH.
名称Name | 成分1 PC1 | 成分2 PC2 | 成分3 PC3 | 成分4 PC4 | 成分5 PC5 |
---|---|---|---|---|---|
ZY | -9.16 | 4.36 | 1.39 | 0.15 | -4.48×10-16 |
DH | 9.49 | 2.37 | 3.55 | -0.17 | -4.32×10-16 |
Mix01 | -3.06 | -5.83 | 3.00 | 0.63 | 2.83×10-15 |
Mix02 | 2.20 | 0.01 | -4.53 | 3.15 | 1.58×10-15 |
Mix03 | 0.54 | -0.91 | -3.41 | -3.75 | 2.12×10-15 |
表1 滇红( ZY )和墨红( DH )玫瑰中所有主成分分析结果
Table 1 All PCA results in DH and ZY
名称Name | 成分1 PC1 | 成分2 PC2 | 成分3 PC3 | 成分4 PC4 | 成分5 PC5 |
---|---|---|---|---|---|
ZY | -9.16 | 4.36 | 1.39 | 0.15 | -4.48×10-16 |
DH | 9.49 | 2.37 | 3.55 | -0.17 | -4.32×10-16 |
Mix01 | -3.06 | -5.83 | 3.00 | 0.63 | 2.83×10-15 |
Mix02 | 2.20 | 0.01 | -4.53 | 3.15 | 1.58×10-15 |
Mix03 | 0.54 | -0.91 | -3.41 | -3.75 | 2.12×10-15 |
图3 DH、ZH和Mix代谢热图 列表示不同样本,行表示不同代谢物;颜色深浅表示相关系数的值。
Fig.3 Heat map of DH, ZH and Mix The columns represented different samples and the rows represented different metabolites; the depth of color represented the value of the correlation coefficient.
图4 ZY与DH相比差异倍数大的前20种代谢物 绿色表示下调差异代谢物,红色表示上调差异代谢物,数值表示差异倍数。
Fig.4 The top 20 metabolites with fold change between ZY and DH Green represented down-regulated differential metabolites, red represented up-regulated differential metabolites, and the value represented the multiple of difference.
序号 No. | 化合物 Compounds | 滇红 ZY/s-1 | 墨红 DH/s-1 | 差异倍数值 Fold change | 代谢物分组 Grouping of metabolites | 调控类型 Regulation type |
---|---|---|---|---|---|---|
1 | L-天冬酰胺L-Asparagine | — | 1.34×107 | 6.73×10-7 | DH | 下调Down |
2 | 烟酸甲酯 | 3.93×105 | 7.23×106 | 5.43×10-2 | ZY、DH | 下调Down |
Nicotinic Acid Methyl Ester(Methyl Nicotinate) | ||||||
3 | L-(-)-苏氨酸 L-(-)-Threonine | 5.88×105 | 2.23×106 | 2.63×10-1 | ZY、DH | 下调Down |
4 | L-(+)-精氨酸 L-(+)-Arginine | 1.37×106 | 6.55×106 | 2.09×10-1 | ZY、DH | 下调Down |
5 | N-乙酰-L-酪氨酸N-Acetyl-L-tyrosine | 3.46×104 | 1.35×104 | 2.56 | ZY、DH | 上调Up |
6 | O-乙酰丝氨酸O-Acetylserine | 1.41×105 | 3.06×105 | 4.61×10-1 | ZY、DH | 下调Down |
7 | DL-2-氨基己二酸DL-2-Aminoadipic acid | 7.49×105 | 1.86×106 | 4.02×10-1 | ZY、DH | 下调Down |
8 | D-(-)-缬氨酸 D-(-)-Valine | 1.45×106 | 2.99×106 | 4.84×10-1 | ZY、DH | 下调Down |
9 | L-瓜氨酸 L-Citrulline | 2.09×105 | 5.04×105 | 4.14×10-1 | ZY、DH | 下调Down |
10 | L-谷氨酸L-Glutamic acid | 1.61×106 | 1.04×107 | 1.54×10-1 | ZY、DH | 下调Down |
11 | L-(+)-赖氨酸L-(+)-Lysine | 4.09×105 | 1.65×106 | 2.48×10-1 | ZY、DH | 下调Down |
12 | DL-高半胱氨酸DL-Homocysteine | 8.19×103 | 1.85×104 | 4.42×10-1 | ZY、DH | 下调Down |
13 | N6-乙酰-L-赖氨酸N6-Acetyl-L-lysine | 5.29×105 | 2.16×106 | 2.45×10-1 | ZY、DH | 下调Down |
14 | 甘氨酰-L-脯氨酸Glycyl-L-proline | 2.53×104 | 7.20×104 | 3.52×10-1 | ZY、DH | 下调Down |
15 | L-谷氨酰胺L-Glutamine | 5.14×105 | 2.42×106 | 2.12×10-1 | ZY、DH | 下调Down |
16 | 谷胱甘肽Glutathione | 1.09×106 | 4.12×104 | 2.64×101 | ZY、DH | 上调Up |
17 | S-(5'-腺苷)-L-高半胱氨酸 | — | 6.92×104 | 1.30×10-4 | DH | 下调Down |
S-(5'-Adenosy)-L-homocysteine | ||||||
18 | 3-羟丙基棕榈酸酯葡萄糖胺 | 3.61×106 | 1.05×106 | 3.45 | ZY、DH | 上调Up |
3-Hydroxypropyl palmitate glc-glucosamine |
表2 滇红( ZY )和墨红( DH )玫瑰中的显著代谢物
Table 2 The significantly different metabolites in DH and ZY
序号 No. | 化合物 Compounds | 滇红 ZY/s-1 | 墨红 DH/s-1 | 差异倍数值 Fold change | 代谢物分组 Grouping of metabolites | 调控类型 Regulation type |
---|---|---|---|---|---|---|
1 | L-天冬酰胺L-Asparagine | — | 1.34×107 | 6.73×10-7 | DH | 下调Down |
2 | 烟酸甲酯 | 3.93×105 | 7.23×106 | 5.43×10-2 | ZY、DH | 下调Down |
Nicotinic Acid Methyl Ester(Methyl Nicotinate) | ||||||
3 | L-(-)-苏氨酸 L-(-)-Threonine | 5.88×105 | 2.23×106 | 2.63×10-1 | ZY、DH | 下调Down |
4 | L-(+)-精氨酸 L-(+)-Arginine | 1.37×106 | 6.55×106 | 2.09×10-1 | ZY、DH | 下调Down |
5 | N-乙酰-L-酪氨酸N-Acetyl-L-tyrosine | 3.46×104 | 1.35×104 | 2.56 | ZY、DH | 上调Up |
6 | O-乙酰丝氨酸O-Acetylserine | 1.41×105 | 3.06×105 | 4.61×10-1 | ZY、DH | 下调Down |
7 | DL-2-氨基己二酸DL-2-Aminoadipic acid | 7.49×105 | 1.86×106 | 4.02×10-1 | ZY、DH | 下调Down |
8 | D-(-)-缬氨酸 D-(-)-Valine | 1.45×106 | 2.99×106 | 4.84×10-1 | ZY、DH | 下调Down |
9 | L-瓜氨酸 L-Citrulline | 2.09×105 | 5.04×105 | 4.14×10-1 | ZY、DH | 下调Down |
10 | L-谷氨酸L-Glutamic acid | 1.61×106 | 1.04×107 | 1.54×10-1 | ZY、DH | 下调Down |
11 | L-(+)-赖氨酸L-(+)-Lysine | 4.09×105 | 1.65×106 | 2.48×10-1 | ZY、DH | 下调Down |
12 | DL-高半胱氨酸DL-Homocysteine | 8.19×103 | 1.85×104 | 4.42×10-1 | ZY、DH | 下调Down |
13 | N6-乙酰-L-赖氨酸N6-Acetyl-L-lysine | 5.29×105 | 2.16×106 | 2.45×10-1 | ZY、DH | 下调Down |
14 | 甘氨酰-L-脯氨酸Glycyl-L-proline | 2.53×104 | 7.20×104 | 3.52×10-1 | ZY、DH | 下调Down |
15 | L-谷氨酰胺L-Glutamine | 5.14×105 | 2.42×106 | 2.12×10-1 | ZY、DH | 下调Down |
16 | 谷胱甘肽Glutathione | 1.09×106 | 4.12×104 | 2.64×101 | ZY、DH | 上调Up |
17 | S-(5'-腺苷)-L-高半胱氨酸 | — | 6.92×104 | 1.30×10-4 | DH | 下调Down |
S-(5'-Adenosy)-L-homocysteine | ||||||
18 | 3-羟丙基棕榈酸酯葡萄糖胺 | 3.61×106 | 1.05×106 | 3.45 | ZY、DH | 上调Up |
3-Hydroxypropyl palmitate glc-glucosamine |
图5 KEGG富集统计图 圆点的大小表示富集的差异代谢物的数量,颜色表示显著值,富集因子表示在对应通路中差异表达的代谢物的个数与该通路检测注释到的代谢物总数的比值。
Fig.5 Statistic of KEGG enrichment The size of the dot indicated the amount of enriched metabolites, the color indicated the significant value, and the enrichment factor indicated that the ratio of the number of metabolites differentially expressed in the corresponding pathway to the total number of metabolites detected and annotated by the pathway.
图6 氨基酸生物合成途径中DH和ZH的差异代谢物图 绿色实线代表显著下调差异代谢物,蓝色虚线代表检测到但无显著变化差异代谢物。
Fig.6 Differential metabolites in Biosynthesis of amino acids pathways in DH and ZY Green lines represented significant down-regulated differential metabolites, blue dotted line represented the detected metabolites with no significant difference.
[1] | 王珍珍, 王其刚, 唐开学 , 等. 云南主栽食用玫瑰花香成分及关键花香基因表达分析[J]. 植物生理学报, 2019,55(7):1038-1046. |
WANG Z Z, WANG Q G, TANG K X , et al. Analysis of volatile components and scent-related gene expressions of edible roses in Yunnan[J]. Plant Physiology Journal, 2019,55(7):1038-1046.(in Chinese with English abstract) | |
[2] | 杨秦, 李杭橙, 肖洪 , 等. 云南滇红玫瑰与墨红玫瑰香气成分比较与分析[J]. 食品研究与开发, 2017,38(8):153-157. |
YANG Q, LI H C, XIAO H , et al. The analysis and comparison of aroma components between Dian Hong roses and Mo Hong roses[J]. Food Research and Development, 2017,38(8):153-157.(in Chinese with English abstract) | |
[3] | 张文, 王超, 张晶 , 等. 食用玫瑰的研究进展[J]. 中国野生植物资源, 2016,35(3):24-30. |
ZHANG W, WANG C, ZHANG J , et al. Research progress of edible rose[J]. Chinese Wild Plant Resources, 2016,35(3):24-30.(in Chinese with English abstract) | |
[4] | GE Q, MA X J . Composition and antioxidant activity of anthocyanins isolated from Yunnan edible rose (An ning)[J]. Food Science and Human Wellness, 2013,2(2):68-74. |
[5] | 谢美玉, 张凤清, 解耸林 . 两种常用食用玫瑰的HPLC指纹图谱建立[J]. 东北农业科学, 2016,41(3):109-112. |
XIE M Y, ZHANG F Q, XIE S L . Establishment of the HPLC fingerprint of two kinds of edible rose[J]. Journal of Northeast Agricultural Sciences, 2016,41(3):109-112.(in Chinese with English abstract) | |
[6] | 张訸, 刘云, 罗旭璐 , 等. 云南不同产地食用玫瑰花多酚含量及抗氧化活性[J]. 贵州农业科学, 2017,45(2):150-153. |
ZHANG H, LIU Y, LUO X L , et al. Polyphenol content and antioxidant activity of edible roses from different producing areas in Yunnan[J]. Guizhou Agricultural Sciences, 2017,45(2):150-153.(in Chinese with English abstract) | |
[7] | DEBNATH B, SINGH W S, DAS M , et al. Role of plant alkaloids on human health: a review of biological activities[J]. Materials Today Chemistry, 2018,9:56-72. |
[8] |
CUSHNIE T P T, CUSHNIE B, LAMB A J . Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities[J]. International Journal of Antimicrobial Agents, 2014,44(5):377-386.
DOI URL PMID |
[9] |
RASOULI H, YARANI R, POCIOT F , et al. Anti-diabetic potential of plant alkaloids: Revisiting current findings and future perspectives[J]. Pharmacological Research, 2020,155:104723.
DOI URL PMID |
[10] |
BARBIERI R, COPPO E, MARCHESE A , et al. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity[J]. Microbiological Research, 2017,196:44-68.
DOI URL PMID |
[11] | 孔令义 . 天然药物化学[M]. 北京: 化学工业出版社, 2018. |
[12] |
WANG M, LIU Z F, TANG H , et al. Application of alkaloids in reversing multidrug resistance in human cancers[J]. Chinese Journal of Natural Medicines, 2018,16(8):561-571.
DOI URL PMID |
[13] |
EFFERTH T, OESCH F . Repurposing of plant alkaloids for cancer therapy: pharmacology and toxicology[J]. Seminars in Cancer Biology, 2021,68:143-163.
DOI URL PMID |
[14] | 田雪松 . 山豆根中生物碱的毒性研究进展[J]. 中国实验方剂学杂志, 2016,22(6):230-234. |
TIAN X S . Research progress on toxicity of alkaloids in sophorae tonkinensis Radix et rhizoma[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2016,22(6):230-234.(in Chinese with English abstract) | |
[15] | 李滢, 张紫薇, 李晓岩 . 新型天然生物碱抗癌机制研究进展[J]. 天然产物研究与开发, 2016,28(11):1850-1855. |
LI Y, ZHANG Z W, LI X Y . Review on anticancer mechanism of new natural alkaloids[J]. Natural Product Research and Development, 2016,28(11):1850-1855.(in Chinese with English abstract) | |
[16] | 黄玉香, 谭何新, 于剑 , 等. 药用植物生物碱次生代谢工程研究进展[J]. 中草药, 2016,47(23):4271-4281. |
HUANG Y X, TAN H X, YU J , et al. Advances in study on secondary metabolic engineering of alkaloids in medicinal plants[J]. Chinese Traditional and Herbal Drugs, 2016,47(23):4271-4281.(in Chinese with English abstract) | |
[17] | 向蓓蓓, 朱晔荣, 王勇 . 长春花吲哚生物碱合成途径的基因工程研究进展[J]. 生物学通报, 2010,45(10):4-8. |
XIANG P P, ZHU Y R, WANG Y . Research advances on biosynthetic pathway of pharmaceutical indole alkaloids by means of genetic engineering in Catharanthus roseus[J]. Bulletin of Biology, 2010,45(10):4-8.(in Chinese) | |
[18] | 韩玉乾, 许金鸽, 于放 , 等. 喜树碱生物合成调控的研究进展[J]. 分子植物育种, 2019,17(18):6020-6027. |
HAN Y Q, XU J G, YU F , et al. Research progress of camptothecin biosynjournal regulation[J]. Molecular Plant Breeding, 2019,17(18):6020-6027.(in Chinese with English abstract) | |
[19] | 谢果, 何蓉蓉, 栗原博 . 茶叶生物碱的生物合成与代谢的研究进展[J]. 中国天然药物, 2010,8(2):153-160. |
XIE G, HE R R, LI Y B . Research progress on biosynjournal and catabolism of tea alkaloids[J]. Chinese Journal of Natural Medicines, 2010,8(2):153-160.(in Chinese with English abstract) | |
[20] | 成海宁, 唐中华 . 长春花生物碱代谢生物学研究进展[J]. 植物学研究, 2014,3(3):77-83. |
CHENG H N, TANG Z H . The Catharanthus terpenoid indole alkaloids: metabolic biology review[J]. Botanical Research, 2014,3(3):77-83.(in Chinese with English abstract) | |
[21] | 唐中华, 于景华, 杨逢建 , 等. 植物生物碱代谢生物学研究进展[J]. 植物学通报, 2003,38(6):696-702. |
TANG Z H, YU J H, YANG F J , et al. Metabolic biology of plant alkaloids[J]. Chinese Bulletin of Botany, 2003,38(6):696-702.(in Chinese with English abstract) | |
[22] | 黄树增, 陈青, 赵多雷 , 等. 大理州种植的加工型玫瑰品种及规范种植技术[J]. 现代园艺, 2018(9):41-42. |
HUANG S Z, CHEN Q, ZHAO D L , et al. Processed rose varieties grown in Dali Prefecture and standardized planting techniques[J]. Xiandai Horticulture, 2018(9):41-42.(in Chinese) | |
[23] | 朱晓彤 . 氨基酸与深加工产品的生产及应用[J]. 医药中间体及其化工原料, 2004(2):17-22. |
ZHU X T . Production and application of amino acids and processed products[J]. Pharmaceutical intermediates and chemicals, 2004(2):17-22. (in Chinese) | |
[24] |
LUBITZ D, JORGE J M P, PÉREZ-GARCÍA F, et al. Roles of export genes cgmA and lysE for the production of l-arginine and l-citrulline by Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2016,100(19):8465-8474.
DOI URL PMID |
[25] | 黎乃维, 姜齐永, 刘雪梅 , 等. 一种富含精氨酸、赖氨酸的牡蛎片制备工艺[J]. 食品工业, 2019,40(11):105-109. |
LI N W, JIANG Q Y, LIU X M , et al. Preparation technology of oyster tablets containing arginine and lysine[J]. The Food Industry, 2019,40(11):105-109.(in Chinese with English abstract) | |
[26] | 王欣, 许宏贤, 周鹏 , 等. 不同原料生产赖氨酸的研究进展[J]. 食品与发酵工业, 2013,39(10):174-180. |
WANG X, XU H X, ZHOU P , et al. Research progress on lysine production using different carbon sources[J]. Food and Fermentation Industries, 2013,39(10):174-180.(in Chinese with English abstract) | |
[27] |
XIAO R X, DING C Y, ZHU H W , et al. Suppression of asparagine synthetase enhances the antitumor potency of ART and artemalogue SOMCL-14-221 in non-small cell lung cancer[J]. Cancer Letters, 2020,475:22-33.
DOI URL PMID |
[28] | 于紫微, 武爽, 刘晓丽 , 等. 谷胱甘肽改善线粒体功能障碍减轻小鼠酒精性肝损伤[J]. 解剖科学进展, 2020,26(1):61-64. |
YU Z W, WU S, LIU X L , et al. Glutathione alleviates alcoholic liver disease via protecting mitochondrion in mouse[J]. Progress of Anatomical Sciences, 2020,26(1):61-64.(in Chinese with English abstract) | |
[29] |
KELLY B, PEARCE E L . Amino assets: how amino acids support immunity[J]. Cell Metabolism, 2020,32(2):154-175.
DOI URL PMID |
[30] | 舒国伟, 陈合, 张璐 , 等. 氨基酸及其衍生物生产现状[J]. 中国调味品, 2009,34(1):39-41. |
SHU G W, CHEN H, ZHANG L , et al. Current status of production for amino acids and derivatives[J]. China Condiment, 2009,34(1):39-41.(in Chinese with English abstract) | |
[31] | 郑淑彦, 王伟, 董金金 , 等. 食用玫瑰营养保健功能及产品开发研究进展[J]. 食品研究与开发, 2016,37(23):206-211. |
ZHENG S Y, WANG W, DONG J J , et al. Research progress on nutrition health function and product development of edible rose[J]. Food Research and Development, 2016,37(23):206-211.(in Chinese with English abstract) | |
[32] | 时羽杰, 李兴龙, 唐媛 , 等. 基于GC-MS分析两地白色藜麦种子的代谢差异[J]. 浙江农业学报, 2019,31(6):869-877. |
SHI Y J, LI X L, TANG Y , et al. Study on metabolic differences of white quinoa from two areas based on GC-MS[J]. Acta Agriculturae Zhejiangensis, 2019,31(6):869-877.(in Chinese with English abstract) | |
[33] | 张奇, 张露, 徐友强 , 等. 生物转化法制备L-天冬酰胺[J]. 中国生物工程杂志, 2016,36(1):63-67. |
ZHANG Q, ZHANG L, XU Y Q , et al. L-asparagine production by biotransformation method[J]. China Biotechnology, 2016,36(1):63-67.(in Chinese with English abstract) |
[1] | 田晓静, 龙鸣, 王俊, 马忠仁, 韦真博, 陈士恩, 高丹丹, 丁波. 基于电子鼻气味信息和多元统计分析的枸杞子产地溯源研究[J]. 浙江农业学报, 2018, 30(9): 1604-1611. |
[2] | 龚娜;杨镇;王娜;李学龙;肖军;陈珣;杨涛*. 植物内生菌次生代谢产物影响大豆主要性状的灰色关联度分析[J]. , 2013, 25(5): 0-937. |
[3] | 李小龙;王超;郭坚华*. 菌株518鉴定及其次生代谢产物的生防特性与分离[J]. , 2013, 25(3): 0-542. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1856
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 646
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||